def test_axis_reverse(self): a = np.arange(12).reshape(3, 4) r = axis_reverse(a, axis=0) assert_array_equal(r, a[::-1, :]) r = axis_reverse(a, axis=1) assert_array_equal(r, a[:, ::-1])
def _sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None, method='pad', irlen=None): """Filtfilt version using Second Order sections. Code is taken from scipy.signal.filtfilt and adapted to make it work with SOS. Note that broadcasting does not work. """ from scipy.signal import sosfilt_zi from scipy.signal._arraytools import odd_ext, axis_slice, axis_reverse x = np.asarray(x) if padlen is None: edge = 0 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = sosfilt_zi(sos) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. #zi_shape = [1] * x.ndim #zi_shape[axis] = zi.size #zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def butter_bandpass_sosfiltfilt(self, lowcut=None, highcut=None, accel_axis="z", order=5, axis=-1, padtype="odd", padlen=None, method='pad', irlen=None): '''Filtfilt version using Second Order sections. Code is taken from scipy.signal.filtfilt and adapted to make it work with sos. Note that broadcasting does not work''' data = np.asarray(getattr(self.df, accel_axis[:])) sos = self.butter_bandpass(lowcut, highcut, order) if padlen is None: edge = 0 else: edge = padlen if data.shape[axis] <= edge: raise ValueError( "The length of the input vector x must be at least padlen, which is %d." % edge) if padtype is not None and edge > 0: if padtype == "even": ext = even_ext(data, edge, axis=axis) elif padtype == "odd": ext = odd_ext(data, edge, axis=axis) else: ext = const_ext(data, edge, axis=axis) else: ext = data # Get the steady state of the filter's first step resopnse zi = sosfilt_zi(sos) # Reshape zi and create x0 so that zi*x0 broadcasts to the correct value for the zi keyword argument to lfilter x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x0) y0 = axis_slice(y, start=-1, axis=axis) # Backward filter (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) y = axis_reverse(y, axis=axis) if edge > 0: y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def sosfiltfilt(sos, x, axis=-1, padtype="odd", padlen=0): x = asarray(x) # `method` is "pad" if padtype not in ["even", "odd", "constant", None]: raise ValueError( ("Unknown value '%s' given to padtype. padtype " "must be 'even', 'odd', 'constant', or None.") % padtype ) if padtype is None: padlen = 0 if padlen is None: edge = sos.shape[0] * 6 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == "even": ext = even_ext(x, edge, axis=axis) elif padtype == "odd": ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = sosfilt_zi(sos) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) zix0 = reshape(zi * x0, (sos.shape[0], 2)) # Forward filter (y, zf) = sosfilt(sos, ext, axis=axis, zi=zix0) # Backward filter # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) ziy0 = reshape(zi * y0, (sos.shape[0], 2)) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=ziy0) # Reverse y y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=0): x = asarray(x) # `method` is "pad" if padtype not in ['even', 'odd', 'constant', None]: raise ValueError(("Unknown value '%s' given to padtype. padtype " "must be 'even', 'odd', 'constant', or None.") % padtype) if padtype is None: padlen = 0 if padlen is None: edge = sos.shape[0] * 6 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = sosfilt_zi(sos) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) zix0 = reshape(zi * x0, (sos.shape[0], 2)) # Forward filter (y, zf) = sosfilt(sos, ext, axis=axis, zi=zix0) # Backward filter # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) ziy0 = reshape(zi * y0, (sos.shape[0], 2)) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=ziy0) # Reverse y y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None): """ A forward-backward filter. This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. Before applying the filter, the function can pad the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at end points. On both the forward and backwards passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data. Parameters ---------- b : (N,) array_like The numerator coefficient vector of the filter. a : (N,) array_like The denominator coefficient vector of the filter. If a[0] is not 1, then both a and b are normalized by a[0]. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than `x.shape[axis]-1`. `padlen=0` implies no padding. The default value is 3*max(len(a),len(b)). Returns ------- y : ndarray The filtered output, an array of type numpy.float64 with the same shape as `x`. See Also -------- lfilter_zi, lfilter Examples -------- First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz. >>> t = np.linspace(0, 1.0, 2001) >>> xlow = np.sin(2 * np.pi * 5 * t) >>> xhigh = np.sin(2 * np.pi * 250 * t) >>> x = xlow + xhigh Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to x with filtfilt. The result should be approximately xlow, with no phase shift. >>> from scipy import signal >>> b, a = signal.butter(8, 0.125) >>> y = filtfilt(b, a, x, padlen=150) >>> print('%.5g' % np.abs(y - xlow).max()) 9.1086e-06 We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable. """ if padtype not in ['even', 'odd', 'constant', None]: raise ValueError(("Unknown value '%s' given to padtype. padtype must " "be 'even', 'odd', 'constant', or None.") % padtype) b = np.asarray(b) a = np.asarray(a) x = np.asarray(x) ntaps = max(len(a), len(b)) if padtype is None: padlen = 0 if padlen is None: # Original padding; preserved for backwards compatibility. edge = ntaps * 3 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError("The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = lfilter_zi(b, a) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None): """ A forward-backward filter. This function applies a linear filter twice, once forward and once backwards. The combined filter has linear phase. Before applying the filter, the function can pad the data along the given axis in one of three ways: odd, even or constant. The odd and even extensions have the corresponding symmetry about the end point of the data. The constant extension extends the data with the values at end points. On both the forward and backwards passes, the initial condition of the filter is found by using `lfilter_zi` and scaling it by the end point of the extended data. Parameters ---------- b : (N,) array_like The numerator coefficient vector of the filter. a : (N,) array_like The denominator coefficient vector of the filter. If a[0] is not 1, then both a and b are normalized by a[0]. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than `x.shape[axis]-1`. `padlen=0` implies no padding. The default value is 3*max(len(a),len(b)). Returns ------- y : ndarray The filtered output, an array of type numpy.float64 with the same shape as `x`. See Also -------- lfilter_zi, lfilter Examples -------- First we create a one second signal that is the sum of two pure sine waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz. >>> t = np.linspace(0, 1.0, 2001) >>> xlow = np.sin(2 * np.pi * 5 * t) >>> xhigh = np.sin(2 * np.pi * 250 * t) >>> x = xlow + xhigh Now create a lowpass Butterworth filter with a cutoff of 0.125 times the Nyquist rate, or 125 Hz, and apply it to x with filtfilt. The result should be approximately xlow, with no phase shift. >>> from scipy import signal >>> b, a = signal.butter(8, 0.125) >>> y = filtfilt(b, a, x, padlen=150) >>> print('%.5g' % np.abs(y - xlow).max()) 9.1086e-06 We get a fairly clean result for this artificial example because the odd extension is exact, and with the moderately long padding, the filter's transients have dissipated by the time the actual data is reached. In general, transient effects at the edges are unavoidable. """ if padtype not in ['even', 'odd', 'constant', None]: raise ValueError( ("Unknown value '%s' given to padtype. padtype must " "be 'even', 'odd', 'constant', or None.") % padtype) b = np.asarray(b) a = np.asarray(a) x = np.asarray(x) ntaps = max(len(a), len(b)) if padtype is None: padlen = 0 if padlen is None: # Original padding; preserved for backwards compatibility. edge = ntaps * 3 else: edge = padlen # x's 'axis' dimension must be bigger than edge. if x.shape[axis] <= edge: raise ValueError( "The length of the input vector x must be at least " "padlen, which is %d." % edge) if padtype is not None and edge > 0: # Make an extension of length `edge` at each # end of the input array. if padtype == 'even': ext = even_ext(x, edge, axis=axis) elif padtype == 'odd': ext = odd_ext(x, edge, axis=axis) else: ext = const_ext(x, edge, axis=axis) else: ext = x # Get the steady state of the filter's step response. zi = lfilter_zi(b, a) # Reshape zi and create x0 so that zi*x0 broadcasts # to the correct value for the 'zi' keyword argument # to lfilter. zi_shape = [1] * x.ndim zi_shape[axis] = zi.size zi = np.reshape(zi, zi_shape) x0 = axis_slice(ext, stop=1, axis=axis) # Forward filter. (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0) # Backward filter. # Create y0 so zi*y0 broadcasts appropriately. y0 = axis_slice(y, start=-1, axis=axis) (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0) # Reverse y. y = axis_reverse(y, axis=axis) if edge > 0: # Slice the actual signal from the extended signal. y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y
def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None): """ A forward-backward filter using cascaded second-order sections. See `filtfilt` for more complete information about this method. Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. Each row corresponds to a second-order section, with the first three columns providing the numerator coefficients and the last three providing the denominator coefficients. x : array_like The array of data to be filtered. axis : int, optional The axis of `x` to which the filter is applied. Default is -1. padtype : str or None, optional Must be 'odd', 'even', 'constant', or None. This determines the type of extension to use for the padded signal to which the filter is applied. If `padtype` is None, no padding is used. The default is 'odd'. padlen : int or None, optional The number of elements by which to extend `x` at both ends of `axis` before applying the filter. This value must be less than ``x.shape[axis] - 1``. ``padlen=0`` implies no padding. The default value is:: 3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())) The extra subtraction at the end attempts to compensate for poles and zeros at the origin (e.g. for odd-order filters) to yield equivalent estimates of `padlen` to those of `filtfilt` for second-order section filters built with `scipy.signal` functions. Returns ------- y : ndarray The filtered output with the same shape as `x`. See Also -------- filtfilt, sosfilt, sosfilt_zi Notes ----- .. versionadded:: 0.18.0 """ sos, n_sections = _validate_sos(sos) # `method` is "pad"... ntaps = 2 * n_sections + 1 ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum()) edge, ext = _validate_pad(padtype, padlen, x, axis, ntaps=ntaps) # These steps follow the same form as filtfilt with modifications zi = sosfilt_zi(sos) # shape (n_sections, 2) --> (n_sections, ..., 2, ...) zi_shape = [1] * x.ndim zi_shape[axis] = 2 zi.shape = [n_sections] + zi_shape x_0 = axis_slice(ext, stop=1, axis=axis) (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0) y_0 = axis_slice(y, start=-1, axis=axis) (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0) y = axis_reverse(y, axis=axis) if edge > 0: y = axis_slice(y, start=edge, stop=-edge, axis=axis) return y