示例#1
0
def segment3DLungs(image_path):

    # Lungs Parameters
    params = {}
    # Parameters for intensity (fixed)
    params['lungMinValue'] = 0
    params['lungMaxValue'] = 800
    params['lungThreshold'] = -900
    # Parameters for lung segmentation (fixed)
    params['xRangeRatio1'] = 0.4
    params['xRangeRatio2'] = 0.75
    params['zRangeRatio1'] = 0.5
    params['zRangeRatio2'] = 0.75

    # Load image
    Img = nib.load(image_path)
    I = Img.get_data()

    # Intensity thresholding & Morphological operations
    M = np.zeros(I.shape)
    M[I > params['lungMinValue']] = 1
    M[I > params['lungMaxValue']] = 0

    struct_s = ndimage.generate_binary_structure(3, 1)
    struct_m = ndimage.iterate_structure(struct_s, 2)
    struct_l = ndimage.iterate_structure(struct_s, 3)
    M = ndimage.binary_closing(M, structure=struct_s, iterations=1)
    M = ndimage.binary_opening(M, structure=struct_m, iterations=1)

    # Estimate lung filed of view
    [m, n, p] = I.shape
    medx = int(m / 2)
    medy = int(n / 2)
    xrange1 = int(m / 2 * params['xRangeRatio1'])
    xrange2 = int(m / 2 * params['xRangeRatio2'])
    zrange1 = int(p * params['zRangeRatio1'])
    zrange2 = int(p * params['zRangeRatio2'])

    # Select largest connected components
    M = measure.label(M)
    label1 = M[medx - xrange2:medx - xrange1, medy, zrange1:zrange2]
    label2 = M[medx + xrange1:medx + xrange2, medy, zrange1:zrange2]
    label1 = stats.mode(label1[label1 > 0])[0][0]
    label2 = stats.mode(label2[label2 > 0])[0][0]
    M[M == label1] = -1
    M[M == label2] = -1
    M[M > 0] = 0
    M = M * -1

    SegImage = nib.Nifti1Image(M, Img.affine, Img.header)

    return SegImage
示例#2
0
def compute_mask(aparc, labels=[0, 5000]):
    import nibabel as nb
    import numpy as np
    import os.path as op
    import scipy.ndimage as nd

    segnii = nb.load(aparc)
    seg = segnii.get_data()
    mask = np.ones_like(seg, dtype=np.uint8)
    for l in labels:
        mask[seg == l] = 0

    struct = nd.iterate_structure(
        nd.generate_binary_structure(3, 1), 4)
    mask = nd.binary_dilation(mask, structure=struct).astype(np.uint8)
    mask = nd.binary_closing(mask, structure=struct)
    mask = nd.binary_fill_holes(mask, structure=struct).astype(np.uint8)
    mask[mask > 0] = 1
    mask[mask <= 0] = 0

    hdr = segnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)
    hdr.set_xyzt_units('mm', 'sec')
    out_file = op.abspath('nobstem_mask.nii.gz')
    nii = nb.Nifti1Image(mask, segnii.get_affine(), hdr).to_filename(
        out_file)
    return out_file
示例#3
0
    def watershed(self, mask, sigma=0.5, watershed_line=True):
        """
        Run watershed segmentation to generate segment label mask.

        Args:

            mask (np.ndarray[bool]) - binary foreground mask

            sigma (float) - parameter for smoothing distance mask

            watershed_line (bool) - if True, include 1px line between contours

        """

        # define distances
        distances = distance_transform_edt(mask)
        distances = gaussian_filter(distances, sigma=sigma)

        # run segmentation
        connectivity = iterate_structure(generate_binary_structure(2, 1), 1)
        markers = self.get_segment_mask(distances, self.seeds)
        self.labels = watershed(-distances,
                                markers=markers,
                                mask=mask,
                                connectivity=connectivity,
                                watershed_line=watershed_line)
示例#4
0
def compute_mask(aparc, labels=[0, 5000]):
    import nibabel as nb
    import numpy as np
    import os.path as op
    import scipy.ndimage as nd

    segnii = nb.load(aparc)
    seg = segnii.get_data()
    mask = np.ones_like(seg, dtype=np.uint8)
    for l in labels:
        mask[seg == l] = 0

    struct = nd.iterate_structure(nd.generate_binary_structure(3, 1), 4)
    mask = nd.binary_dilation(mask, structure=struct).astype(np.uint8)
    mask = nd.binary_closing(mask, structure=struct)
    mask = nd.binary_fill_holes(mask, structure=struct).astype(np.uint8)
    mask[mask > 0] = 1
    mask[mask <= 0] = 0

    hdr = segnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)
    hdr.set_xyzt_units("mm", "sec")
    out_file = op.abspath("nobstem_mask.nii.gz")
    nii = nb.Nifti1Image(mask, segnii.get_affine(), hdr).to_filename(out_file)
    return out_file
示例#5
0
def get_peaks(img):
    """
    create a binary structure to specify shape. use this shape to filter peaks
    from the spectrogram image passed as param. erode the background and apply
    xor operation to get final image(a 2d array) containing only peaks.
    find the amplitude at the found peaks.
    extract time and frequency location from the original spectrogram using these found peak.
    filter through the peaks. i used only the peaks whose amps are more than the avg amp.
    zip all these into a list and return for hashing
    :param img:
    :return: list of tuples containing time and frequency location in the structure [(time,freq)...]
    """
    struct = generate_binary_structure(2, 2)
    neighbor = iterate_structure(structure=struct, iterations=20)
    avg_peak = np.mean(img)
    maximas = maximum_filter(input=img, footprint=neighbor) == img
    background = img == 0
    eroded_back = binary_erosion(input=background,
                                 structure=neighbor,
                                 border_value=1)
    peaks = maximas ^ eroded_back  # this will return a numpy array containing boolean values that are true at the peaks
    amps = img[peaks]
    t, f = np.where(peaks)
    zipped_peaks = list(zip(t, f, amps))
    # filtering through our peaks
    time_loc = [zips[0] for zips in zipped_peaks if zips[2] >= avg_peak]
    freq_loc = [zips[1] for zips in zipped_peaks if zips[2] >= avg_peak]
    return list(zip(time_loc, freq_loc))
示例#6
0
def seperate_skull(image):

    marker_internal, marker_external, marker_watershed = generate_markers(
        image)

    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    outline = ndimage.morphological_gradient(watershed, size=(3, 3))
    outline = outline.astype(bool)

    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0],
                       [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)
    lungfilter = np.bitwise_or(marker_internal, outline)

    lungfilter = ndimage.morphology.binary_closing(
        lungfilter, structure=np.ones((5, 5)), iterations=3)
    segmented = np.where(lungfilter == 1, image, -2000 * np.ones((512, 512)))

    return segmented
示例#7
0
文件: demo.py 项目: yg42/iptutorials
def granulometry(BW, T=35, filename="simu"):
    # total original area
    A = ndimage.measurements.sum(BW)

    # number of objects
    label, N = ndimage.measurements.label(BW)

    area = np.zeros((T, ), dtype=np.float)
    number = np.zeros((T, ), dtype=np.float)
    """
    Warning: the structuring elements must verify B(n) = B(n-1) o B(1).
    """
    se = ndimage.generate_binary_structure(2, 1)
    for i in np.arange(T):
        SE = ndimage.iterate_structure(se, i - 1)
        m = ndimage.morphology.binary_erosion(BW, structure=SE)
        G = ndimage.morphology.binary_propagation(m, mask=BW)
        area[i] = 100 * ndimage.measurements.sum(G) / A
        label, n = ndimage.measurements.label(G)
        number[i] = 100 * n / N  # beware of integer division

    plt.figure()
    plt.plot(area, label='Area')
    plt.plot(number, label='Number')
    plt.legend()
    plt.savefig("granulo_" + filename + "1.pdf", bbox_inches='tight')
    plt.show()

    plt.figure()
    plt.plot(-np.diff(area), label='Area derivative')
    plt.plot(-np.diff(number), label='Number derivative')
    plt.legend()
    plt.savefig("granulo_" + filename + "2.pdf", bbox_inches='tight')
    plt.show()
示例#8
0
 def build_mask_sphere(self, sphere_radius):
     """build_mask_sphere
     """
     sphere_vertex_number_1d = np.ceil(2.0 * sphere_radius / self.mesh_voxel_size).astype('int')
     sphere_element = ndimage.generate_binary_structure(3,1)
     sphere = ndimage.iterate_structure(sphere_element, np.ceil(sphere_vertex_number_1d / 3).astype('int'))
     return sphere
示例#9
0
def find_local_max(img, d_rad, threshold=1e-15):
    """
    This is effectively a replacement for pkfnd in the matlab/IDL code.

    The output of this function is meant to be feed into :py:func:`~subpixel_centroid`

    The magic of numpy means this should work for any dimension data.

    :param img: an ndarray representing the data to find the local maxes
    :param d_rad: the radius of the dilation, the smallest possible spacing between local maximum
    :param threshold: optional, voxels < threshold are ignored.

    :rtype: (d,N) array of the local maximums.
    """
    d_rad = int(d_rad)
    img = np.array(np.squeeze(img))       # knock out singleton dimensions
    img[img < threshold] = -np.inf        # mask out pixels below threshold
    dim = img.ndim                        # get the dimension of data

    # make structuring element
    s = ndimage.generate_binary_structure(dim, 1)
    # scale it up to the desired size
    d_struct = ndimage.iterate_structure(s, int(d_rad))
    dilated_img = ndimage.grey_dilation(img,
                                        footprint=d_struct,
                                        cval=0,
                                        mode='constant')   # do the dilation

    # find the locations that are the local maximum
    # TODO clean this up
    local_max = np.where(np.exp(img - dilated_img) > (1 - 1e-15))
    # the extra [::-1] is because matplotlib and ndimage disagree an xy vs yx
    return np.vstack(local_max[::-1])
示例#10
0
def subpixel_centroid(img, local_maxes, mask_rad, struct_shape='circle'):
    '''
    This is effectively a replacement for cntrd in the matlab/IDL code.

    Works for 2D data only. Accelerated by numba.

    :param img: the data
    :param local_maxes: a (d,N) array with the location of the local maximums (as generated by :py:func:`~find_local_max`)
    :param mask_rad: the radius of the mask used for the averaging.
    :param struct_shape: ['circle' | 'diamond'] Shape of mask over each particle.

