def test_concatenation():
    rng = np.random.RandomState(0)
    n = 4
    x0 = np.random.rand(n)

    f1 = x0
    J1 = np.eye(n)
    lb1 = [-1, -np.inf, -2, 3]
    ub1 = [1, np.inf, np.inf, 3]
    bounds = Bounds(lb1, ub1, [False, False, True, False])

    fun, jac, hess = create_quadratic_function(n, 5, rng)
    f2 = fun(x0)
    J2 = jac(x0)
    lb2 = [-10, 3, -np.inf, -np.inf, -5]
    ub2 = [10, 3, np.inf, 5, np.inf]
    nonlinear = NonlinearConstraint(fun, lb2, ub2, jac, hess,
                                    [True, False, False, True, False])

    for sparse_jacobian in [False, True]:
        bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
        nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)

        c1 = CanonicalConstraint.from_PreparedConstraint(bounds_prepared)
        c2 = CanonicalConstraint.from_PreparedConstraint(nonlinear_prepared)
        c = CanonicalConstraint.concatenate([c1, c2], sparse_jacobian)

        assert_equal(c.n_eq, 2)
        assert_equal(c.n_ineq, 7)

        c_eq, c_ineq = c.fun(x0)
        assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
        assert_array_equal(c_ineq, [
            lb1[2] - f1[2], f1[0] - ub1[0], lb1[0] - f1[0], f2[3] - ub2[3],
            lb2[4] - f2[4], f2[0] - ub2[0], lb2[0] - f2[0]
        ])

        J_eq, J_ineq = c.jac(x0)
        if sparse_jacobian:
            J_eq = J_eq.toarray()
            J_ineq = J_ineq.toarray()

        assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
        assert_array_equal(
            J_ineq,
            np.vstack((-J1[2], J1[0], -J1[0], J2[3], -J2[4], J2[0], -J2[0])))

        v_eq = rng.rand(c.n_eq)
        v_ineq = rng.rand(c.n_ineq)
        v = np.zeros(5)
        v[1] = v_eq[1]
        v[3] = v_ineq[3]
        v[4] = -v_ineq[4]
        v[0] = v_ineq[5] - v_ineq[6]
        H = c.hess(x0, v_eq, v_ineq).dot(np.eye(n))
        assert_array_equal(H, hess(x0, v))

        assert_array_equal(c.keep_feasible,
                           [True, False, False, True, False, True, True])
def test_initial_constraints_as_canonical():
    # rng is only used to generate the coefficients of the quadratic
    # function that is used by the nonlinear constraint.
    rng = np.random.RandomState(0)

    x0 = np.array([0.5, 0.4, 0.3, 0.2])
    n = len(x0)

    lb1 = [-1, -np.inf, -2, 3]
    ub1 = [1, np.inf, np.inf, 3]
    bounds = Bounds(lb1, ub1, [False, False, True, False])

    fun, jac, hess = create_quadratic_function(n, 5, rng)
    lb2 = [-10, 3, -np.inf, -np.inf, -5]
    ub2 = [10, 3, np.inf, 5, np.inf]
    nonlinear = NonlinearConstraint(fun, lb2, ub2, jac, hess,
                                    [True, False, False, True, False])

    for sparse_jacobian in [False, True]:
        bounds_prepared = PreparedConstraint(bounds, x0, sparse_jacobian)
        nonlinear_prepared = PreparedConstraint(nonlinear, x0, sparse_jacobian)

        f1 = bounds_prepared.fun.f
        J1 = bounds_prepared.fun.J
        f2 = nonlinear_prepared.fun.f
        J2 = nonlinear_prepared.fun.J

        c_eq, c_ineq, J_eq, J_ineq = initial_constraints_as_canonical(
            n, [bounds_prepared, nonlinear_prepared], sparse_jacobian)

        assert_array_equal(c_eq, [f1[3] - lb1[3], f2[1] - lb2[1]])
        assert_array_equal(c_ineq, [
            lb1[2] - f1[2], f1[0] - ub1[0], lb1[0] - f1[0], f2[3] - ub2[3],
            lb2[4] - f2[4], f2[0] - ub2[0], lb2[0] - f2[0]
        ])

        if sparse_jacobian:
            J1 = J1.toarray()
            J2 = J2.toarray()
            J_eq = J_eq.toarray()
            J_ineq = J_ineq.toarray()

