def spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True, drop_first=True): adjacency = check_symmetric(adjacency) # eigen_solver = 'arpack' # eigen_solver = 'amg' norm_laplacian=False random_state = check_random_state(random_state) n_nodes = adjacency.shape[0] if not _graph_is_connected(adjacency): warnings.warn("Graph is not fully connected, spectral embedding" " may not work as expected.") laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) if (eigen_solver == 'arpack' or eigen_solver != 'lobpcg' and (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)): print("[INFILE] eigen_solver : ", eigen_solver, "norm_laplacian:", norm_laplacian) laplacian = _set_diag(laplacian, 1, norm_laplacian) try: laplacian *= -1 v0 = random_state.uniform(-1, 1, laplacian.shape[0]) lambdas, diffusion_map = eigsh(laplacian, k=n_components, sigma=1.0, which='LM', tol=eigen_tol, v0=v0) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: embedding = embedding / dd except RuntimeError: eigen_solver = "lobpcg" laplacian *= -1 embedding = _deterministic_vector_sign_flip(embedding) return embedding[:n_components].T
def spectral_embedding(adjacency, norm_laplacian=True): adjacency = check_symmetric(adjacency) n_nodes = adjacency.shape[0] laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) return np.linalg.pinv(laplacian.todense())
def transform(self): # self.n_components = min(self.n_components, self.data.shape[1]) laplacian, dd = csgraph_laplacian(self.data, normed=self.norm_laplacian, return_diag=True) laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) laplacian = _set_diag(laplacian, 1, self.norm_laplacian) ## Seed the global number generator because the pyamg ## interface apparently uses that... ## Also, see https://github.com/pyamg/pyamg/issues/139 np.random.seed(self.random_state.randint(2**31 - 1)) diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver(check_array(laplacian, "csr")) laplacian -= diag_shift M = ml.aspreconditioner() X = self.random_state.rand(laplacian.shape[0], self.n_components + 1) X[:, 0] = dd.ravel() # laplacian *= -1 # v0 = self.random_state.uniform(-1, 1, laplacian.shape[0]) # eigvals, diffusion_map = eigsh( # laplacian, k=self.n_components + 1, sigma=1.0, which="LM", tol=0.0, v0=v0 # ) # # eigsh needs reversing # embedding = diffusion_map.T[::-1] eigvals, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.0e-5, largest=False) embedding = diffusion_map.T if self.norm_laplacian: embedding = embedding / dd if self.drop_first: self.data_ = embedding[1:self.n_components].T eigvals = eigvals[1:self.n_components] else: self.data_ = embedding[:self.n_components].T self.eigvals_ = eigvals[:: -1] # reverse direction to have the largest first
def spectral_embedding(adjacency, n_components=8, eigen_solver=None, random_state=None, eigen_tol=0.0, norm_laplacian=True, drop_first=True): """Project the sample on the first eigenvectors of the graph Laplacian. The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigenvectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts necessary to split the graph into comparably sized components. This embedding can also 'work' even if the ``adjacency`` variable is not strictly the adjacency matrix of a graph but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean distance matrix or a k-NN matrix). However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition works as expected. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- adjacency : array-like or sparse matrix, shape: (n_samples, n_samples) The adjacency matrix of the graph to embed. n_components : integer, optional, default 8 The dimension of the projection subspace. eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}, default None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. random_state : int, RandomState instance or None, optional, default: None A pseudo random number generator used for the initialization of the lobpcg eigenvectors decomposition. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'amg'. eigen_tol : float, optional, default=0.0 Stopping criterion for eigendecomposition of the Laplacian matrix when using arpack eigen_solver. norm_laplacian : bool, optional, default=True If True, then compute normalized Laplacian. drop_first : bool, optional, default=True Whether to drop the first eigenvector. For spectral embedding, this should be True as the first eigenvector should be constant vector for connected graph, but for spectral clustering, this should be kept as False to retain the first eigenvector. Returns ------- embedding : array, shape=(n_samples, n_components) The reduced samples. Notes ----- Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If there graph has many components, the first few eigenvectors will simply uncover the connected components of the graph. References ---------- * https://en.wikipedia.org/wiki/LOBPCG * Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method Andrew V. Knyazev https://doi.org/10.1137%2FS1064827500366124 """ adjacency = check_symmetric(adjacency) try: from pyamg import smoothed_aggregation_solver except ImportError: if eigen_solver == "amg": raise ValueError("The eigen_solver was set to 'amg', but pyamg is " "not available.") if eigen_solver is None: eigen_solver = 'arpack' elif eigen_solver not in ('arpack', 'lobpcg', 'amg'): raise ValueError("Unknown value for eigen_solver: '%s'." "Should be 'amg', 'arpack', or 'lobpcg'" % eigen_solver) random_state = check_random_state(random_state) n_nodes = adjacency.shape[0] # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 if not _graph_is_connected(adjacency): warnings.warn("Graph is not fully connected, spectral embedding" " may not work as expected.") laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) if (eigen_solver == 'arpack' or eigen_solver != 'lobpcg' and (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)): # lobpcg used with eigen_solver='amg' has bugs for low number of nodes # for details see the source code in scipy: # https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen # /lobpcg/lobpcg.py#L237 # or matlab: # https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m laplacian = _set_diag(laplacian, 1, norm_laplacian) # Here we'll use shift-invert mode for fast eigenvalues # (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html # for a short explanation of what this means) # Because the normalized Laplacian has eigenvalues between 0 and 2, # I - L has eigenvalues between -1 and 1. ARPACK is most efficient # when finding eigenvalues of largest magnitude (keyword which='LM') # and when these eigenvalues are very large compared to the rest. # For very large, very sparse graphs, I - L can have many, many # eigenvalues very near 1.0. This leads to slow convergence. So # instead, we'll use ARPACK's shift-invert mode, asking for the # eigenvalues near 1.0. This effectively spreads-out the spectrum # near 1.0 and leads to much faster convergence: potentially an # orders-of-magnitude speedup over simply using keyword which='LA' # in standard mode. try: # We are computing the opposite of the laplacian inplace so as # to spare a memory allocation of a possibly very large array laplacian *= -1 v0 = random_state.uniform(-1, 1, laplacian.shape[0]) lambdas, diffusion_map = eigsh(laplacian, k=n_components, sigma=1.0, which='LM', tol=eigen_tol, v0=v0) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: embedding = embedding / dd except RuntimeError: # When submatrices are exactly singular, an LU decomposition # in arpack fails. We fallback to lobpcg eigen_solver = "lobpcg" # Revert the laplacian to its opposite to have lobpcg work laplacian *= -1 if eigen_solver == 'amg': # Use AMG to get a preconditioner and speed up the eigenvalue # problem. if not sparse.issparse(laplacian): warnings.warn("AMG works better for sparse matrices") # lobpcg needs double precision floats laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) ml = smoothed_aggregation_solver(check_array(laplacian, 'csr')) M = ml.aspreconditioner() X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() lambdas, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-12, largest=False) embedding = diffusion_map.T if norm_laplacian: embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError elif eigen_solver == "lobpcg": # lobpcg needs double precision floats laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) if n_nodes < 5 * n_components + 1: # see note above under arpack why lobpcg has problems with small # number of nodes # lobpcg will fallback to eigh, so we short circuit it if sparse.isspmatrix(laplacian): laplacian = laplacian.toarray() lambdas, diffusion_map = eigh(laplacian) embedding = diffusion_map.T[:n_components] if norm_laplacian: embedding = embedding / dd else: laplacian = _set_diag(laplacian, 1, norm_laplacian) # We increase the number of eigenvectors requested, as lobpcg # doesn't behave well in low dimension X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() lambdas, diffusion_map = lobpcg(laplacian, X, tol=1e-15, largest=False, maxiter=2000) embedding = diffusion_map.T[:n_components] if norm_laplacian: embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError embedding = _deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T
values_editions = [] liste_editions = [] for i in range(n): for j in range(i): if Adj[i][j] == 1: liste_editions.append([i, j]) for K in range(2, Nmax): try: editions = [] #print('K = ',K) n_components = K norm_laplacian = True laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) n_nodes = adjacency.shape[0] if n_nodes < 5 * n_components + 1: # see note above under arpack why lobpcg has problems with small # number of nodes # lobpcg will fallback to eigh, so we short circuit it if sparse.isspmatrix(laplacian): laplacian = laplacian.toarray() _, diffusion_map = eigh(laplacian, check_finite=False) embedding = diffusion_map.T[:n_components] if norm_laplacian: embedding = embedding / dd else:
def spectral_embedding_sb( adjacency, n_components=8, norm_laplacian=True, drop_first=True, ): """Returns spectral embeddings. Arguments --------- adjacency : array-like or sparse graph shape - (n_samples, n_samples) The adjacency matrix of the graph to embed. n_components : int The dimension of the projection subspace. norm_laplacian : bool If True, then compute normalized Laplacian. drop_first : bool Whether to drop the first eigenvector. Returns ------- embedding : array Spectral embeddings for each sample. Example ------- >>> import numpy as np >>> from speechbrain.processing import diarization as diar >>> affinity = np.array([[1, 1, 1, 0.5, 0, 0, 0, 0, 0, 0.5], ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [0.5, 0, 0, 1, 1, 1, 0, 0, 0, 0], ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0], ... [0, 0, 0, 1, 1, 1, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1], ... [0.5, 0, 0, 0, 0, 0, 1, 1, 1, 1]]) >>> embs = diar.spectral_embedding_sb(affinity, 3) >>> # Notice similar embeddings >>> print(np.around(embs , decimals=3)) [[ 0.075 0.244 0.285] [ 0.083 0.356 -0.203] [ 0.083 0.356 -0.203] [ 0.26 -0.149 0.154] [ 0.29 -0.218 -0.11 ] [ 0.29 -0.218 -0.11 ] [-0.198 -0.084 -0.122] [-0.198 -0.084 -0.122] [-0.198 -0.084 -0.122] [-0.167 -0.044 0.316]] """ # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 if not _graph_is_connected(adjacency): warnings.warn("Graph is not fully connected, spectral embedding" " may not work as expected.") laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) laplacian *= -1 vals, diffusion_map = eigsh( laplacian, k=n_components, sigma=1.0, which="LM", ) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: embedding = embedding / dd embedding = _deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T