    :rtype: (d,N) array of positions, (d,) array of masses, (d,) array of r2,
    '''
    # First, check that all local maxes are within 'mask_rad' of the image
    # edges. Otherwise we will be going outside the bounds of the array in
    # _refine_centroids_loop()
    if not all(_local_max_within_bounds(img.shape, local_maxes, mask_rad)):
        raise IndexError(
            'One or more local maxes are too close to the image edge. Use local_max_crop().'
        )
    # Make coordinate order compatible with upcoming code
    local_maxes = local_maxes[::-1]
    # do some data checking/munging
    img = np.squeeze(img)  # knock out singleton dimensions
    dim = img.ndim
    if dim > 2:
        raise ValueError('Use subpixel_centroid_nd() for dimension > 2')
    so = [slice(-mask_rad, mask_rad + 1)] * dim
    # Make circular structuring element
    if struct_shape == 'circle':
        d_struct = (np.sum(np.mgrid[so]**2, 0) <= mask_rad**2).astype(np.int8)
    elif struct_shape == 'diamond':
        s = ndimage.generate_binary_structure(dim, 1)
        # scale it up to the desired size
        d_struct = ndimage.iterate_structure(s, int(mask_rad))
    else:
        raise ValueError('Shape must be diamond or circle')

    offset_masks = np.array([d_struct * os
                             for os in np.mgrid[so]]).astype(np.int8)

    r2_mask = np.zeros(d_struct.shape)
    for o in offset_masks:
        r2_mask += o**2
    r2_mask = np.sqrt(r2_mask).astype(float)
    results = _refine_centroids_loop(img, local_maxes, mask_rad, offset_masks,
                                     d_struct, r2_mask)
    pos = (results[0:2, :] + local_maxes)[::-1, :]
    #m = results[2,:]
    #r2 = results[3,:]
    #return pos, m, r2
    peaks = np.array(3, pos.shape[1])
    peaks[0:2, :] = pos
    peaks[2, :] = img[peaks[0, :], peaks[1, :]]
    #for i in range(0,pos.shape[1]):
    #    x = pos[0][i]
    #y = pos[1][i]
    #    try: peaks.append([x, y, img[y,x]])
    #except: pass
    return peaks
示例#11
0
 def draw_spheres(self,mid_mask,thres):
     all_mask = mid_mask * (self.img > thres)
     struct = ndimage.generate_binary_structure(3, 2)
     struct_iter = ndimage.iterate_structure(struct,self.s_iter).astype(int)
     spheres = ndimage.binary_dilation(all_mask, structure = struct_iter, iterations=self.d_iter).astype(all_mask[:,:,:].dtype)
     struct_size = np.sum(struct_iter)
     return spheres, all_mask, struct_size
示例#12
0
 def seperate_lungs(self, image):
     segemented_array = np.zeros(image.shape)
     marker_internal, marker_external, marker_watershed = self.generate_marker(
         image)
     # value of gradient (slope) in X and Y-direction
     sobel_filtered_dx = ndimage.sobel(
         image, 1)  # vertical derivate ( detects horizontal edges)
     sobel_filtered_dy = ndimage.sobel(
         image, 0)  # horizontal derivate (detects vertical edges)
     sobel_gradient = np.hypot(
         sobel_filtered_dx, sobel_filtered_dy
     )  # magnitude of gradient, gets rids of a (-)ve sign
     sobel_gradient *= 255.0 / np.max(
         sobel_gradient
     )  # normalize (This is our landscape image and we will fit it with water)
     watershed = morphology.watershed(sobel_gradient, marker_watershed)
     outline = ndimage.morphological_gradient(watershed, size=(3, 3))
     outline = outline.astype(bool)
     # Creation of the disk-kernel
     blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0],
                        [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1],
                        [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0],
                        [0, 0, 1, 1, 1, 0, 0]]
     blackhat_struct = ndimage.iterate_structure(blackhat_struct, 7)
     outline += ndimage.black_tophat(outline, structure=blackhat_struct)
     lungfilter = np.bitwise_or(marker_internal, outline)
     lungfilter = ndimage.morphology.binary_closing(lungfilter,
                                                    structure=np.ones(
                                                        (5, 5)),
                                                    iterations=3)
     segmented = np.where(lungfilter == 1, image, -2000 * np.ones(
         (512, 512)))
     segemented_array = segmented
     return segmented
示例#13
0
    def _findPeaks(spectrogram, min_amplitude=DEFAULT_MIN_AMPLITUDE):
        # Находим локальные максимумы, используя binary_erosion
        neighbourhood_structure = generate_binary_structure(2, 1)
        neighborhood = iterate_structure(neighbourhood_structure,
                                         Extractor.PEAK_NEIGHBORHOOD_SIZE)
        local_max = maximum_filter(spectrogram,
                                   footprint=neighborhood) == spectrogram
        background = (spectrogram == 0)
        eroded_background = binary_erosion(background,
                                           structure=neighborhood,
                                           border_value=1)
        detected_peaks = local_max - eroded_background

        # Формируем массив пик
        peak_amplitudes = spectrogram[detected_peaks].flatten()
        peak_frequencies, peak_times = np.where(detected_peaks)
        raw_peaks = []
        for i in range(
                0,
                min(peak_amplitudes.size, peak_frequencies.size,
                    peak_times.size)):
            raw_peaks.append(
                SpectogramPeak(peak_frequencies[i], peak_times[i],
                               peak_amplitudes[i]))

        # Выбираем только пики с нормальной для нас амплитудой
        peaks = [peak for peak in raw_peaks if peak.amplitude > min_amplitude]

        return peaks
示例#14
0
    def detect_peaks(self, spectrogram):
        """
        Takes an image of the spectrogram and detect the peaks using the local
        maximum filter.

        Input:
        spectrogram: a matrix of time-frequency strengths from matplotlibs specgram
        method.
        peak_sensitivity: How large of a neighborhood structure to consider when
        looking for peaks
        Returns a boolean mask of the peaks (i.e. 1 when
        the pixel's value is the neighborhood maximum, 0 otherwise)
        """

        # define a connected neighborhood and find max values in neighborhood
        neighborhood_structure = generate_binary_structure(2, 1)
        neighborhood = ndi.iterate_structure(neighborhood_structure,
                                             self.peak_sensitivity)
        local_max = ndi.filters.maximum_filter(
            spectrogram, footprint=neighborhood) == spectrogram

        background = (spectrogram == 0)
        eroded_background = binary_erosion(background,
                                           structure=neighborhood,
                                           border_value=1)

        detected_peaks = local_max != eroded_background

        if self.min_peak_amplitude:
            filtered_peak_locations = self.filter_peaks_by_size(
                detected_peaks, spectrogram)
        else:
            filtered_peak_locations = detected_peaks

        return filtered_peak_locations
def _process_image(filename,
                   out_format,
                   resize=None,
                   dilate=None,
                   require_binary_output=False):
    """Process a single image file.

  Args:
    filename: string, path to an image file e.g., '/path/to/example.JPG'.
    out_format: string, output format type e.g., 'PNG', 'JPEG' 
  Returns:
    image_buffer: string, encoding of image in out_format
    height: integer, image height in pixels.
    width: integer, image width in pixels.
  """
    # Read the image file.
    with tf.gfile.FastGFile(filename, 'rb') as f:
        raw_image_data = f.read()

    # Convert any format to PNG for consistency.
    #pil_img = Image.open(StringIO(raw_image_data))
    pil_img = Image.open(BytesIO(raw_image_data))

    # dilate image if requested so - create structering element of appropriate size
    if dilate is not None:
        dilation_se = iterate_structure(generate_binary_structure(2, 1),
                                        (int)((dilate - 1) / 2))
        im = binary_dilation(np.array(pil_img), structure=dilation_se)
        pil_img = Image.fromarray(np.uint8(im) * 255)

    if resize is not None:
        pil_img = pil_img.resize(
            resize[::-1]
        )  # NOTE: use reversed order of resize to make input consistent with tensorflow

    # if output should be in binary then we must do binarization to remove interpolation values from resize
    if require_binary_output:
        im = (np.array(pil_img) > 0)
        pil_img = Image.fromarray(np.uint8(im) * 255)

    try:
        #image_data = StringIO()
        image_data = BytesIO()
        pil_img.save(image_data, out_format)
    except Exception as e:
        print("exception inside _process_image:", e)

    height = pil_img.size[1]
    width = pil_img.size[0]
    if pil_img.mode in ['RGBA', 'CMYK']:
        num_chanels = 4
    elif pil_img.mode in ['RGB', 'LAB', 'HSV', 'YCbCr']:
        num_chanels = 3
    else:
        num_chanels = 1

    return image_data.getvalue(), height, width, num_chanels
示例#16
0
文件: peakfind.py 项目: ChillNPC/NPC
def find_local_max(img, d_rad, threshold=1e-15, inplace=False):
    """
    This is effectively a replacement for pkfnd in the matlab/IDL code.

    The output of this function is meant to be feed into :py:func:`~subpixel_centroid`

    The magic of numpy means this should work for any dimension data.

    :param img: an ndarray representing the data to find the local maxes
    :param d_rad: the radius of the dilation, the smallest possible spacing between local maximum
    :param threshold: optional, voxels < threshold are ignored.
    :param inplace: If True, `img` is modified.

    :rtype: (d,N) array of the local maximums.
    """
    d_rad = int(d_rad)
    # knock out singleton dimensions, 
    # and prepare to change values in thresholding step.
    img = np.array(np.squeeze(img))
    if not inplace:
        img = img.copy() # Otherwise we could mess up use of 'img' by subsequent code.
    img[img < threshold] = -np.inf        # mask out pixels below threshold
    dim = img.ndim                        # get the dimension of data

    # make structuring element
    s = ndimage.generate_binary_structure(dim, 1)
    # scale it up to the desired size
    d_struct = ndimage.iterate_structure(s, int(d_rad))
    dilated_img = ndimage.grey_dilation(img,
                                        footprint=d_struct,
                                        cval=0,
                                        mode='constant')   # do the dilation

    # find the locations that are the local maximum
    # TODO clean this up
    
    maxima = np.vstack(np.where(np.exp(img - dilated_img) > (1 - 1e-15))).T
    count=0
    while True:
        duplicates = KDTree(maxima, 30).query_pairs(d_rad)
        if len(duplicates) == 0:
            break
        count += len(duplicates)
	to_drop = []
        for pair in duplicates:
           # Take the average position.
           # This is just a starting point, so we won't go into subpx precision here.
            merged = maxima[pair[0]]
            merged = maxima[[pair[0], pair[1]]].mean(0).astype(int)
            maxima[pair[0]] = merged  # overwrite one
            to_drop.append(pair[1])  # queue other to be dropped
        maxima = np.delete(maxima, to_drop, 0)
    # the extra [::-1] is because matplotlib and ndimage disagree an xy vs yx.
    # Finally, there should be nothing within 'd_rad' of the edges of the image
    print '%i peaks were removed' %count
    return np.vstack(maxima).T[::-1]
def get_filtered_lung(image):
    # Creation of the internal Marker
    marker_internal = image < -500
    marker_internal = segmentation.clear_border(marker_internal)
    marker_internal_labels = measure.label(marker_internal)
    areas = [r.area for r in measure.regionprops(marker_internal_labels)]
    areas.sort()
    if len(areas) > 2:
        for region in measure.regionprops(marker_internal_labels):
            if region.area < areas[-2]:
                for coordinates in region.coords:
                    marker_internal_labels[coordinates[0], coordinates[1]] = 0
    marker_internal = marker_internal_labels > 0

    # Creation of the external Marker
    external_a = ndimage.binary_dilation(marker_internal, iterations=10)
    external_b = ndimage.binary_dilation(marker_internal, iterations=55)
    marker_external = external_b ^ external_a
    # Creation of the Watershed Marker matrix
    marker_watershed = np.zeros((512, 512), dtype=np.int)
    marker_watershed += marker_internal * 255
    marker_watershed += marker_external * 128

    # Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    # Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    # Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3, 3))
    outline = outline.astype(bool)

    # Performing Black-Tophat Morphology for reinclusion
    # Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    # Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)

    # Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    # Close holes in the lungfilter
    # fill_holes is not used here, since in some slices the heart would be reincluded by accident
    lungfilter = ndimage.morphology.binary_closing(lungfilter,
                                                   structure=np.ones((5, 5)),
                                                   iterations=3)

    return lungfilter
示例#18
0
def local_maxima(image, radius, separation, threshold):
    ndim = image.ndim
    threshold -= 1
    # The intersection of the image with its dilation gives local maxima.
    if not np.issubdtype(image.dtype, np.integer):
        raise TypeError("Perform dilation on exact (i.e., integer) data.")
    #footprint = self.binary_mask(radius, ndim)
    s = ndimage.generate_binary_structure(ndim, 2)
    # scale it up to the desired size
    footprint = ndimage.iterate_structure(s, int(radius))

    dilation = ndimage.grey_dilation(image,
                                     footprint=footprint,
                                     mode='constant')

    maxima = np.vstack(np.where((image == dilation)
                                & (image > threshold))).T[:, ::-1]
    if not np.size(maxima) > 0:
        #warnings.warn("Image contains no local maxima.", UserWarning)
        return np.empty((0, ndim))

