示例#1
0
def hitting_probability(T, target):
    r"""
    Computes the hitting probabilities for all states to the target states.

    The hitting probability of state i to the target set A is defined as the minimal,
    non-negative solution of:

    .. math::
        h_i^A &= 1                    \:\:\:\:  i\in A \\
        h_i^A &= \sum_j p_{ij} h_i^A  \:\:\:\:  i \notin A

    Parameters
    ----------
    T : (M, M) ndarray or scipy.sparse matrix
        Transition matrix
    target: array_like
        List of integer state labels for the target set

    Returns
    -------
    h : ndarray(n)
        a vector with hitting probabilities
    """
    T = ensure_number_array(T, ndim=2)
    target = ensure_integer_array(target, ndim=1)
    if _issparse(T):
        _showSparseConversionWarning()  # currently no sparse implementation!
        return dense.hitting_probability.hitting_probability(T.toarray(), target)
    else:
        return dense.hitting_probability.hitting_probability(T, target)
示例#2
0
def expectation_sensitivity(T, a):
    r"""Sensitivity of expectation value of observable A=(a_i).

    Parameters
    ----------
    T : (M, M) ndarray
        Transition matrix
    a : (M,) ndarray
        Observable, a[i] is the value of the observable at state i.

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix of the expectation value.

    """
    # check input
    T = ensure_number_array(T, ndim=2)
    a = ensure_floating_array(a, ndim=1)
    # go
    if _issparse(T):
        _showSparseConversionWarning()
        return dense.sensitivity.expectation_sensitivity(T.toarray(), a)
    else:
        return dense.sensitivity.expectation_sensitivity(T, a)
示例#3
0
def mfpt_sensitivity(T, target, i):
    r"""Sensitivity matrix of the mean first-passage time from specified state.

    Parameters
    ----------
    T : (M, M) ndarray
        Transition matrix
    target : int or list
        Target state or set for mfpt computation
    i : int
        Compute the sensitivity for state `i`

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix for specified state

    """
    # check input
    T = ensure_number_array(T, ndim=2)
    target = ensure_integer_array(target, ndim=1)
    # go
    if _issparse(T):
        _showSparseConversionWarning()
        mfpt_sensitivity(T.todense(), target, i)
    else:
        return dense.sensitivity.mfpt_sensitivity(T, target, i)
示例#4
0
def stationary_distribution_sensitivity(T, j):
    r"""Sensitivity matrix of a stationary distribution element.

    Parameters
    ----------
    T : (M, M) ndarray
       Transition matrix (stochastic matrix).
    j : int
        Index of stationary distribution element
        for which sensitivity matrix is computed.


    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix for the specified element
        of the stationary distribution.

    """
    T = ensure_number_array(T, ndim=2)
    if _issparse(T):
        _showSparseConversionWarning()
        stationary_distribution_sensitivity(T.todense(), j)
    else:
        return dense.sensitivity.stationary_distribution_sensitivity(T, j)
示例#5
0
def eigenvector_sensitivity(T, k, j, right=True):
    r"""Sensitivity matrix of a selected eigenvector element.

    Parameters
    ----------
    T : (M, M) ndarray
        Transition matrix (stochastic matrix).
    k : int
        Eigenvector index
    j : int
        Element index
    right : bool
        If True compute for right eigenvector, otherwise compute for left eigenvector.

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix for the j-th element of the k-th eigenvector.

    """
    T = ensure_number_array(T, ndim=2)
    if _issparse(T):
        _showSparseConversionWarning()
        eigenvector_sensitivity(T.todense(), k, j, right=right)
    else:
        return dense.sensitivity.eigenvector_sensitivity(T, k, j, right=right)
示例#6
0
def _check_k(T, k):
    # ensure k is not exceeding shape of transition matrix
    if k is None:
        return
    n = T.shape[0]
    if _issparse(T):
        # for sparse matrices we can compute an eigendecomposition of n - 1
        new_k = min(n - 1, k)
    else:
        new_k = min(n, k)
    if new_k < k:
        warnings.warn('truncated eigendecomposition to contain %s components' % new_k, category=UserWarning)
    return new_k
示例#7
0
def _pcca_object(T, m):
    """
    Constructs the pcca object from dense or sparse

    Parameters
    ----------
    T : (n, n) ndarray or scipy.sparse matrix
        Transition matrix
    m : int
        Number of metastable sets

    Returns
    -------
    pcca : PCCA
        PCCA object
    """
    if _issparse(T):
        _showSparseConversionWarning()
        T = T.toarray()
    T = ensure_number_array(T, ndim=2, accept_sparse=False)
    return dense.pcca.PCCA(T, m)
示例#8
0
def timescale_sensitivity(T, k):
    r"""Sensitivity matrix of a specified time-scale.

    Parameters
    ----------
    T : (M, M) ndarray
        Transition matrix
    k : int
        Compute sensitivity matrix for the k-th time-scale.

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix for the k-th time-scale.

    """
    T = ensure_number_array(T, ndim=2)
    if _issparse(T):
        _showSparseConversionWarning()
        timescale_sensitivity(T.todense(), k)
    else:
        return dense.sensitivity.timescale_sensitivity(T, k)
示例#9
0
def eigenvalue_sensitivity(T, k):
    r"""Sensitivity matrix of a specified eigenvalue.

    Parameters
    ----------
    T : (M, M) ndarray
        Transition matrix
    k : int
        Compute sensitivity matrix for k-th eigenvalue

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix for k-th eigenvalue.

    """
    T = ensure_number_array(T, ndim=2)
    if _issparse(T):
        _showSparseConversionWarning()
        eigenvalue_sensitivity(T.todense(), k)
    else:
        return dense.sensitivity.eigenvalue_sensitivity(T, k)
示例#10
0
def committor_sensitivity(T, A, B, i, forward=True):
    r"""Sensitivity matrix of a specified committor entry.

    Parameters
    ----------

    T : (M, M) ndarray
        Transition matrix
    A : array_like
        List of integer state labels for set A
    B : array_like
        List of integer state labels for set B
    i : int
        Compute the sensitivity for committor entry `i`
    forward : bool (optional)
        Compute the forward committor. If forward
        is False compute the backward committor.

    Returns
    -------
    S : (M, M) ndarray
        Sensitivity matrix of the specified committor entry.

    """
    # check inputs
    T = ensure_number_array(T, ndim=2)
    A = ensure_integer_array(A, ndim=1)
    B = ensure_integer_array(B, ndim=1)
    if _issparse(T):
        _showSparseConversionWarning()
        committor_sensitivity(T.todense(), A, B, i, forward)
    else:
        if forward:
            return dense.sensitivity.forward_committor_sensitivity(T, A, B, i)
        else:
            return dense.sensitivity.backward_committor_sensitivity(T, A, B, i)