        assert_array_equal(J_eq, np.vstack((J1[3], J2[1])))
        assert_array_equal(
            J_ineq,
            np.vstack((-J1[2], J1[0], -J1[0], J2[3], -J2[4], J2[0], -J2[0])))
示例#3
0
def test_prepare_constraint_infeasible_x0():
    lb = np.array([0, 20, 30])
    ub = np.array([0.5, np.inf, 70])
    x0 = np.array([1, 2, 3])
    enforce_feasibility = np.array([False, True, True], dtype=bool)
    bounds = Bounds(lb, ub, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, bounds, x0)

    pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
    assert (pc.violation([1, 2, 3]) > 0).any()
    assert (pc.violation([0.25, 21, 31]) == 0).all()

    x0 = np.array([1, 2, 3, 4])
    A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
    enforce_feasibility = np.array([True, True, True], dtype=bool)
    linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, linear, x0)

    pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0),
                            [1, 2, 3, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()

    def fun(x):
        return A.dot(x)

    def jac(x):
        return A

    def hess(x, v):
        return sps.csr_matrix((4, 4))

    nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
                                    enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)

    pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()
def test_nonlinear_constraint():
    n = 3
    m = 5
    rng = np.random.RandomState(0)
    x0 = rng.rand(n)

    fun, jac, hess = create_quadratic_function(n, m, rng)
    f = fun(x0)
    J = jac(x0)

    lb = [-10, 3, -np.inf, -np.inf, -5]
    ub = [10, 3, np.inf, 3, np.inf]
    user_constraint = NonlinearConstraint(fun, lb, ub, jac, hess,
                                          [True, False, False, True, False])

    for sparse_jacobian in [False, True]:
        prepared_constraint = PreparedConstraint(user_constraint, x0,
                                                 sparse_jacobian)
        c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)

        assert_array_equal(c.n_eq, 1)
        assert_array_equal(c.n_ineq, 4)

        c_eq, c_ineq = c.fun(x0)
        assert_array_equal(c_eq, [f[1] - lb[1]])
        assert_array_equal(
            c_ineq, [f[3] - ub[3], lb[4] - f[4], f[0] - ub[0], lb[0] - f[0]])

        J_eq, J_ineq = c.jac(x0)
        if sparse_jacobian:
            J_eq = J_eq.toarray()
            J_ineq = J_ineq.toarray()

        assert_array_equal(J_eq, J[1, None])
        assert_array_equal(J_ineq, np.vstack((J[3], -J[4], J[0], -J[0])))

        v_eq = rng.rand(c.n_eq)
        v_ineq = rng.rand(c.n_ineq)
        v = np.zeros(m)
        v[1] = v_eq[0]
        v[3] = v_ineq[0]
        v[4] = -v_ineq[1]
        v[0] = v_ineq[2] - v_ineq[3]
        assert_array_equal(c.hess(x0, v_eq, v_ineq), hess(x0, v))

        assert_array_equal(c.keep_feasible, [True, False, True, True])
示例#5
0
def test_violation():
    def cons_f(x):
        return np.array([x[0]**2 + x[1], x[0]**2 - x[1]])

    nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
    pc = PreparedConstraint(nlc, [0.5, 1])

    assert_array_equal(pc.violation([0.5, 1]), [0., 0.])

    np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])

    np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])
示例#6
0
def test_violation():
    def cons_f(x):
        return np.array([x[0] ** 2 + x[1], x[0] ** 2 - x[1]])

    nlc = NonlinearConstraint(cons_f, [-1, -0.8500], [2, 2])
    pc = PreparedConstraint(nlc, [0.5, 1])

    assert_array_equal(pc.violation([0.5, 1]), [0., 0.])

    np.testing.assert_almost_equal(pc.violation([0.5, 1.2]), [0., 0.1])

    np.testing.assert_almost_equal(pc.violation([1.2, 1.2]), [0.64, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, -1.2]), [0.19, 0])

    np.testing.assert_almost_equal(pc.violation([0.1, 2]), [0.01, 1.14])
def test_bounds_cases():
    # Test 1: no constraints.
    user_constraint = Bounds(-np.inf, np.inf)
    x0 = np.array([-1, 2])
    prepared_constraint = PreparedConstraint(user_constraint, x0, False)
    c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)

    assert_equal(c.n_eq, 0)
    assert_equal(c.n_ineq, 0)

    c_eq, c_ineq = c.fun(x0)
    assert_array_equal(c_eq, [])
    assert_array_equal(c_ineq, [])