    # Flat peaks return multiple nearby maxima. Eliminate duplicates.
    if len(maxima) > 0:
        while True:
            duplicates = cKDTree(maxima, 30).query_pairs(separation)
            if len(duplicates) == 0:
                break
            to_drop = []
            for pair in duplicates:
                # Take the average position.
                # This is just a starting point, so we won't go into subpx precision here.
                merged = maxima[pair[0]]
                merged = maxima[[pair[0], pair[1]]].mean(0).astype(int)
                maxima[pair[0]] = merged  # overwrite one
                to_drop.append(pair[1])  # queue other to be dropped

            maxima = np.delete(maxima, to_drop, 0)

    # Do not accept peaks near the edges.
    shape = np.array(image.shape)
    margin = int(separation) // 2
    near_edge = np.any((maxima < margin) | (maxima > (shape - margin)), 1)
    maxima = maxima[~near_edge]
    #if not np.size(maxima) > 0:
    #warnings.warn("All local maxima were in the margins.", UserWarning)

    #x, y = maxima[:,0], maxima[:,1]
    #max_val  = image[x,y].reshape(1,len(maxima))
    #peaks = np.concatenate((maxima,max_val), axis = 1)

    return maxima[:, 0], maxima[:,
                                1], image[maxima[:, 0],
                                          maxima[:,
                                                 1]].reshape(1, len(maxima))
示例#19
0
def wiggle_room_precision_recall(pred, boundary, margin=2, connectivity=1):
    struct = nd.generate_binary_structure(boundary.ndim, connectivity)
    gtd = nd.binary_dilation(boundary, struct, margin)
    struct_m = nd.iterate_structure(struct, margin)
    pred_dil = nd.grey_dilation(pred, footprint=struct_m)
    missing = np.setdiff1d(np.unique(pred), np.unique(pred_dil))
    for m in missing:
        pred_dil.ravel()[np.flatnonzero(pred == m)[0]] = m
    prec, _, ts = precision_recall_curve(gtd.ravel(), pred.ravel())
    _, rec, _ = precision_recall_curve(boundary.ravel(), pred_dil.ravel())
    return zip(ts, prec, rec)
示例#20
0
文件: evaluate.py 项目: apiszcz/gala
def wiggle_room_precision_recall(pred, boundary, margin=2, connectivity=1):
    struct = nd.generate_binary_structure(boundary.ndim, connectivity)
    gtd = nd.binary_dilation(boundary, struct, margin)
    struct_m = nd.iterate_structure(struct, margin)
    pred_dil = nd.grey_dilation(pred, footprint=struct_m)
    missing = np.setdiff1d(np.unique(pred), np.unique(pred_dil))
    for m in missing:
        pred_dil.ravel()[np.flatnonzero(pred==m)[0]] = m
    prec, _, ts = precision_recall_curve(gtd.ravel(), pred.ravel())
    _, rec, _ = precision_recall_curve(boundary.ravel(), pred_dil.ravel())
    return zip(ts, prec, rec)
示例#21
0
文件: peakfind.py 项目: ChillNPC/NPC
def local_maxima(image, radius, separation, percentile=64):
    """Find local maxima whose brightness is above a given percentile."""

    ndim = image.ndim
    # Compute a threshold based on percentile.
    not_black = image[np.nonzero(image)]
    if len(not_black) == 0:
        warnings.warn("Image is completely black.", UserWarning)
        return np.empty((0, ndim))
    threshold = stats.scoreatpercentile(not_black, percentile)

    # The intersection of the image with its dilation gives local maxima.
    if not np.issubdtype(image.dtype, np.integer):
        raise TypeError("Perform dilation on exact (i.e., integer) data.")
    #footprint = binary_mask(radius, ndim, separation)
    s = ndimage.generate_binary_structure(ndim, 2)
    # scale it up to the desired size
    footprint = ndimage.iterate_structure(s, int(d_rad))
    
    dilation = ndimage.grey_dilation(image, footprint=footprint,
                                     mode='constant')
    maxima = np.vstack(np.where((image == dilation) & (image > threshold))).T
    if not np.size(maxima) > 0:
        warnings.warn("Image contains no local maxima.", UserWarning)
        return np.empty((0, ndim))

    # Flat peaks return multiple nearby maxima. Eliminate duplicates.
    while True:
        duplicates = cKDTree(maxima, 30).query_pairs(separation)
        if len(duplicates) == 0:
            break
        to_drop = []
        for pair in duplicates:
            # Take the average position.
            # This is just a starting point, so we won't go into subpx precision here.
            merged = maxima[pair[0]]
            merged = maxima[[pair[0], pair[1]]].mean(0).astype(int)
            maxima[pair[0]] = merged  # overwrite one
            to_drop.append(pair[1])  # queue other to be dropped
        maxima = np.delete(maxima, to_drop, 0)

    # Do not accept peaks near the edges.
    shape = np.array(image.shape)
    margin = int(separation) // 2
    near_edge = np.any((maxima < margin) | (maxima > (shape - margin)), 1)
    maxima = maxima[~near_edge]
    if not np.size(maxima) > 0:
        warnings.warn("All local maxima were in the margins.", UserWarning)

    # Return coords in as a numpy array shaped so it can be passed directly
    # to the DataFrame constructor.
    return maxima 
示例#22
0
def separate_lungs(image, return_list=None, iteration=-1):
    """
    This only takes in a 2D slice to make he lung segmentation and takes really long to run.
    But supposedly will get all corner cases. Not sure if mask from this is very good.
    Looks like the mask might be too dilated.

    :param image:
    :param return_list:
    :param iteration:
    :return:
    """
    #Creation of the markers as shown above:
    marker_internal, marker_external, marker_watershed = generate_markers(
        image)

    #Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    #Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    #Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3, 3))
    outline = outline.astype(bool)

    #Performing Black-Tophat Morphology for reinclusion
    #Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    #Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)

    #Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    #Close holes in the lungfilter
    #fill_holes is not used here, since in some slices the heart would be reincluded by accident
    lungfilter = ndimage.morphology.binary_closing(lungfilter,
                                                   structure=np.ones((5, 5)),
                                                   iterations=3)

    # #Apply the lungfilter (note the filtered areas being assigned -2000 HU)
    # segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)))
    if iteration >= 0 and return_list:
        return_list[iteration] = lungfilter
    else:
        return lungfilter
示例#23
0
文件: peakfind.py 项目: ChillNPC/NPC
def subpixel_centroid(img, local_maxes, mask_rad, struct_shape='circle'):
    '''
    This is effectively a replacement for cntrd in the matlab/IDL code.

    Works for 2D data only. Accelerated by numba.

    :param img: the data
    :param local_maxes: a (d,N) array with the location of the local maximums (as generated by :py:func:`~find_local_max`)
    :param mask_rad: the radius of the mask used for the averaging.
    :param struct_shape: ['circle' | 'diamond'] Shape of mask over each particle.

    :rtype: (d,N) array of positions, (d,) array of masses, (d,) array of r2,
    '''
    # First, check that all local maxes are within 'mask_rad' of the image
    # edges. Otherwise we will be going outside the bounds of the array in
    # _refine_centroids_loop()
    if not all(_local_max_within_bounds(img.shape, local_maxes, mask_rad)):
        raise IndexError('One or more local maxes are too close to the image edge. Use local_max_crop().')
    # Make coordinate order compatible with upcoming code
    local_maxes = local_maxes[::-1]
    # do some data checking/munging
    img = np.squeeze(img)                 # knock out singleton dimensions
    dim = img.ndim
    if dim > 2: raise ValueError('Use subpixel_centroid_nd() for dimension > 2')
    so = [slice(-mask_rad, mask_rad + 1)] * dim
    # Make circular structuring element
    if struct_shape == 'circle':
        d_struct = (np.sum(np.mgrid[so]**2, 0) <= mask_rad**2).astype(np.int8)
    elif struct_shape == 'diamond':
        s = ndimage.generate_binary_structure(dim, 1)
        # scale it up to the desired size
        d_struct = ndimage.iterate_structure(s, int(mask_rad))
    else: raise ValueError('Shape must be diamond or circle')
    
    offset_masks = np.array([d_struct * os for os in np.mgrid[so]]).astype(np.int8)
    
    r2_mask = np.zeros(d_struct.shape)
    for o in offset_masks:
        r2_mask += o ** 2
    r2_mask = np.sqrt(r2_mask).astype(float)
    results = _refine_centroids_loop(img, local_maxes, mask_rad, offset_masks, d_struct, r2_mask)
    pos = (results[0:2,:] + local_maxes)[::-1,:]
    #m = results[2,:]
    #r2 = results[3,:]
    #return pos, m, r2
    peaks=[]
    for i in range(0,pos.shape[1]):
        x = pos[0][i]
	y = pos[1][i]
        peaks.append([x, y, img[y,x]])
    return peaks
示例#24
0
def make_dilation_kernel(dil_param):

    kernel = ndimage.generate_binary_structure(2, 1)
    kernel = ndimage.iterate_structure(kernel, dil_param)
    z_component = np.zeros(kernel.shape, dtype=kernel.dtype)

    width = kernel.shape[-1]
    mid = width // 2

    z_component[mid, mid] = 1
    # kernel = np.stack((z_component,kernel,z_component),axis=0)
    kernel = np.stack((kernel, kernel, kernel), axis=0)

    return kernel.reshape((1, 1, 3, width, width))
示例#25
0
    def get_upd_flag(self, i_t, distance, entropy):
        """
        :param i_t:
        :param distance: sum of M nearest neighbours' distances, D
        :param entropy: entropy of physics guided state evolution estimate distribution, E
        :return: pf_upd_flag: dimension (n_lat, n_lon)
        pf_upd_flag[i,j] = 1 denotes skip estimate correction for the subarea(i,j), i,e the
        equation: E - alpha * D > 0 sustain.
        """
        pf_upd_flag = np.zeros((self.n_lat, self.n_lon))
        if self.flag_empty(i_t):
            return pf_upd_flag

        # need to be modified
        # all areas update
        if self.alg_upd == 1:
            pf_upd_flag = np.ones((self.n_lat, self.n_lon))
        # update the collected data areas
        elif self.alg_upd == 2:
            idx = self.data.smp_cnt_upd[i_t] > 0
            pf_upd_flag[idx] = 1
        # update collected data areas + good compensated data areas + dilation --- need to modify
        elif self.alg_upd == 3:
            # didn't make sense
            # idx = self.data.ver_re_err_adp[i_t-1] >= self.ver_re_err_th
            # pf_upd_flag[idx] = 1

            idx = np.nonzero(self.data.smp_cnt_upd[i_t] > 0)
            pf_upd_flag[idx] = 1

            # didn't make sense
            # idx = np.nonzero(self.data.ver_var_adp[i_t-1] >= self.ver_var_th)
            # pf_upd_flag[idx] = 1

            # idx = np.nonzero(pf_upd_flag > 0)
            struct = generate_binary_structure(2, 1)  # se = strel('square',3);
            se = iterate_structure(struct, 3).astype(int)
            pf_upd_flag = binary_dilation(pf_upd_flag, structure=struct)
            # use ver_re_err and ver_var at i_t - 1 to get the update flag matrix
        # for adaptive scheme
        elif self.alg_upd == 4:
            # TODO distance - entropy????
            feature_tmp = np.reshape(distance - entropy,
                                     (self.n_lat, self.n_lon))
            idx = feature_tmp <= 0
            pf_upd_flag[idx] = 1
            idx1 = self.data.smp_cnt_upd[i_t] > 0
            pf_upd_flag[idx1] = 1

        return pf_upd_flag
示例#26
0
    def seperate_lungs(image):
        """
        Function conducts lung segmentation process using watershed algorithm