def kind_joint(K, n_clusters, init, maxit, disp, tol, norm_laplacian): if maxit <= 0: raise ValueError('Number of iterations should be a positive number,' ' got %d instead' % maxit) if tol <= 0: raise ValueError('The tolerance should be a positive number,' ' got %d instead' % tol) if K.shape[0] != K.shape[1]: warnings.warn('Input is not an affinity matrix. Kernelize using KNN' 'graph now') X = kneighbors_graph(K, n_neighbors=5) else: X = (K + K.T) / 2 # set initial V V = spectral_embedding(X, n_components=n_clusters, drop_first=False, norm_laplacian=norm_laplacian) # set initial idx n = X.shape[0] if hasattr(init, '__array__'): idx = np.array(init).reshape(max(init.shape()), ) if idx.shape[0] != n: raise ValueError('The init should be the same as the total' 'observations, got %d instead.' % idx.shape[0]) else: km = KindAP(n_clusters=n_clusters) idx = km.fit_predict_L(V) # set rho rho = 1 / n # set history info hist = [0 for i in range(maxit)] itr = 0 for itr in range(maxit): Vp, idxp = V, idx laplacian, dd = csgraph_laplacian(X, normed=norm_laplacian, return_diag=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) laplacian *= -1 v0 = np.random.uniform(-1, 1, laplacian.shape[0]) H = sparse.csc_matrix((np.ones(n), (np.arange(n), idx)), shape=(n, n_clusters)) lambdas, diffusion_map = eigsh(laplacian + rho * sparse.csc_matrix.dot(H, H.T), k=n_clusters, sigma=1.0, which='LM', v0=v0) embedding = diffusion_map.T[n_clusters::-1] V = _deterministic_vector_sign_flip(embedding) # if norm_laplacian: # V = embedding / dd obj = rho * np.sum(sparse.csc_matrix.dot(V, H) ** 2) + np.trace( np.dot(sparse.csc_matrix.dot(V, laplacian), V.T)) hist[itr] = 0.5 * obj V = V.T ki = KindAP(n_clusters=n_clusters) idx = ki.fit_predict_L(V) # stopping criteria idxchg = sum(idx != idxp) Vrel = norm(V - Vp, 'fro') / norm(Vp, 'fro') if disp: print('iter: %3d, Obj: %6.2e, Vrel: %6.2e, idxchg: %6d' % (itr, obj, Vrel, idxchg)) if not idxchg or Vrel < tol: break return idx, V, hist[:min(maxit, itr + 1)]
def predict_k(self, affinity_matrix): """ Predict number of clusters based on the eigengap. Parameters ---------- affinity_matrix : array-like or sparse matrix, shape: (n_samples, n_samples) adjacency matrix. Each element of this matrix contains a measure of similarity between two of the data points. Returns ---------- k : integer estimated number of cluster. Note --------- If graph is not fully connected, zero component as single cluster. References ---------- A Tutorial on Spectral Clustering, 2007 Luxburg, Ulrike http://www.kyb.mpg.de/fileadmin/user_upload/files/publications/attachments/Luxburg07_tutorial_4488%5b0%5d.pdf """ """ If normed=True, L = D^(-1/2) * (D - A) * D^(-1/2) else L = D - A. normed=True is recommended. """ # normed_laplacian, dd = graph_laplacian(affinity_matrix, normed=True, return_diag=True) normed_laplacian, dd = csgraph_laplacian(affinity_matrix, normed=True, return_diag=True) laplacian = _set_diag(normed_laplacian, 1, True) """ n_components size is N - 1. Setting N - 1 may lead to slow execution time... """ n_components = affinity_matrix.shape[0] - 1 """ shift-invert mode The shift-invert mode provides more than just a fast way to obtain a few small eigenvalues. http://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html The normalized Laplacian has eigenvalues between 0 and 2. I - L has eigenvalues between -1 and 1. """ eigenvalues, eigenvectors = eigsh(-laplacian, k=n_components, which="LM", sigma=1.0, maxiter=5000) eigenvalues = -eigenvalues[::-1] # Reverse and sign inversion. max_gap = 0 gap_pre_index = 0 test = [] x_axis = [] for i in range(1, eigenvalues.size): # if len(x_axis) <= 20: x_axis.append(i) test.append(eigenvalues[i]) gap = eigenvalues[i] - eigenvalues[i - 1] if gap > max_gap: max_gap = gap gap_pre_index = i - 1 k = gap_pre_index + 1 plot(x_axis, test, '*') return k