    J_eq, J_ineq = c.jac(x0)
    assert_array_equal(J_eq, np.empty((0, 2)))
    assert_array_equal(J_ineq, np.empty((0, 2)))

    assert_array_equal(c.keep_feasible, [])

    # Test 2: infinite lower bound.
    user_constraint = Bounds(-np.inf, [0, np.inf, 1], [False, True, True])
    x0 = np.array([-1, -2, -3], dtype=float)
    prepared_constraint = PreparedConstraint(user_constraint, x0, False)
    c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)

    assert_equal(c.n_eq, 0)
    assert_equal(c.n_ineq, 2)

    c_eq, c_ineq = c.fun(x0)
    assert_array_equal(c_eq, [])
    assert_array_equal(c_ineq, [-1, -4])

    J_eq, J_ineq = c.jac(x0)
    assert_array_equal(J_eq, np.empty((0, 3)))
    assert_array_equal(J_ineq, np.array([[1, 0, 0], [0, 0, 1]]))

    assert_array_equal(c.keep_feasible, [False, True])

    # Test 3: infinite upper bound.
    user_constraint = Bounds([0, 1, -np.inf], np.inf, [True, False, True])
    x0 = np.array([1, 2, 3], dtype=float)
    prepared_constraint = PreparedConstraint(user_constraint, x0, False)
    c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)

    assert_equal(c.n_eq, 0)
    assert_equal(c.n_ineq, 2)

    c_eq, c_ineq = c.fun(x0)
    assert_array_equal(c_eq, [])
    assert_array_equal(c_ineq, [-1, -1])

    J_eq, J_ineq = c.jac(x0)
    assert_array_equal(J_eq, np.empty((0, 3)))
    assert_array_equal(J_ineq, np.array([[-1, 0, 0], [0, -1, 0]]))

    assert_array_equal(c.keep_feasible, [True, False])

    # Test 4: interval constraint.
    user_constraint = Bounds([-1, -np.inf, 2, 3], [1, np.inf, 10, 3],
                             [False, True, True, True])
    x0 = np.array([0, 10, 8, 5])
    prepared_constraint = PreparedConstraint(user_constraint, x0, False)
    c = CanonicalConstraint.from_PreparedConstraint(prepared_constraint)

    assert_equal(c.n_eq, 1)
    assert_equal(c.n_ineq, 4)

    c_eq, c_ineq = c.fun(x0)
    assert_array_equal(c_eq, [2])
    assert_array_equal(c_ineq, [-1, -2, -1, -6])

    J_eq, J_ineq = c.jac(x0)
    assert_array_equal(J_eq, [[0, 0, 0, 1]])
    assert_array_equal(
        J_ineq, [[1, 0, 0, 0], [0, 0, 1, 0], [-1, 0, 0, 0], [0, 0, -1, 0]])

    assert_array_equal(c.keep_feasible, [False, True, False, True])
示例#8
0
def test_prepare_constraint_infeasible_x0():
    lb = np.array([0, 20, 30])
    ub = np.array([0.5, np.inf, 70])
    x0 = np.array([1, 2, 3])
    enforce_feasibility = np.array([False, True, True], dtype=bool)
    bounds = Bounds(lb, ub, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, bounds, x0)

    pc = PreparedConstraint(Bounds(lb, ub), [1, 2, 3])
    assert (pc.violation([1, 2, 3]) > 0).any()
    assert (pc.violation([0.25, 21, 31]) == 0).all()

    x0 = np.array([1, 2, 3, 4])
    A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]])
    enforce_feasibility = np.array([True, True, True], dtype=bool)
    linear = LinearConstraint(A, -np.inf, 0, enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, linear, x0)

    pc = PreparedConstraint(LinearConstraint(A, -np.inf, 0), [1, 2, 3, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()

    def fun(x):
        return A.dot(x)

    def jac(x):
        return A

    def hess(x, v):
        return sps.csr_matrix((4, 4))

    nonlinear = NonlinearConstraint(fun, -np.inf, 0, jac, hess,
                                    enforce_feasibility)
    pytest.raises(ValueError, PreparedConstraint, nonlinear, x0)

    pc = PreparedConstraint(nonlinear, [-10, 2, -10, 4])
    assert (pc.violation([1, 2, 3, 4]) > 0).any()
    assert (pc.violation([-10, 2, -10, 4]) == 0).all()