        :param image: a pixel array
        :return: segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed: 
        np ndarrays of segmented lungs (segmented) and other markers used in the process
        """
        # Creation of the markers as shown above:
        marker_internal, marker_external, marker_watershed = SegmentationA.generate_markers(
            image)

        # Creation of the Sobel-Gradient
        sobel_filtered_dx = ndimage.sobel(image, 1)
        sobel_filtered_dy = ndimage.sobel(image, 0)
        sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
        sobel_gradient *= 255.0 / np.max(sobel_gradient)

        # Watershed algorithm
        watershed = morphology.watershed(sobel_gradient, marker_watershed)

        # Reducing the image created by the Watershed algorithm to its outline
        outline = ndimage.morphological_gradient(watershed, size=(3, 3))
        outline = outline.astype(bool)

        # Performing Black-Tophat Morphology for reinclusion
        # Creation of the disk-kernel and increasing its size a bit
        blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0],
                           [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1],
                           [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0],
                           [0, 0, 1, 1, 1, 0, 0]]
        blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)

        # Perform the Black-Hat
        outline += ndimage.black_tophat(outline, structure=blackhat_struct)

        # Use the internal marker and the Outline that was just created to generate the lungfilter
        lungfilter = np.bitwise_or(marker_internal, outline)
        # Close holes in the lungfilter
        # fill_holes is not used here, since in some slices the heart would be reincluded by accident
        lungfilter = ndimage.morphology.binary_closing(lungfilter,
                                                       structure=np.ones(
                                                           (5, 5)),
                                                       iterations=3)

        # Apply the lungfilter (note the filtered areas being assigned -2000 HU)
        segmented = np.where(lungfilter == 1, image, -2000 * np.ones(
            (len(image), len(image[0]))))

        return segmented, lungfilter
示例#27
0
    def fill_border_holes_with_black_hat(self, outline):

        blackhat_struct = [[0, 0, 1, 1, 1, 0, 0],
                           [0, 1, 1, 1, 1, 1, 0],
                           [1, 1, 1, 1, 1, 1, 1],
                           [1, 1, 1, 1, 1, 1, 1],
                           [1, 1, 1, 1, 1, 1, 1],
                           [0, 1, 1, 1, 1, 1, 0],
                           [0, 0, 1, 1, 1, 0, 0]]

        blackhat_struct = ndimage.iterate_structure(blackhat_struct, 2)
        outline += ndimage.black_tophat(outline, structure=blackhat_struct)

        return outline
示例#28
0
    def local_maxima(self, image, radius, separation, threshold):
        ndim = image.ndim
        threshold -= 1
        # The intersection of the image with its dilation gives local maxima.
        if not np.issubdtype(image.dtype, np.integer):
            raise TypeError("Perform dilation on exact (i.e., integer) data.")
        #footprint = self.binary_mask(radius, ndim)
        s = ndimage.generate_binary_structure(ndim, 2)
        # scale it up to the desired size
        footprint = ndimage.iterate_structure(s, int(radius))

        dilation = ndimage.grey_dilation(image, footprint=footprint, mode='constant')

        maxima = np.vstack(np.where((image == dilation) & (image > threshold))).T[:,::-1]
        if not np.size(maxima) > 0:
            #warnings.warn("Image contains no local maxima.", UserWarning)
            return np.empty((0, ndim))

        # Flat peaks return multiple nearby maxima. Eliminate duplicates.
        if len(maxima) > 0:
            while True:
                duplicates = cKDTree(maxima, 30).query_pairs(separation)
                if len(duplicates) == 0:
                    break
                to_drop = []
                for pair in duplicates:
                    # Take the average position.
                    # This is just a starting point, so we won't go into subpx precision here.
                    merged = maxima[pair[0]]
                    merged = maxima[[pair[0], pair[1]]].mean(0).astype(int)
                    maxima[pair[0]] = merged  # overwrite one
                    to_drop.append(pair[1])  # queue other to be dropped

                maxima = np.delete(maxima, to_drop, 0)

        # Do not accept peaks near the edges.
        shape = np.array(image.shape)
        margin = int(separation) // 2
        near_edge = np.any((maxima < margin) | (maxima > (shape - margin)), 1)
        maxima = maxima[~near_edge]
        #if not np.size(maxima) > 0:
            #warnings.warn("All local maxima were in the margins.", UserWarning)


        x, y = maxima[:,0], maxima[:,1]
        max_val  = image[x,y].reshape(len(maxima),1)
        peaks = np.concatenate((maxima,max_val), axis = 1)

        return peaks
示例#29
0
def gradient_threshold(in_file, in_segm, thresh=1.0, out_file=None):
    """ Compute a threshold from the histogram of the magnitude gradient image """
    import os.path as op
    import numpy as np
    import nibabel as nb
    from scipy import ndimage as sim

    struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2)

    if out_file is None:
        fname, ext = op.splitext(op.basename(in_file))
        if ext == '.gz':
            fname, ext2 = op.splitext(fname)
            ext = ext2 + ext
        out_file = op.abspath('{}_gradmask{}'.format(fname, ext))

    imnii = nb.load(in_file)

    hdr = imnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)  # pylint: disable=no-member

    data = imnii.get_data().astype(np.float32)

    mask = np.zeros_like(data, dtype=np.uint8)  # pylint: disable=no-member
    mask[data > 15.] = 1

    segdata = nb.load(in_segm).get_data().astype(np.uint8)
    segdata[segdata > 0] = 1
    segdata = sim.binary_dilation(segdata, struc, iterations=2,
                                  border_value=1).astype(np.uint8)  # pylint: disable=no-member
    mask[segdata > 0] = 1

    mask = sim.binary_closing(mask, struc, iterations=2).astype(np.uint8)  # pylint: disable=no-member
    # Remove small objects
    label_im, nb_labels = sim.label(mask)
    artmsk = np.zeros_like(mask)
    if nb_labels > 2:
        sizes = sim.sum(mask, label_im, list(range(nb_labels + 1)))
        ordered = list(reversed(sorted(zip(sizes,
                                           list(range(nb_labels + 1))))))
        for _, label in ordered[2:]:
            mask[label_im == label] = 0
            artmsk[label_im == label] = 1

    mask = sim.binary_fill_holes(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    nb.Nifti1Image(mask, imnii.get_affine(), hdr).to_filename(out_file)
    return out_file
def segment_lung(params, I, I_affine):

    #####################################################
    # Intensity thresholding & Morphological operations
    #####################################################

    M = np.zeros(I.shape)
    M[I > params['lungMinValue']] = 1
    M[I > params['lungMaxValue']] = 0

    struct_s = ndimage.generate_binary_structure(3, 1)
    struct_m = ndimage.iterate_structure(struct_s, 2)
    M = ndimage.binary_closing(M, structure=struct_s, iterations=1)
    M = ndimage.binary_opening(M, structure=struct_m, iterations=1)

    #####################################################
    # Estimate lung filed of view
    #####################################################

    [m, n, p] = I.shape
    medx = int(m / 2)
    medy = int(n / 2)
    xrange1 = int(m / 2 * params['xRangeRatio1'])
    xrange2 = int(m / 2 * params['xRangeRatio2'])
    zrange1 = int(p * params['zRangeRatio1'])
    zrange2 = int(p * params['zRangeRatio2'])

    #####################################################
    # Select largest connected components & save nii
    #####################################################

    M = measure.label(M)
    label1 = M[medx - xrange2:medx - xrange1, medy, zrange1:zrange2]
    label2 = M[medx + xrange1:medx + xrange2, medy, zrange1:zrange2]
    label1 = stats.mode(label1[label1 > 0])[0][0]
    label2 = stats.mode(label2[label2 > 0])[0][0]
    M[M == label1] = -1
    M[M == label2] = -1
    M[M > 0] = 0
    M = M * -1

    M = ndimage.binary_closing(M, structure=struct_m, iterations=1)
    M = ndimage.binary_fill_holes(M)
    Mlung = np.int8(M)
    nib.Nifti1Image(Mlung,
                    I_affine).to_filename('./result/sample_lungaw.nii.gz')

    return Mlung
示例#31
0
def gradient_threshold(in_file, thresh=1.0, out_file=None):
    """ Compute a threshold from the histogram of the magnitude gradient image """
    import os.path as op
    import numpy as np
    import nibabel as nb
    from scipy import ndimage as sim

    thresh *= 1e-2
    if out_file is None:
        fname, ext = op.splitext(op.basename(in_file))
        if ext == '.gz':
            fname, ext2 = op.splitext(fname)
            ext = ext2 + ext
        out_file = op.abspath('%s_gradmask%s' % (fname, ext))


    imnii = nb.load(in_file)
    data = imnii.get_data()
    hist, bin_edges = np.histogram(data[data > 0], bins=128, density=True)  # pylint: disable=no-member

    # Find threshold at 1% frequency
    for i, freq in reversed(list(enumerate(hist))):
        binw = bin_edges[i+1] - bin_edges[i]
        if (freq * binw) >= thresh:
            out_thresh = 0.5 * binw
            break

    mask = np.zeros_like(data, dtype=np.uint8)  # pylint: disable=no-member
    mask[data > out_thresh] = 1
    struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2)
    mask = sim.binary_opening(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    # Remove small objects
    label_im, nb_labels = sim.label(mask)
    if nb_labels > 2:
        sizes = sim.sum(mask, label_im, range(nb_labels + 1))
        ordered = list(reversed(sorted(zip(sizes, range(nb_labels + 1)))))
        for _, label in ordered[2:]:
            mask[label_im == label] = 0

    mask = sim.binary_closing(mask, struc).astype(np.uint8)  # pylint: disable=no-member
    mask = sim.binary_fill_holes(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    hdr = imnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)  # pylint: disable=no-member
    nb.Nifti1Image(mask, imnii.get_affine(), hdr).to_filename(out_file)
    return out_file
示例#32
0
    def applyImageThresholds(self,
                             image,
                             highThreshold=None,
                             lowThreshold=None,
                             regularizationWidth=2):
        """Restrict image values to be between upper and lower limits.

        This method flags all pixels in an image that are outside of the given
        threshold values. The threshold values are taken from a reference
        image, so noisy pixels are likely to get flagged. In order to exclude
        those noisy pixels, the array of flags is eroded and dilated, which
        removes isolated pixels outside of the thresholds from the list of
        pixels to be modified. Pixels that remain flagged after this operation
        have their values set to the appropriate upper or lower threshold
        value.