def spectral_embedding( adjacency, *, n_components=8, eigen_solver=None, random_state=None, eigen_tol="auto", norm_laplacian=True, drop_first=True, ): """Project the sample on the first eigenvectors of the graph Laplacian. The adjacency matrix is used to compute a normalized graph Laplacian whose spectrum (especially the eigenvectors associated to the smallest eigenvalues) has an interpretation in terms of minimal number of cuts necessary to split the graph into comparably sized components. This embedding can also 'work' even if the ``adjacency`` variable is not strictly the adjacency matrix of a graph but more generally an affinity or similarity matrix between samples (for instance the heat kernel of a euclidean distance matrix or a k-NN matrix). However care must taken to always make the affinity matrix symmetric so that the eigenvector decomposition works as expected. Note : Laplacian Eigenmaps is the actual algorithm implemented here. Read more in the :ref:`User Guide <spectral_embedding>`. Parameters ---------- adjacency : {array-like, sparse graph} of shape (n_samples, n_samples) The adjacency matrix of the graph to embed. n_components : int, default=8 The dimension of the projection subspace. eigen_solver : {'arpack', 'lobpcg', 'amg'}, default=None The eigenvalue decomposition strategy to use. AMG requires pyamg to be installed. It can be faster on very large, sparse problems, but may also lead to instabilities. If None, then ``'arpack'`` is used. random_state : int, RandomState instance or None, default=None A pseudo random number generator used for the initialization of the lobpcg eigen vectors decomposition when `eigen_solver == 'amg'`, and for the K-Means initialization. Use an int to make the results deterministic across calls (See :term:`Glossary <random_state>`). .. note:: When using `eigen_solver == 'amg'`, it is necessary to also fix the global numpy seed with `np.random.seed(int)` to get deterministic results. See https://github.com/pyamg/pyamg/issues/139 for further information. eigen_tol : float, default="auto" Stopping criterion for eigendecomposition of the Laplacian matrix. If `eigen_tol="auto"` then the passed tolerance will depend on the `eigen_solver`: - If `eigen_solver="arpack"`, then `eigen_tol=0.0`; - If `eigen_solver="lobpcg"` or `eigen_solver="amg"`, then `eigen_tol=None` which configures the underlying `lobpcg` solver to automatically resolve the value according to their heuristics. See, :func:`scipy.sparse.linalg.lobpcg` for details. Note that when using `eigen_solver="amg"` values of `tol<1e-5` may lead to convergence issues and should be avoided. .. versionadded:: 1.2 Added 'auto' option. norm_laplacian : bool, default=True If True, then compute symmetric normalized Laplacian. drop_first : bool, default=True Whether to drop the first eigenvector. For spectral embedding, this should be True as the first eigenvector should be constant vector for connected graph, but for spectral clustering, this should be kept as False to retain the first eigenvector. Returns ------- embedding : ndarray of shape (n_samples, n_components) The reduced samples. Notes ----- Spectral Embedding (Laplacian Eigenmaps) is most useful when the graph has one connected component. If there graph has many components, the first few eigenvectors will simply uncover the connected components of the graph. References ---------- * https://en.wikipedia.org/wiki/LOBPCG * :doi:`"Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method", Andrew V. Knyazev <10.1137/S1064827500366124>` """ adjacency = check_symmetric(adjacency) try: from pyamg import smoothed_aggregation_solver except ImportError as e: if eigen_solver == "amg": raise ValueError( "The eigen_solver was set to 'amg', but pyamg is not available." ) from e if eigen_solver is None: eigen_solver = "arpack" elif eigen_solver not in ("arpack", "lobpcg", "amg"): raise ValueError("Unknown value for eigen_solver: '%s'." "Should be 'amg', 'arpack', or 'lobpcg'" % eigen_solver) random_state = check_random_state(random_state) n_nodes = adjacency.shape[0] # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 if not _graph_is_connected(adjacency): warnings.warn( "Graph is not fully connected, spectral embedding may not work as expected." ) laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) if (eigen_solver == "arpack" or eigen_solver != "lobpcg" and (not sparse.isspmatrix(laplacian) or n_nodes < 5 * n_components)): # lobpcg used with eigen_solver='amg' has bugs for low number of nodes # for details see the source code in scipy: # https://github.com/scipy/scipy/blob/v0.11.0/scipy/sparse/linalg/eigen # /lobpcg/lobpcg.py#L237 # or matlab: # https://www.