示例#1
0
 def test_visiting_dist_high_temperature(self):
     lu = list(zip(*self.ld_bounds))
     lower = np.array(lu[0])
     upper = np.array(lu[1])
     vd = VisitingDistribution(lower, upper, self.qv, self.rs)
     values = np.zeros(self.nbtestvalues)
     for i in np.arange(self.nbtestvalues):
         values[i] = vd.visit_fn(self.high_temperature)
     # Visiting distribution is a distorted version of Cauchy-Lorentz
     # distribution, and as no 1st and higher moments (no mean defined,
     # no variance defined).
     # Check that big tails values are generated
     assert_array_less(np.min(values), 1e-10)
     assert_array_less(1e+10, np.max(values))
 def test_visiting_stepping(self):
     lu = list(zip(*self.ld_bounds))
     lower = np.array(lu[0])
     upper = np.array(lu[1])
     dim = lower.size
     vd = VisitingDistribution(lower, upper, self.qv, self.rs)
     values = np.zeros(dim)
     x_step_low = vd.visiting(values, 0, self.high_temperature)
     # Make sure that only the first component is changed
     assert_equal(np.not_equal(x_step_low, 0), True)
     values = np.zeros(dim)
     x_step_high = vd.visiting(values, dim, self.high_temperature)
     # Make sure that component other than at dim has changed
     assert_equal(np.not_equal(x_step_high[0], 0), True)
示例#3
0
 def test_visiting_stepping(self):
     lu = list(zip(*self.ld_bounds))
     lower = np.array(lu[0])
     upper = np.array(lu[1])
     dim = lower.size
     vd = VisitingDistribution(lower, upper, self.qv, self.rs)
     values = np.zeros(dim)
     x_step_low = vd.visiting(values, 0, self.high_temperature)
     # Make sure that only the first component is changed
     assert_equal(np.not_equal(x_step_low, 0), True)
     values = np.zeros(dim)
     x_step_high = vd.visiting(values, dim, self.high_temperature)
     # Make sure that component other than at dim has changed
     assert_equal(np.not_equal(x_step_high[0], 0), True)
示例#4
0
 def test_visiting_dist_high_temperature(self):
     lu = list(zip(*self.ld_bounds))
     lower = np.array(lu[0])
     upper = np.array(lu[1])
     vd = VisitingDistribution(lower, upper, self.qv, self.rs)
     values = np.zeros(self.nbtestvalues)
     for i in np.arange(self.nbtestvalues):
         values[i] = vd.visit_fn(self.high_temperature)
     # Visiting distribution is a distorted version of Cauchy-Lorentz
     # distribution, and as no 1st and higher moments (no mean defined,
     # no variance defined).
     # Check that big tails values are generated
     assert_array_less(np.min(values), 1e-10)
     assert_array_less(1e+10, np.max(values))