        Parameters
        ----------
        image : `numpy.ndarray`
            The image to apply the thresholds to.
            The values will be modified in place.
        highThreshold : `numpy.ndarray`, optional
            Array of upper limit values for each pixel of ``image``.
        lowThreshold : `numpy.ndarray`, optional
            Array of lower limit values for each pixel of ``image``.
        regularizationWidth : `int`, optional
            Minimum radius of a region to include in regularization, in pixels.
        """
        # Generate the structure for binary erosion and dilation, which is used
        # to remove noise-like pixels. Groups of pixels with a radius smaller
        # than ``regularizationWidth`` will be excluded from regularization.
        filterStructure = ndimage.iterate_structure(
            ndimage.generate_binary_structure(2, 1), regularizationWidth)
        if highThreshold is not None:
            highPixels = image > highThreshold
            if regularizationWidth > 0:
                # Erode and dilate ``highPixels`` to exclude noisy pixels.
                highPixels = ndimage.morphology.binary_opening(
                    highPixels, structure=filterStructure)
            image[highPixels] = highThreshold[highPixels]
        if lowThreshold is not None:
            lowPixels = image < lowThreshold
            if regularizationWidth > 0:
                # Erode and dilate ``lowPixels`` to exclude noisy pixels.
                lowPixels = ndimage.morphology.binary_opening(
                    lowPixels, structure=filterStructure)
            image[lowPixels] = lowThreshold[lowPixels]
def gradient_threshold(in_file, thresh=1.0, out_file=None):
    """ Compute a threshold from the histogram of the magnitude gradient image """
    import os.path as op
    import numpy as np
    import nibabel as nb
    from scipy import ndimage as sim

    thresh *= 1e-2
    if out_file is None:
        fname, ext = op.splitext(op.basename(in_file))
        if ext == '.gz':
            fname, ext2 = op.splitext(fname)
            ext = ext2 + ext
        out_file = op.abspath('%s_gradmask%s' % (fname, ext))

    imnii = nb.load(in_file)
    data = imnii.get_data()
    hist, bin_edges = np.histogram(data[data > 0], bins=128, density=True)  # pylint: disable=no-member

    # Find threshold at 1% frequency
    for i, freq in reversed(list(enumerate(hist))):
        binw = bin_edges[i + 1] - bin_edges[i]
        if (freq * binw) >= thresh:
            out_thresh = 0.5 * binw
            break

    mask = np.zeros_like(data, dtype=np.uint8)  # pylint: disable=no-member
    mask[data > out_thresh] = 1
    struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2)
    mask = sim.binary_opening(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    # Remove small objects
    label_im, nb_labels = sim.label(mask)
    if nb_labels > 2:
        sizes = sim.sum(mask, label_im, range(nb_labels + 1))
        ordered = list(reversed(sorted(zip(sizes, range(nb_labels + 1)))))
        for _, label in ordered[2:]:
            mask[label_im == label] = 0

    mask = sim.binary_closing(mask, struc).astype(np.uint8)  # pylint: disable=no-member
    mask = sim.binary_fill_holes(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    hdr = imnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)  # pylint: disable=no-member
    nb.Nifti1Image(mask, imnii.get_affine(), hdr).to_filename(out_file)
    return out_file
示例#34
0
def gradient_threshold(in_file, in_segm, thresh=1.0, out_file=None):
    """ Compute a threshold from the histogram of the magnitude gradient image """
    import os.path as op
    import numpy as np
    import nibabel as nb
    from scipy import ndimage as sim

    struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 2)

    if out_file is None:
        fname, ext = op.splitext(op.basename(in_file))
        if ext == '.gz':
            fname, ext2 = op.splitext(fname)
            ext = ext2 + ext
        out_file = op.abspath('{}_gradmask{}'.format(fname, ext))

    imnii = nb.load(in_file)

    hdr = imnii.get_header().copy()
    hdr.set_data_dtype(np.uint8)  # pylint: disable=no-member

    data = imnii.get_data().astype(np.float32)

    mask = np.zeros_like(data, dtype=np.uint8)  # pylint: disable=no-member
    mask[data > 15.] = 1

    segdata = nb.load(in_segm).get_data().astype(np.uint8)
    segdata[segdata > 0] = 1
    segdata = sim.binary_dilation(segdata, struc, iterations=2, border_value=1).astype(np.uint8)  # pylint: disable=no-member
    mask[segdata > 0] = 1

    mask = sim.binary_closing(mask, struc, iterations=2).astype(np.uint8)  # pylint: disable=no-member
    # Remove small objects
    label_im, nb_labels = sim.label(mask)
    artmsk = np.zeros_like(mask)
    if nb_labels > 2:
        sizes = sim.sum(mask, label_im, list(range(nb_labels + 1)))
        ordered = list(reversed(sorted(zip(sizes, list(range(nb_labels + 1))))))
        for _, label in ordered[2:]:
            mask[label_im == label] = 0
            artmsk[label_im == label] = 1

    mask = sim.binary_fill_holes(mask, struc).astype(np.uint8)  # pylint: disable=no-member

    nb.Nifti1Image(mask, imnii.get_affine(), hdr).to_filename(out_file)
    return out_file
示例#35
0
    def testGetCenterAndRfromImgBinary(self):

        structOri = generate_binary_structure(2, 1).astype(int)

        iterations = 7
        donut = iterate_structure(structOri, iterations)
        dY, dX = donut.shape

        cornerX = 10
        cornerY = 20
        imgBinary = np.zeros((120, 120), dtype=int)
        imgBinary[cornerY:cornerY + dY, cornerX:cornerX + dX] = donut

        x, y, r = self.centroid.getCenterAndRfromImgBinary(imgBinary)
        self.assertEqual(x, cornerX + iterations)
        self.assertEqual(y, cornerY + iterations)
        self.assertAlmostEqual(r, 5.9974, places=3)
示例#36
0
def get_segmented_lungs(image):
    #Creation of the markers as shown above:
    marker_internal, marker_external, marker_watershed = generate_markers(
        image)

    #Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)

    #Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)

    #Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3, 3))
    outline = outline.astype(bool)

    #Performing Black-Tophat Morphology for reinclusion
    #Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    #blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    blackhat_struct = ndimage.iterate_structure(
        blackhat_struct, 14
    )  # <- retains more of the area, 12 works well. Changed to 14, 12 still excluded some parts.
    #Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)

    #Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    #Close holes in the lungfilter
    #fill_holes is not used here, since in some slices the heart would be reincluded by accident
    lungfilter = ndimage.morphology.binary_closing(lungfilter,
                                                   structure=np.ones((5, 5)),
                                                   iterations=3)

    #Apply the lungfilter (note the filtered areas being assigned threshold_min HU)
    segmented = np.where(lungfilter == 1, image,
                         threshold_min * np.ones(image.shape))

    #return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed
    return segmented
示例#37
0
def subpixel_centroid(img, local_maxes, mask_rad):
    '''
    This is effectively a replacement for cntrd in the matlab/IDL code.

    Should work for any dimension data


    :param img: the data
    :param local_maxes: a (d,N) array with the location of the local maximums (as generated by :py:func:`~find_local_max`)
    :param mask_rad: the radius of the mask used for the averaging.

    :rtype: (d,N) array of positions, (d,) array of masses, (d,) array of r2,
    '''
    local_maxes = local_maxes[::-1]
    # do some data checking/munging
    mask_rad = int(mask_rad)
    img = np.squeeze(img)                 # knock out singleton dimensions
    # make sure local_maxes.shape makes sense
    dim = img.ndim
    s = ndimage.generate_binary_structure(dim, 1)
    # scale it up to the desired size
    d_struct = ndimage.iterate_structure(s, int(mask_rad))

    so = [slice(-mask_rad, mask_rad + 1)] * dim
    offset_masks = [d_struct * os for os in np.mgrid[so]]

    r2_mask = np.zeros(d_struct.shape)
    for o in offset_masks:
        r2_mask += o ** 2

    r2_mask = np.sqrt(r2_mask)

    shifts_lst = []
    mass_lst = []
    r2_lst = []
    for loc in itertools.izip(*local_maxes):

        window = [slice(p - mask_rad, p + mask_rad + 1) for p in loc]
        img_win = img[window]
        mass = np.sum(img_win * d_struct)
        mass_lst.append(mass)
        shifts_lst.append([np.sum(img_win * o) / mass for o in offset_masks])
        r2_lst.append(np.sum(r2_mask * img_win))
    sub_pixel = np.array(shifts_lst).T + local_maxes
    return sub_pixel[::-1], mass_lst, r2_lst
def segment_lung(params, I, I_affine):
    #####################################################
    # Intensity thresholding & Morphological operations
    #####################################################
    M = np.zeros(I.shape)
    M[I > params["lungMinValue"]] = 1
    M[I > params["lungMaxValue"]] = 0

    struct_s = ndimage.generate_binary_structure(3, 1)
    struct_m = ndimage.iterate_structure(struct_s, 2)
    M = ndimage.binary_closing(M, structure=struct_s, iterations=1)
    M = ndimage.binary_opening(M, structure=struct_m, iterations=1)

    #####################################################
    # Estimate lung filed of view
    #####################################################

    [m, n, p] = I.shape
    medx = int(m / 2)
    medy = int(n / 2)
    xrange1 = int(m / 2 * params["xRangeRatio1"])
    xrange2 = int(m / 2 * params["xRangeRatio2"])
    zrange1 = int(p * params["zRangeRatio1"])
    zrange2 = int(p * params["zRangeRatio2"])

    #####################################################
    # Select largest connected components & save nii
    #####################################################

    M = measure.label(M)
    label1 = M[medx - xrange2:medx - xrange1, medy, zrange1:zrange2]
    label2 = M[medx + xrange1:medx + xrange2, medy, zrange1:zrange2]
    label1 = stats.mode(label1[label1 > 0])[0][0]
    label2 = stats.mode(label2[label2 > 0])[0][0]
    M[M == label1] = -1
    M[M == label2] = -1
    M[M > 0] = 0
    M = M * -1

    M = ndimage.binary_closing(M, structure=struct_m, iterations=1)
    M = ndimage.binary_fill_holes(M)
    Mlung = np.int8(M)
    # Note: Skip writing "lungaw.nii.gz" to disk, as we don't use it

    return Mlung
示例#39
0
def get_segmented_lungs(image):
    #Creation of the markers as shown above:
    marker_internal, marker_external, marker_watershed = generate_markers(image)
    
    #Creation of the Sobel-Gradient
    sobel_filtered_dx = ndimage.sobel(image, 1)
    sobel_filtered_dy = ndimage.sobel(image, 0)
    sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy)
    sobel_gradient *= 255.0 / np.max(sobel_gradient)
    
    #Watershed algorithm
    watershed = morphology.watershed(sobel_gradient, marker_watershed)
    
    #Reducing the image created by the Watershed algorithm to its outline
    outline = ndimage.morphological_gradient(watershed, size=(3,3))
    outline = outline.astype(bool)
    
    #Performing Black-Tophat Morphology for reinclusion
    #Creation of the disk-kernel and increasing its size a bit
    blackhat_struct = [[0, 0, 1, 1, 1, 0, 0],
                       [0, 1, 1, 1, 1, 1, 0],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [1, 1, 1, 1, 1, 1, 1],
                       [0, 1, 1, 1, 1, 1, 0],
                       [0, 0, 1, 1, 1, 0, 0]]
    #blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8)
    blackhat_struct = ndimage.iterate_structure(blackhat_struct, 14) # <- retains more of the area, 12 works well. Changed to 14, 12 still excluded some parts.
    #Perform the Black-Hat
    outline += ndimage.black_tophat(outline, structure=blackhat_struct)
    
    #Use the internal marker and the Outline that was just created to generate the lungfilter
    lungfilter = np.bitwise_or(marker_internal, outline)
    #Close holes in the lungfilter
    #fill_holes is not used here, since in some slices the heart would be reincluded by accident
    lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=np.ones((5,5)), iterations=3)
    
    #Apply the lungfilter (note the filtered areas being assigned threshold_min HU)
    segmented = np.where(lungfilter == 1, image, threshold_min*np.ones(image.shape))
    
    #return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed
    return segmented
示例#40
0
    def applyImageThresholds(self, image, highThreshold=None, lowThreshold=None, regularizationWidth=2):
        """Restrict image values to be between upper and lower limits.

        This method flags all pixels in an image that are outside of the given
        threshold values. The threshold values are taken from a reference image,
        so noisy pixels are likely to get flagged. In order to exclude those
        noisy pixels, the array of flags is eroded and dilated, which removes
        isolated pixels outside of the thresholds from the list of pixels to be
        modified. Pixels that remain flagged after this operation have their
        values set to the appropriate upper or lower threshold value.