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m laplacian = _set_diag(laplacian, 1, norm_laplacian) # Here we'll use shift-invert mode for fast eigenvalues # (see https://docs.scipy.org/doc/scipy/reference/tutorial/arpack.html # for a short explanation of what this means) # Because the normalized Laplacian has eigenvalues between 0 and 2, # I - L has eigenvalues between -1 and 1. ARPACK is most efficient # when finding eigenvalues of largest magnitude (keyword which='LM') # and when these eigenvalues are very large compared to the rest. # For very large, very sparse graphs, I - L can have many, many # eigenvalues very near 1.0. This leads to slow convergence. So # instead, we'll use ARPACK's shift-invert mode, asking for the # eigenvalues near 1.0. This effectively spreads-out the spectrum # near 1.0 and leads to much faster convergence: potentially an # orders-of-magnitude speedup over simply using keyword which='LA' # in standard mode. try: # We are computing the opposite of the laplacian inplace so as # to spare a memory allocation of a possibly very large array tol = 0 if eigen_tol == "auto" else eigen_tol laplacian *= -1 v0 = _init_arpack_v0(laplacian.shape[0], random_state) _, diffusion_map = eigsh(laplacian, k=n_components, sigma=1.0, which="LM", tol=tol, v0=v0) embedding = diffusion_map.T[n_components::-1] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd except RuntimeError: # When submatrices are exactly singular, an LU decomposition # in arpack fails. We fallback to lobpcg eigen_solver = "lobpcg" # Revert the laplacian to its opposite to have lobpcg work laplacian *= -1 elif eigen_solver == "amg": # Use AMG to get a preconditioner and speed up the eigenvalue # problem. if not sparse.issparse(laplacian): warnings.warn("AMG works better for sparse matrices") laplacian = check_array(laplacian, dtype=[np.float64, np.float32], accept_sparse=True) laplacian = _set_diag(laplacian, 1, norm_laplacian) # The Laplacian matrix is always singular, having at least one zero # eigenvalue, corresponding to the trivial eigenvector, which is a # constant. Using a singular matrix for preconditioning may result in # random failures in LOBPCG and is not supported by the existing # theory: # see https://doi.org/10.1007/s10208-015-9297-1 # Shift the Laplacian so its diagononal is not all ones. The shift # does change the eigenpairs however, so we'll feed the shifted # matrix to the solver and afterward set it back to the original. diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver( check_array(laplacian, accept_sparse="csr")) laplacian -= diag_shift M = ml.aspreconditioner() # Create initial approximation X to eigenvectors X = random_state.standard_normal(size=(laplacian.shape[0], n_components + 1)) X[:, 0] = dd.ravel() X = X.astype(laplacian.dtype) tol = None if eigen_tol == "auto" else eigen_tol _, diffusion_map = lobpcg(laplacian, X, M=M, tol=tol, largest=False) embedding = diffusion_map.T if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError if eigen_solver == "lobpcg": laplacian = check_array(laplacian, dtype=[np.float64, np.float32], accept_sparse=True) if n_nodes < 5 * n_components + 1: # see note above under arpack why lobpcg has problems with small # number of nodes # lobpcg will fallback to eigh, so we short circuit it if sparse.isspmatrix(laplacian): laplacian = laplacian.toarray() _, diffusion_map = eigh(laplacian, check_finite=False) embedding = diffusion_map.T[:n_components] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd else: laplacian = _set_diag(laplacian, 1, norm_laplacian) # We increase the number of eigenvectors