def test_x_storage_overlap(self): # Scalar_Function should not store references to arrays, it should # store copies - this checks that updating an array in-place causes # Scalar_Function.x to be updated. def f(x): return np.sum(np.asarray(x)**2) x = np.array([1., 2., 3.]) sf = ScalarFunction(f, x, (), '3-point', lambda x: x, None, (-np.inf, np.inf)) assert x is not sf.x assert_equal(sf.fun(x), 14.0) assert x is not sf.x x[0] = 0. f1 = sf.fun(x) assert_equal(f1, 13.0) x[0] = 1 f2 = sf.fun(x) assert_equal(f2, 14.0) assert x is not sf.x # now test with a HessianUpdate strategy specified hess = BFGS() x = np.array([1., 2., 3.]) sf = ScalarFunction(f, x, (), '3-point', hess, None, (-np.inf, np.inf)) assert x is not sf.x assert_equal(sf.fun(x), 14.0) assert x is not sf.x x[0] = 0. f1 = sf.fun(x) assert_equal(f1, 13.0) x[0] = 1 f2 = sf.fun(x) assert_equal(f2, 14.0) assert x is not sf.x # gh13740 x is changed in user function def ff(x): x *= x # overwrite x return np.sum(x) x = np.array([1., 2., 3.]) sf = ScalarFunction(ff, x, (), '3-point', lambda x: x, None, (-np.inf, np.inf)) assert x is not sf.x assert_equal(sf.fun(x), 14.0) assert_equal(sf.x, np.array([1., 2., 3.])) assert x is not sf.x
def test_finite_difference_grad(self): ex = ExScalarFunction() nfev = 0 ngev = 0 x0 = [1.0, 0.0] analit = ScalarFunction(ex.fun, x0, (), ex.grad, ex.hess, None, (-np.inf, np.inf)) nfev += 1 ngev += 1 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev, nfev) approx = ScalarFunction(ex.fun, x0, (), '2-point', ex.hess, None, (-np.inf, np.inf)) nfev += 3 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) assert_array_equal(analit.f, approx.f) assert_array_almost_equal(analit.g, approx.g) x = [10, 0.3] f_analit = analit.fun(x) g_analit = analit.grad(x) nfev += 1 ngev += 1 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) f_approx = approx.fun(x) g_approx = approx.grad(x) nfev += 3 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) assert_array_almost_equal(f_analit, f_approx) assert_array_almost_equal(g_analit, g_approx) x = [2.0, 1.0] g_analit = analit.grad(x) ngev += 1 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) g_approx = approx.grad(x) nfev += 3 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) assert_array_almost_equal(g_analit, g_approx) x = [2.5, 0.3] f_analit = analit.fun(x) g_analit = analit.grad(x) nfev += 1 ngev += 1 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) f_approx = approx.fun(x) g_approx = approx.grad(x) nfev += 3 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) assert_array_almost_equal(f_analit, f_approx) assert_array_almost_equal(g_analit, g_approx) x = [2, 0.3] f_analit = analit.fun(x) g_analit = analit.grad(x) nfev += 1 ngev += 1 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) f_approx = approx.fun(x) g_approx = approx.grad(x) nfev += 3 assert_array_equal(ex.nfev, nfev) assert_array_equal(analit.nfev+approx.nfev, nfev) assert_array_equal(ex.ngev, ngev) assert_array_equal(analit.ngev+approx.ngev, ngev) assert_array_almost_equal(f_analit, f_approx) assert_array_almost_equal(g_analit, g_approx)
def test_lowest_x(self): # ScalarFunction should remember the lowest func(x) visited. x0 = np.array([2, 3, 4]) sf = ScalarFunction(rosen, x0, (), rosen_der, rosen_hess, None, None) sf.fun([1, 1, 1]) sf.fun(x0) sf.fun([1.01, 1, 1.0]) sf.grad([1.01, 1, 1.0]) assert_equal(sf._lowest_f, 0.0) assert_equal(sf._lowest_x, [1.0, 1.0, 1.0]) sf = ScalarFunction(rosen, x0, (), '2-point', rosen_hess, None, (-np.inf, np.inf)) sf.fun([1, 1, 1]) sf.fun(x0) sf.fun([1.01, 1, 1.0]) sf.grad([1.01, 1, 1.0]) assert_equal(sf._lowest_f, 0.0) assert_equal(sf._lowest_x, [1.0, 1.0, 1.0])