        Parameters
        ----------
        image : `numpy.ndarray`
            The image to apply the thresholds to.
            The values will be modified in place.
        highThreshold : `numpy.ndarray`, optional
            Array of upper limit values for each pixel of ``image``.
        lowThreshold : `numpy.ndarray`, optional
            Array of lower limit values for each pixel of ``image``.
        regularizationWidth : `int`, optional
            Minimum radius of a region to include in regularization, in pixels.
        """
        # Generate the structure for binary erosion and dilation, which is used to remove noise-like pixels.
        # Groups of pixels with a radius smaller than ``regularizationWidth``
        # will be excluded from regularization.
        filterStructure = ndimage.iterate_structure(ndimage.generate_binary_structure(2, 1),
                                                    regularizationWidth)
        if highThreshold is not None:
            highPixels = image > highThreshold
            if regularizationWidth > 0:
                # Erode and dilate ``highPixels`` to exclude noisy pixels.
                highPixels = ndimage.morphology.binary_opening(highPixels, structure=filterStructure)
            image[highPixels] = highThreshold[highPixels]
        if lowThreshold is not None:
            lowPixels = image < lowThreshold
            if regularizationWidth > 0:
                # Erode and dilate ``lowPixels`` to exclude noisy pixels.
                lowPixels = ndimage.morphology.binary_opening(lowPixels, structure=filterStructure)
            image[lowPixels] = lowThreshold[lowPixels]
示例#41
0
def wiggle_room_precision_recall(pred, boundary, margin=2, connectivity=1):
    """Voxel-wise, continuous value precision recall curve allowing drift.

    Voxel-wise precision recall evaluates predictions against a ground truth.
    Wiggle-room precision recall (WRPR, "warper") allows calls from nearby
    voxels to be counted as correct. Specifically, if a voxel is predicted to
    be a boundary within a dilation distance of `margin` (distance defined
    according to `connectivity`) of a true boundary voxel, it will be counted
    as a True Positive in the Precision, and vice-versa for the Recall.

    Parameters
    ----------
    pred : np.ndarray of float, arbitrary shape
        The prediction values, expressed as probability of observing a boundary
        (i.e. a voxel with label 1).
    boundary : np.ndarray of int, same shape as pred
        The true boundary map. 1 indicates boundary, 0 indicates non-boundary.
    margin : int, optional
        The number of dilations that define the margin. default: 2.
    connectivity : {1, ..., pred.ndim}, optional
        The morphological voxel connectivity (defined as in SciPy) for the
        dilation step.

    Returns
    -------
    ts, pred, rec : np.ndarray of float, shape `(len(np.unique(pred)+1),)`
        The prediction value thresholds corresponding to each precision and
        recall value, the precision values, and the recall values.
    """
    struct = nd.generate_binary_structure(boundary.ndim, connectivity)
    gtd = nd.binary_dilation(boundary, struct, margin)
    struct_m = nd.iterate_structure(struct, margin)
    pred_dil = nd.grey_dilation(pred, footprint=struct_m)
    missing = np.setdiff1d(np.unique(pred), np.unique(pred_dil))
    for m in missing:
        pred_dil.ravel()[np.flatnonzero(pred == m)[0]] = m
    prec, _, ts = precision_recall_curve(gtd.ravel(), pred.ravel())
    _, rec, _ = precision_recall_curve(boundary.ravel(), pred_dil.ravel())
    return list(zip(ts, prec, rec))
示例#42
0
文件: algorithm.py 项目: bxin/cwfs
    def solvePoissonEq(self, inst, I1, I2, iOutItr=0):

        if self.PoissonSolver == 'fft':
            '''Poisson Solver using an FFT
            '''
            # this is the only place iOutItr is used.
            cliplevel = self.sumclipSequence[iOutItr]

            aperturePixelSize = \
                (inst.apertureDiameter *
                 inst.sensorFactor / inst.sensorSamples)
            v, u = np.mgrid[
                -0.5 / aperturePixelSize:(0.5) / aperturePixelSize:
                1 / self.padDim / aperturePixelSize,
                -0.5 / aperturePixelSize:(0.5) / aperturePixelSize:
                1 / self.padDim / aperturePixelSize]
            if self.debugLevel >= 3:
                print('iOuter=%d, cliplevel=%4.2f' % (iOutItr, cliplevel))
                print(v.shape)

            u2v2 = -4 * (np.pi**2) * (u * u + v * v)

            # Set origin to Inf and 0 to result in 0 at origin after filtering
            ctrIdx = np.floor(self.padDim / 2)
            u2v2[ctrIdx, ctrIdx] = np.inf

            self.createSignal(inst, I1, I2, cliplevel)

            # find the indices for a ring of pixels
            # just ouside and just inside the
            # aperture for use in setting dWdn = 0

            struct = ndimage.generate_binary_structure(2, 1)
            struct = ndimage.iterate_structure(struct, self.boundaryT)
            # print struct
            ApringOut = np.logical_xor(ndimage.morphology.binary_dilation(
                self.pMask, structure=struct), self.pMask).astype(int)
            ApringIn = np.logical_xor(ndimage.morphology.binary_erosion(
                self.pMask, structure=struct), self.pMask).astype(int)
            bordery, borderx = np.nonzero(ApringOut)

            if (self.compMode == 'zer'):
                zc = np.zeros((self.numTerms, self.innerItr))
                #        print "ZC ONE",zc.shape

            # **************************************************************
            # initial BOX 3 - put signal in boundary (since there's no existing
            # Sestimate, S just equals self.S
            S = self.S.copy()

            for jj in range(int(self.innerItr)):

                # *************************************************************
                # BOX 4 - forward filter: forward FFT, divide by u2v2, inverse
                # FFT
                SFFT = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(S)))
                # print SFFT.shape, u2v2.shape
                W = np.fft.fftshift(np.fft.irfft2(np.fft.fftshift(SFFT / u2v2),
                                                  s=S.shape))

                # *************************************************************
                # BOX 5 - Wavefront estimate
                # (includes zeroing offset & masking to the aperture size)
                West = tools.extractArray(W, inst.sensorSamples)
                # print "WEST", West.shape, W.shape

                offset = West[self.pMask == 1].mean()
                West = West - offset
                West[self.pMask == 0] = 0

                if (self.compMode == 'zer'):

                    zc[:, jj] = tools.ZernikeMaskedFit(
                        West, inst.xSensor, inst.ySensor,
                        self.numTerms, self.pMask, self.zobsR)

                # ************************************************************
                # BOX 6 - set dWestimate/dn = 0 around boundary
                WestdWdn0 = West.copy()

                # do a 3x3 average around each border pixel,
                # including only those pixels inside the aperture
                for ii in range(len(borderx)):
                    reg = West[borderx[ii] - self.boundaryT:
                               borderx[ii] + self.boundaryT + 1,
                               bordery[ii] - self.boundaryT:
                               bordery[ii] + self.boundaryT + 1]
                    intersectIdx = ApringIn[borderx[ii] - self.boundaryT:
                                            borderx[ii] + self.boundaryT + 1,
                                            bordery[ii] - self.boundaryT:
                                            bordery[ii] + self.boundaryT + 1]
                    WestdWdn0[borderx[ii], bordery[ii]] =\
                        reg[np.nonzero(intersectIdx)].mean()

                # ***********************************************************
                # BOX 7 - Take Laplacian to find sensor signal estimate

                Wxx = np.zeros((inst.sensorSamples, inst.sensorSamples))
                Wyy = np.zeros((inst.sensorSamples, inst.sensorSamples))
                Wt = WestdWdn0.copy()

                Wxx[:, 1:-1] = (Wt[:, 0:-2] - 2 * Wt[:, 1:-1] + Wt[:, 2:]) /\
                    aperturePixelSize**2
                Wyy[1:-1, :] = (Wt[0:-2, :] - 2 * Wt[1:-1, :] + Wt[2:, :]) /\
                    aperturePixelSize**2
                del2W = Wxx + Wyy
                Sest = tools.padArray(del2W, self.padDim)

                # ********************************************************
                # BOX 3 - Put signal back inside boundary,
                # leaving the rest of Sestimate
                Sest[self.pMaskPad == 1] = self.S[self.pMaskPad == 1]
                S = Sest

            self.West = West.copy()
            if (self.compMode == 'zer'):
                self.zc = zc

        elif self.PoissonSolver == 'exp':
            self.getdIandI(I1, I2)

            xSensor = inst.xSensor * self.cMask
            ySensor = inst.ySensor * self.cMask

            F = np.zeros(self.numTerms)
            dZidx = np.zeros((self.numTerms, inst.sensorSamples,
                              inst.sensorSamples))
            dZidy = dZidx.copy()

            aperturePixelSize = \
                (inst.apertureDiameter *
                 inst.sensorFactor / inst.sensorSamples)
            zcCol = np.zeros(self.numTerms)
            for i in range(int(self.numTerms)):
                zcCol[i] = 1
                # we integrate, instead of decompose, integration is faster.
                # Also, decomposition is ill-defined on m.cMask.
                # Using m.pMask, the two should give same results.
                if (self.zobsR > 0):
                    F[i] = np.sum(np.sum(
                        self.dI * tools.ZernikeAnnularEval(
                            zcCol, xSensor, ySensor,
                            self.zobsR))) * aperturePixelSize**2
                    dZidx[i, :, :] = tools.ZernikeAnnularGrad(
                        zcCol, xSensor, ySensor, self.zobsR, 'dx')
                    dZidy[i, :, :] = tools.ZernikeAnnularGrad(
                        zcCol, xSensor, ySensor, self.zobsR, 'dy')
                else:
                    F[i] = np.sum(np.sum(
                        self.dI * tools.ZernikeEval(
                            zcCol, xSensor, ySensor))) * aperturePixelSize**2
                    dZidx[i, :, :] = tools.ZernikeGrad(
                        zcCol, xSensor, ySensor, 'dx')
                    dZidy[i, :, :] = tools.ZernikeGrad(
                        zcCol, xSensor, ySensor, 'dy')
                zcCol[i] = 0

            self.Mij = np.zeros((self.numTerms, self.numTerms))
            for i in range(self.numTerms):
                for j in range(self.numTerms):
                    self.Mij[i, j] = aperturePixelSize**2 /\
                        (inst.apertureDiameter / 2)**2 * \
                        np.sum(np.sum(
                            self.image *
                            (dZidx[i, :, :].squeeze() *
                             dZidx[j, :, :].squeeze() +
                             dZidy[i, :, :].squeeze() *
                             dZidy[j, :, :].squeeze())))

            dz = 2 * inst.focalLength * \
                (inst.focalLength - inst.offset) / inst.offset
            self.zc = np.zeros(self.numTerms)
            idx = [x - 1 for x in self.ZTerms]
            # phi in GN paper is phase, phi/(2pi)*lambda=W
            zc_tmp = np.dot(np.linalg.pinv(self.Mij[:, idx][idx]), F[idx]) / dz
            self.zc[idx] = zc_tmp

            if (self.zobsR > 0):
                self.West = tools.ZernikeAnnularEval(
                    np.concatenate(([0, 0, 0], self.zc[3:])),
                    xSensor, ySensor, self.zobsR)
            else:
                self.West = tools.ZernikeEval(
                    np.concatenate(([0, 0, 0], self.zc[3:])),
                    xSensor, ySensor)
示例#43
0
    def compensate(self, inst, algo, zcCol, model):
        """Calculate the image compensated from the affection of wavefront.

        Parameters
        ----------
        inst : Instrument
            Instrument to use.
        algo : Algorithm
            Algorithm to solve the Poisson's equation. It can by done by the
            fast Fourier transform or serial expansion.
        zcCol : numpy.ndarray
            Coefficients of wavefront.
        model : str
            Optical model. It can be "paraxial", "onAxis", or "offAxis".

