def get_pred(x0, X_train0, n=20): xs = [ np.insert(x[lenOfFre:lenOfFre + 21], 0, dis(x0 - x0[10], x[0:lenOfFre] - x[10])) for x in X_train0 ] xs1 = np.asarray(xs) #dis2= (dis(xtrain[1,0:lenOfFre],x[0:lenOfFre]) for x in xtrain[0:5,:]) ind = np.lexsort((xs1[:, 1], xs1[:, 0])) xs_sort = xs1[ind] xtrain_1 = xs_sort[0:n] #xtrain_1 = xs1 #s_weight = [1/x for x in xs1[0,:]] xx = xtrain_1[:, 1:17] # clf = linear_model.LinearRegression() xp5 = np.zeros(5) for i in range(1, 6): yy = xtrain_1[:, 16 + i] #clf = svm.SVR(C=10000) clf = linear_model.LinearRegression() clf.fit(xx, yy) xp0 = X_valid0[nx, lenOfFre:lenOfFre + 16] xp = clf.predict(xp0) xp5[i - 1] = xp #print xp ,X_valid0[nx,lenOfFre+15+i] return xp5
def check_link(v, s, threshold): print('v shape: ', v.shape) print('s shape: ', s.shape) res = dis(v, s) < threshold if res.all(): return True else: return False
def get_treshold(vecs): mu = float(input('Enter the threshold hyperparameter mu: ')) sample = vecs[np.random.choice(vecs.shape[0], 500, replace=False), :] distances = [] len = sample.shape[1] for i in range(len): for j in range(len): distances.append(dis(sample[i], sample[j])) res = np.mean(array(distances)) print('The average distance of sample: ', res) res /= mu return res
def check_link(v, s, threshold): res = dis(v, s) < np.sqrt(threshold) if res.all(): return True else: return False
def check_link_by_distance(v, s, threshold): res = dis(v, s) < threshold if res.all(): return True else: return False