requested, as lobpcg # doesn't behave well in low dimension and create initial # approximation X to eigenvectors X = random_state.standard_normal(size=(laplacian.shape[0], n_components + 1)) X[:, 0] = dd.ravel() X = X.astype(laplacian.dtype) tol = None if eigen_tol == "auto" else eigen_tol _, diffusion_map = lobpcg(laplacian, X, tol=tol, largest=False, maxiter=2000) embedding = diffusion_map.T[:n_components] if norm_laplacian: # recover u = D^-1/2 x from the eigenvector output x embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError embedding = _deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T
def spectral_embedding(adjacency, n_components=8, random_state=np.random.RandomState(), eigen_tol=0.0, norm_laplacian=True, drop_first=True): n_nodes = adjacency.shape[0] # Whether to drop the first eigenvector if drop_first: n_components = n_components + 1 print('solving eigenvectors...') laplacian, dd = csgraph_laplacian(adjacency, normed=norm_laplacian, return_diag=True) laplacian = check_array(laplacian, dtype=np.float64, accept_sparse=True) laplacian = set_diag(laplacian, 1, norm_laplacian) diag_shift = 1e-5 * sparse.eye(laplacian.shape[0]) laplacian += diag_shift ml = smoothed_aggregation_solver(check_array(laplacian, 'csr')) laplacian -= diag_shift M = ml.aspreconditioner() X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() for attempt_num in range(1, 4): try: _, diffusion_map = lobpcg(laplacian, X, M=M, tol=1.e-5, largest=False) continue except: print( 'LOBPCG eigensolver failed, attempting to recondition on different eigenvector approximation (attempt {}/3)' .format(attempt_num)) X = random_state.rand(laplacian.shape[0], n_components + 1) X[:, 0] = dd.ravel() embedding = diffusion_map.T if norm_laplacian: embedding = embedding / dd if embedding.shape[0] == 1: raise ValueError # laplacian = _set_diag(laplacian, 1, norm_laplacian) # laplacian *= -1 # v0 = random_state.uniform(-1, 1, laplacian.shape[0]) # lambdas, diffusion_map = eigsh(laplacian, k=n_components, # sigma=1.0, which='LM', # tol=eigen_tol, v0=v0) # embedding = diffusion_map.T[n_components::-1] # if norm_laplacian: # embedding = embedding / dd embedding = deterministic_vector_sign_flip(embedding) if drop_first: return embedding[1:n_components].T else: return embedding[:n_components].T
def generate_A_spec_cluster(num_unknowns, add_diag=False, num_clusters=2, unit_std=False, dim=2, dist='gauss', gamma=None, distance=False, return_x=False, n_neighbors=10): """ Similar params to https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html With spectral clustering """ centers = num_clusters if num_clusters == 2 and not unit_std: cluster_std = [ 1.0, 2.5 ] # looks good, sometimes graph is connected, sometimes not size_factor = 1 else: cluster_std = 1.0 size_factor = num_unknowns / 1000 center_box = [-10 * size_factor, 10 * size_factor] norm_laplacian = True if dist == 'gauss': X, y = datasets.make_blobs(n_samples=num_unknowns, n_features=dim, centers=centers, cluster_std=cluster_std, center_box=center_box) elif dist == 'moons': X, y = datasets.make_moons(n_samples=num_unknowns, noise=.05) elif dist == 'circles': X, y = datasets.make_circles(n_samples=num_unknowns, noise=.05, factor=.5) elif dist == 'random': X = np.random.rand(num_unknowns, dim) X = StandardScaler().fit_transform(X) if distance: mode = 'distance' else: mode = 'connectivity' connectivity = kneighbors_graph(X, n_neighbors=n_neighbors, mode=mode, include_self=True) if gamma is not None: np.exp(-(gamma * connectivity.data)**2, out=connectivity.data) affinity_matrix = 0.5 * (connectivity + connectivity.T) laplacian, dd = csgraph_laplacian(affinity_matrix, normed=norm_laplacian, return_diag=True) # set diagonal to 1 if normed if norm_laplacian: diag_idx = (laplacian.row == laplacian.col) laplacian.data[diag_idx] = 1 if add_diag: small_diag = scipy.sparse.diags( np.random.uniform(0, 0.02, num_unknowns)) laplacian += small_diag if return_x: return X, laplacian else: return laplacian