        Raises
        ------
        RuntimeError
            input:size zcCol in compensate needs to be a numTerms row column
            vector.
        """

        # Check the condition of inputs
        numTerms = algo.getNumOfZernikes()
        if ((zcCol.ndim == 1) and (len(zcCol) != numTerms)):
            raise RuntimeError("input:size",
                               "zcCol in compensate needs to be a %d row column vector. \n" % numTerms)

        # Dimension of image
        sm, sn = self._image.getImg().shape

        # Dimenstion of projected image on focal plane
        projSamples = sm

        # Let us create a look-up table for x -> xp first.
        luty, lutx = np.mgrid[-(projSamples/2 - 0.5):(projSamples/2 + 0.5),
                              -(projSamples/2 - 0.5):(projSamples/2 + 0.5)]

        sensorFactor = inst.getSensorFactor()
        lutx = lutx/(projSamples/2/sensorFactor)
        luty = luty/(projSamples/2/sensorFactor)

        # Set up the mapping
        lutxp, lutyp, J = self._aperture2image(inst, algo, zcCol, lutx, luty,
                                               projSamples, model)

        show_lutxyp = self._showProjection(lutxp, lutyp, sensorFactor,
                                           projSamples, raytrace=False)
        if (np.all(show_lutxyp <= 0)):
            self.caustic = True
            return

        # Calculate the weighting center (x, y) and radius
        realcx, realcy = self._image.getCenterAndR_ef()[0:2]

        # Extend the dimension of image by 20 pixel in x and y direction
        show_lutxyp = padArray(show_lutxyp, projSamples+20)

        # Get the binary matrix of image on pupil plane if raytrace=False
        struct0 = generate_binary_structure(2, 1)
        struct = iterate_structure(struct0, 4)
        struct = binary_dilation(struct, structure=struct0, iterations=2).astype(int)
        show_lutxyp = binary_dilation(show_lutxyp, structure=struct)
        show_lutxyp = binary_erosion(show_lutxyp, structure=struct)

        # Extract the region from the center of image and get the original one
        show_lutxyp = extractArray(show_lutxyp, projSamples)

        # Calculate the weighting center (x, y) and radius
        projcx, projcy = self._image.getCenterAndR_ef(image=show_lutxyp.astype(float))[0:2]

        # Shift the image to center of projection on pupil
        # +(-) means we need to move image to the right (left)
        shiftx = projcx - realcx
        # +(-) means we need to move image upward (downward)
        shifty = projcy - realcy

        self._image.updateImage(np.roll(self._image.getImg(), int(np.round(shifty)), axis=0))
        self._image.updateImage(np.roll(self._image.getImg(), int(np.round(shiftx)), axis=1))

        # Construct the interpolant to get the intensity on (x', p') plane
        # that corresponds to the grid points on (x,y)
        yp, xp = np.mgrid[-(sm/2 - 0.5):(sm/2 + 0.5), -(sm/2 - 0.5):(sm/2 + 0.5)]

        xp = xp/(sm/2/sensorFactor)
        yp = yp/(sm/2/sensorFactor)

        # Put the NaN to be 0 for the interpolate to use
        lutxp[np.isnan(lutxp)] = 0
        lutyp[np.isnan(lutyp)] = 0

        # Construct the function for interpolation
        ip = RectBivariateSpline(yp[:, 0], xp[0, :], self._image.getImg(), kx=1, ky=1)

        # Construct the projected image by the interpolation
        lutIp = np.zeros(lutxp.shape[0]*lutxp.shape[1])
        for ii, (xx, yy) in enumerate(zip(lutxp.ravel(), lutyp.ravel())):
            lutIp[ii] = ip(yy, xx)
        lutIp = lutIp.reshape(lutxp.shape)

        # Calaculate the image on focal plane with compensation based on flux
        # conservation
        # I(x, y)/I'(x', y') = J = (dx'/dx)*(dy'/dy) - (dx'/dy)*(dy'/dx)
        self._image.updateImage(lutIp * J)

        if (self.defocalType == DefocalType.Extra):
            self._image.updateImage(np.rot90(self._image.getImg(), k=2))

        # Put NaN to be 0
        holdedImg = self._image.getImg()
        holdedImg[np.isnan(holdedImg)] = 0
        self._image.updateImage(holdedImg)

        # Check the compensated image has the problem or not.
        # The negative value means the over-compensation from wavefront error
        if (np.any(self._image.getImg() < 0) and np.all(self.image0 >= 0)):
            print("WARNING: negative scale parameter, image is within caustic, zcCol (in um)=\n")
            self.caustic = True

        # Put the overcompensated part to be 0
        holdedImg = self._image.getImg()
        holdedImg[holdedImg < 0] = 0
        self._image.updateImage(holdedImg)
示例#44
0
    def _run_interface(self, runtime):
        from scipy import ndimage as sim

        fmap_nii = nb.load(self.inputs.in_file)
        data = np.squeeze(fmap_nii.get_data().astype(np.float32))

        # Despike / denoise (no-mask)
        if self.inputs.despike:
            data = _despike2d(data, self.inputs.despike_threshold)

        mask = None
        if isdefined(self.inputs.in_mask):
            masknii = nb.load(self.inputs.in_mask)
            mask = masknii.get_data().astype(np.uint8)

            # Dilate mask
            if self.inputs.mask_erode > 0:
                struc = sim.iterate_structure(sim.generate_binary_structure(3, 2), 1)
                mask = sim.binary_erosion(
                    mask, struc,
                    iterations=self.inputs.mask_erode
                    ).astype(np.uint8)  # pylint: disable=no-member

        self._results['out_file'] = genfname(self.inputs.in_file, suffix='enh')
        datanii = nb.Nifti1Image(data, fmap_nii.affine, fmap_nii.header)

        if self.inputs.unwrap:
            data = _unwrap(data, self.inputs.in_magnitude, mask)
            self._results['out_unwrapped'] = genfname(self.inputs.in_file, suffix='unwrap')
            nb.Nifti1Image(data, fmap_nii.affine, fmap_nii.header).to_filename(
                self._results['out_unwrapped'])

        if not self.inputs.bspline_smooth:
            datanii.to_filename(self._results['out_file'])
            return runtime
        else:
            from fmriprep.utils import bspline as fbsp
            from statsmodels.robust.scale import mad

            # Fit BSplines (coarse)
            bspobj = fbsp.BSplineFieldmap(datanii, weights=mask,
                                          njobs=self.inputs.njobs)
            bspobj.fit()
            smoothed1 = bspobj.get_smoothed()

            # Manipulate the difference map
            diffmap = data - smoothed1.get_data()
            sderror = mad(diffmap[mask > 0])
            LOGGER.info('SD of error after B-Spline fitting is %f', sderror)
            errormask = np.zeros_like(diffmap)
            errormask[np.abs(diffmap) > (10 * sderror)] = 1
            errormask *= mask

            nslices = 0
            try:
                errorslice = np.squeeze(np.argwhere(errormask.sum(0).sum(0) > 0))
                nslices = errorslice[-1] - errorslice[0]
            except IndexError:  # mask is empty, do not refine
                pass

            if nslices > 1:
                diffmapmsk = mask[..., errorslice[0]:errorslice[-1]]
                diffmapnii = nb.Nifti1Image(
                    diffmap[..., errorslice[0]:errorslice[-1]] * diffmapmsk,
                    datanii.affine, datanii.header)

                bspobj2 = fbsp.BSplineFieldmap(diffmapnii, knots_zooms=[24., 24., 4.],
                                               njobs=self.inputs.njobs)
                bspobj2.fit()
                smoothed2 = bspobj2.get_smoothed().get_data()

                final = smoothed1.get_data().copy()
                final[..., errorslice[0]:errorslice[-1]] += smoothed2
            else:
                final = smoothed1.get_data()

            nb.Nifti1Image(final, datanii.affine, datanii.header).to_filename(
                self._results['out_file'])

        return runtime
示例#45
0
    def _solvePoissonEq(self, I1, I2, iOutItr=0):
        """Solve the Poisson's equation by Fourier transform (differential) or
        serial expansion (integration).

        There is no convergence for fft actually. Need to add the difference
        comparison and X-alpha method. Need to discuss further for this.

        Parameters
        ----------
        I1 : Image
            Intra- or extra-focal image.
        I2 : Image
            Intra- or extra-focal image.
        iOutItr : int, optional
            ith number of outer loop iteration which is important in "fft"
            algorithm. (the default is 0.)

        Returns
        -------
        numpy.ndarray
            Coefficients of normal/ annular Zernike polynomials.
        numpy.ndarray
            Estimated wavefront.
        """

        # Calculate the aperature pixel size
        apertureDiameter = self._inst.getApertureDiameter()
        sensorFactor = self._inst.getSensorFactor()
        dimOfDonut = self._inst.getDimOfDonutOnSensor()
        aperturePixelSize = apertureDiameter*sensorFactor/dimOfDonut

        # Calculate the differential Omega
        dOmega = aperturePixelSize**2

        # Solve the Poisson's equation based on the type of algorithm
        numTerms = self.getNumOfZernikes()
        zobsR = self.getObsOfZernikes()
        PoissonSolver = self.getPoissonSolverName()
        if (PoissonSolver == "fft"):

            # Use the differential method by fft to solve the Poisson's
            # equation

            # Parameter to determine the threshold of calculating I0.
            sumclipSequence = self.getSignalClipSequence()
            cliplevel = sumclipSequence[iOutItr]

            # Generate the v, u-coordinates on pupil plane
            padDim = self.getFftDimension()
            v, u = np.mgrid[
                -0.5/aperturePixelSize: 0.5/aperturePixelSize: 1./padDim/aperturePixelSize,
                -0.5/aperturePixelSize: 0.5/aperturePixelSize: 1./padDim/aperturePixelSize]

            # Show the threshold and pupil coordinate information
            if (self.debugLevel >= 3):
                print("iOuter=%d, cliplevel=%4.2f" % (iOutItr, cliplevel))
                print(v.shape)

            # Calculate the const of fft:
            # FT{Delta W} = -4*pi^2*(u^2+v^2) * FT{W}
            u2v2 = -4 * (np.pi**2) * (u*u + v*v)

            # Set origin to Inf to result in 0 at origin after filtering
            ctrIdx = int(np.floor(padDim/2.0))
            u2v2[ctrIdx, ctrIdx] = np.inf

            # Calculate the wavefront signal
            Sini = self._createSignal(I1, I2, cliplevel)

            # Find the just-outside and just-inside indices of a ring in pixels
            # This is for the use in setting dWdn = 0
            boundaryT = self.getBoundaryThickness()

            struct = generate_binary_structure(2, 1)
            struct = iterate_structure(struct, boundaryT)

            ApringOut = np.logical_xor(binary_dilation(self.pMask, structure=struct),
                                       self.pMask).astype(int)
            ApringIn = np.logical_xor(binary_erosion(self.pMask, structure=struct),
                                      self.pMask).astype(int)

            bordery, borderx = np.nonzero(ApringOut)

            # Put the signal in boundary (since there's no existing Sestimate,
            # S just equals self.S as the initial condition of SCF
            S = Sini.copy()
            for jj in range(self.getNumOfInnerItr()):

                # Calculate FT{S}
                SFFT = np.fft.fftshift(np.fft.fft2(np.fft.fftshift(S)))

                # Calculate W by W=IFT{ FT{S}/(-4*pi^2*(u^2+v^2)) }
                W = np.fft.fftshift(np.fft.irfft2(np.fft.fftshift(SFFT/u2v2), s=S.shape))

                # Estimate the wavefront (includes zeroing offset & masking to
                # the aperture size)

                # Take the estimated wavefront
                West = extractArray(W, dimOfDonut)

                # Calculate the offset
                offset = West[self.pMask == 1].mean()
                West = West - offset
                West[self.pMask == 0] = 0

                # Set dWestimate/dn = 0 around boundary
                WestdWdn0 = West.copy()

                # Do a 3x3 average around each border pixel, including only
                # those pixels inside the aperture
                for ii in range(len(borderx)):
                    reg = West[borderx[ii] - boundaryT:
                               borderx[ii] + boundaryT + 1,
                               bordery[ii] - boundaryT:
                               bordery[ii] + boundaryT + 1]

                    intersectIdx = ApringIn[borderx[ii] - boundaryT:
                                            borderx[ii] + boundaryT + 1,
                                            bordery[ii] - boundaryT:
                                            bordery[ii] + boundaryT + 1]

                    WestdWdn0[borderx[ii], bordery[ii]] = \
                        reg[np.nonzero(intersectIdx)].mean()

                # Take Laplacian to find sensor signal estimate (Delta W = S)
                del2W = laplace(WestdWdn0)/dOmega

                # Extend the dimension of signal to the order of 2 for "fft" to
                # use
                Sest = padArray(del2W, padDim)

                # Put signal back inside boundary, leaving the rest of
                # Sestimate
                Sest[self.pMaskPad == 1] = Sini[self.pMaskPad == 1]

                # Need to recheck this condition
                S = Sest

            # Define the estimated wavefront
            # self.West = West.copy()

            # Calculate the coefficient of normal/ annular Zernike polynomials
            if (self.getCompensatorMode() == "zer"):
                xSensor, ySensor = self._inst.getSensorCoor()
                zc = ZernikeMaskedFit(West, xSensor, ySensor, numTerms,
                                      self.pMask, zobsR)
            else:
                zc = np.zeros(numTerms)

        elif (PoissonSolver == "exp"):

            # Use the integration method by serial expansion to solve the
            # Poisson's equation

            # Calculate I0 and dI
            I0, dI = self._getdIandI(I1, I2)

            # Get the x, y coordinate in mask. The element outside mask is 0.
            xSensor, ySensor = self._inst.getSensorCoor()
            xSensor = xSensor * self.cMask
            ySensor = ySensor * self.cMask

            # Create the F matrix and Zernike-related matrixes
            F = np.zeros(numTerms)
            dZidx = np.zeros((numTerms, dimOfDonut, dimOfDonut))
            dZidy = dZidx.copy()

            zcCol = np.zeros(numTerms)
            for ii in range(int(numTerms)):

                # Calculate the matrix for each Zk related component
                # Set the specific Zk cofficient to be 1 for the calculation
                zcCol[ii] = 1

                F[ii] = np.sum(dI*ZernikeAnnularEval(zcCol, xSensor, ySensor, zobsR))*dOmega
                dZidx[ii, :, :] = ZernikeAnnularGrad(zcCol, xSensor, ySensor, zobsR, "dx")
                dZidy[ii, :, :] = ZernikeAnnularGrad(zcCol, xSensor, ySensor, zobsR, "dy")

                # Set the specific Zk cofficient back to 0 to avoid interfering
                # other Zk's calculation
                zcCol[ii] = 0

            # Calculate Mij matrix, need to check the stability of integration
            # and symmetry later
            Mij = np.zeros([numTerms, numTerms])
            for ii in range(numTerms):
                for jj in range(numTerms):
                    Mij[ii, jj] = np.sum(I0*(dZidx[ii, :, :].squeeze()*dZidx[jj, :, :].squeeze() +
                                             dZidy[ii, :, :].squeeze()*dZidy[jj, :, :].squeeze()))
            Mij = dOmega/(apertureDiameter/2.)**2 * Mij

            # Calculate dz
            focalLength = self._inst.getFocalLength()
            offset = self._inst.getDefocalDisOffset()
            dz = 2*focalLength*(focalLength-offset)/offset

            # Define zc
            zc = np.zeros(numTerms)

            # Consider specific Zk terms only
            idx = (self.getZernikeTerms() - 1).tolist()

            # Solve the equation: M*W = F => W = M^(-1)*F
            zc_tmp = np.linalg.lstsq(Mij[:, idx][idx], F[idx], rcond=None)[0]/dz
            zc[idx] = zc_tmp

            # Estimate the wavefront surface based on z4 - z22
            # z0 - z3 are set to be 0 instead
            West = ZernikeAnnularEval(np.concatenate(([0, 0, 0], zc[3:])),
                                      xSensor, ySensor, zobsR)

        return zc, West
示例#46
0
# <codecell>

a = imread('cam1.10000').astype(np.ubyte)

# <codecell>

imshow(a,cmap=cm.gray)

# <codecell>

b = where(a>50,1,0).astype(np.ubyte)

# <codecell>

struct = array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])
struct = ndimage.iterate_structure(struct,2)
c = ndimage.binary_dilation(b,structure=struct,iterations=5)
c = ndimage.binary_fill_holes(c,structure=struct)

# <codecell>

imshow(np.c_[b,c],cmap=cm.gray)

# <codecell>

n = 10
l = 256
img = ndimage.gaussian_filter(a, sigma=l/(4.*n))
# mask = (im > im.mean()).astype(np.float)
# mask += 0.1 * im
# img = mask + 0.2*np.random.randn(*mask.shape)
示例#47
0
    def compensate(self, inst, algo, zcCol, oversample, model):

        if ((zcCol.ndim == 1) and (len(zcCol) != algo.numTerms)):
            raise Exception(
                'input:size', 'zcCol in compensate needs to be a %d \
                row column vector\n' % algo.numTerms)

        sm, sn = self.image.shape

        projSamples = sm * oversample

        # Let us create a look-up table for x -> xp first.
        luty, lutx = np.mgrid[
            -(projSamples / 2 - 0.5):(projSamples / 2 + 0.5),
            -(projSamples / 2 - 0.5):(projSamples / 2 + 0.5)]
        lutx = lutx / (projSamples / 2 / inst.sensorFactor)
        luty = luty / (projSamples / 2 / inst.sensorFactor)

        # set up the mapping
        lutxp, lutyp, J = aperture2image(
            self, inst, algo, zcCol, lutx, luty, projSamples, model)
        #    print "J",J.shape

        show_lutxyp = showProjection(
            lutxp, lutyp, inst.sensorFactor, projSamples, 0)
        if (np.all(show_lutxyp<=0)):
            self.caustic = 1
            return
        
        realcx, realcy, tmp = getCenterAndR_ef(self.image)
        show_lutxyp = padArray(show_lutxyp, projSamples + 20)

        struct0 = ndimage.generate_binary_structure(2, 1)
        struct = ndimage.iterate_structure(struct0, 4)
        struct = ndimage.morphology.binary_dilation(struct, structure=struct0)
        struct = ndimage.morphology.binary_dilation(
            struct, structure=struct0).astype(int)
        show_lutxyp = ndimage.morphology.binary_dilation(
            show_lutxyp, structure=struct)
        show_lutxyp = ndimage.morphology.binary_erosion(
            show_lutxyp, structure=struct)
        show_lutxyp = extractArray(show_lutxyp, projSamples)

        projcx, projcy, tmp = getCenterAndR_ef(show_lutxyp.astype(float))
        projcx = projcx / (oversample)
        projcy = projcy / (oversample)

        # +(-) means we need to move image to the right (left)
        shiftx = (projcx - realcx)
        # +(-) means we need to move image upward (downward)
        shifty = (projcy - realcy)
        self.image = np.roll(self.image, int(np.round(shifty)), axis=0)
        self.image = np.roll(self.image, int(np.round(shiftx)), axis=1)

        # let's construct the interpolant,
        # to get the intensity on (x',p') plane
        # that corresponds to the grid points on (x,y)
        yp, xp = np.mgrid[-(sm / 2 - 0.5):(sm / 2 + 0.5), -
                          (sm / 2 - 0.5):(sm / 2 + 0.5)]
        xp = xp / (sm / 2 / inst.sensorFactor)
        yp = yp / (sm / 2 / inst.sensorFactor)

        # xp = reshape(xp,sm^2,1);
        # yp = reshape(yp,sm^2,1);
        # self.image = reshape(self.image,sm^2,1);
        #
        # FIp = TriScatteredInterp(xp,yp,self.image,'nearest');
        # lutIp = FIp(lutxp, lutyp);

        lutxp[np.isnan(lutxp)] = 0
        lutyp[np.isnan(lutyp)] = 0

        #    lutIp=interp2(xp,yp,self.image,lutxp,lutyp)
        #    print xp.shape, yp.shape, self.image.shape
        #    print lutxp.ravel()
        #    print xp[:,0],yp[0,:]
        ip = interpolate.RectBivariateSpline(
            yp[:, 0], xp[0, :], self.image, kx=1, ky=1)

        #    ip = interpolate.interp2d(xp, yp, self.image)
        #    ip = interpolate.interp2d(xp, yp, self.image)
        #    print lutxp.shape, lutyp.shape
        #    lutIp = ip(0.5, -0.5)
        #    print lutIp, 'lutIp1'
        #    lutIp = ip([-0.1],[-0.1])
        #    print lutIp, 'lutIp2'
        #    lutIp = ip(np.array(0.5,-0.1), np.array(-0.5, -0.1))
        #    print lutIp, 'lutIp12',lutxp.ravel()[0:10]
        lutIp = np.zeros(lutxp.shape[0] * lutxp.shape[1])
        for i, (xx, yy) in enumerate(zip(lutxp.ravel(), lutyp.ravel())):
            lutIp[i] = ip(yy, xx)
        lutIp = lutIp.reshape(lutxp.shape)

        self.image = lutIp * J

        if (self.type == 'extra'):
            self.image = np.rot90(self.image, k=2)

        # if we want the compensator to drive down tip-tilt
        # self.image = offsetImg(-shiftx, -shifty, self.image);
        # self.image=circshift(self.image,[round(-shifty) round(-shiftx)]);

        self.image[np.isnan(self.image)] = 0
        # self.image < 0 will not be physical, remove that region
        # x(self.image<0) = NaN;
        self.caustic = 0
        if (np.any(self.image<0) and np.all(self.image0>=0)):
            print(
                'WARNING: negative scale parameter, \
            image is within caustic, zcCol (in um)=\n')

        #    for i in range(len(zcCol)):
        #        print zcCol[i]
        #        print('%5.2f '%(zcCol[i]*1.e6))
        #    print('\n');
            self.caustic = 1

        self.image[self.image < 0] = 0
        if (oversample > 1):
            self.downResolution(self, oversample, sm, sn)
def _filter_struc(size):
    base = sn.generate_binary_structure(2, 1)
    struc = sn.iterate_structure(base, size)
    return struc
示例#49
0
    # pare down to set of slices that are of interest (optional)
    if len(args.evalSliceExpr):
        evalSlices = eval(args.evalSliceExpr)
        X = X[evalSlices]

    # preprocessing.  This includes volume normalization (optional) and thresholding (optional)
    selectedPixels = numpy.logical_and(args.xLowerBound <= X, X <= args.xUpperBound)

    # Note: I observed strange behavior when running the erosion
    # operator on the entire tensor in a single call.  So for now,
    # I'll do this a slice at a time until I can figure out what the
    # situation is with the tensor.
    if args.threshDilationKernel > 0:
        kernel = ndimage.generate_binary_structure(2,1)
        kernel = ndimage.iterate_structure(kernel, args.threshDilationKernel).astype(int)
        for ii in range(selectedPixels.shape[0]):
            selectedPixels[ii,:,:] = ndimage.binary_dilation(selectedPixels[ii,:,:], structure=kernel, iterations=1)
    else:
        print '[em_evaluate]: no threshold dilation will be applied'
            
    if args.threshErosionKernel > 0:
        kernel = ndimage.generate_binary_structure(2,1)
        kernel = ndimage.iterate_structure(kernel, args.threshErosionKernel).astype(int)
        for ii in range(selectedPixels.shape[0]):
            selectedPixels[ii,:,:] = ndimage.binary_erosion(selectedPixels[ii,:,:], structure=kernel, iterations=1)
    else:
        print '[em_evaluate]: no threshold erosion will be applied'
            
    lowerPixels = numpy.logical_and(numpy.logical_not(selectedPixels), X < args.xLowerBound)
    upperPixels = numpy.logical_and(numpy.logical_not(selectedPixels), X > args.xUpperBound)