示例#1
0
def heatrate(lw, dw, i, f):
    rw = dw / 2
    rate = [0, 0]
    Bx = fBcalc.BxSol(i, rc, rw)
    #i,a,r in order where i= current, a= radius of coil, r= distance from center
    rho_cg = 3.57 * 10**(3)
    rho_si = 3.57 * 10**(
        -8
    )  #Reference https://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html
    # Calculation for derived variables
    rw = rw * 100
    ur = 1
    u = ur * 4 * math.pi * 10**(-7)
    k = math.sqrt((8 * (math.pi**2) * f * ur) / rho_cg)
    #print(k*rw)
    Q = 2*(special.ber(k*rw)*special.berp(k*rw) + special.bei(k*rw)*special.beip(k*rw))\
        /(k*rw)/((special.ber(k*rw))**2 + (special.bei(k*rw))**2)
    rw = rw / 100
    new_k = math.sqrt(2 * math.pi * u * f / rho_si)
    #print(new_k*rw)
    aw = math.pi * rw * rw
    beta = math.pi * f * aw * Q / (u)
    rate[0] = beta * (float(Bx.subs(x, lc / 2)**
                            2)) / (2695 * math.pi * rw * rw * 952.177)
    rate[1] = beta * (
        float(Bx.subs(x, (lc - lw) / 2)**2 + Bx.subs(x, (lc + lw) / 2)**2) /
        2) / (2700 * math.pi * rw * rw * 929)
    return rate
示例#2
0
def calc_Zc(f, Rd, r, mu_r, rho):

    n = np.shape(Rd)[0]
    Zc = np.empty((n), np.complex128)

    for i in range(n):
        m = np.sqrt(2 * np.pi * f * mu_r[i] * 4 * np.pi * 10**-7 / rho[i])
        mr = m * r[i]
        #     print(mr)
        A = special.ber(mr) * special.beip(mr) - special.bei(
            mr) * special.berp(mr)
        B = special.bei(mr) * special.beip(mr) + special.ber(
            mr) * special.berp(mr)
        C = special.berp(mr)**2 + special.beip(mr)**2
        # print('B/C=',B/C,'A/C=',A/C)
        # print('A/C=',A/C)

        alphaR = (mr / 2) * (A / C)
        alphaL = (4 / mr) * (B / C)
        #     print('alphaL = ',alphaL)
        Rc = Rd[i] * alphaR
        Xc = np.pi * f * 10**-4 * mu_r[i] * alphaL
        Zc[i] = Rc + 1j * Xc
        print(Zc[i])

    return Zc
示例#3
0
def power(lw, dw, i, f):

    rw = dw / 2
    Bx = fBcalc.BxSol(i, rc, rw)
    #i,a,r in order where i= current, a= radius of coil, r= distance from center
    rho_cg = 3.25 * 10**(3)
    rho_si = 3.25 * 10**(
        -8
    )  #Reference https://www.engineeringtoolbox.com/resistivity-conductivity-d_418.html
    # Calculation for derived variables
    rw = rw * 100
    ur = 1
    u = ur * 4 * math.pi * 10**(-7)
    k = math.sqrt((8 * (math.pi**2) * f * ur) / rho_cg)
    #print(k*rw)
    Q = 2*(special.ber(k*rw)*special.berp(k*rw) + special.bei(k*rw)*special.beip(k*rw))\
        /(k*rw)/((special.ber(k*rw))**2 + (special.bei(k*rw))**2)
    rw = rw / 100
    print(k)
    new_k = math.sqrt(2 * math.pi * u * f / rho_si)
    print(new_k)
    aw = math.pi * rw * rw
    beta = math.pi * f * aw * Q / (u)
    #beta is a constant and total power is beta times Bx**2 integrated
    #over the length of the workpiece

    # Bx involves ellipticl integrals of the first kind and the second kind and
    # its analytical integral is not possible using python

    # Approach: Evaluate Bx at a set number of points and implement different types of
    # numerical integration methods like simpsons, trapezoidal etc.

    # Maybe define a good criteria of how many points to take versus the computation power consumed for evaluating the numerical integrals
    # Origin redefined to the center of end coil of the solenoid

    # Defining linspace in such a way that the distance between two points in the workpiece remains fixed to an order where Bx doesn't change significantly
    # i.e. lw/(number of points) = constant -- this is not the best way because derivative of Bx is large near the end of coil and linspace is constant
    # distance between each successive x points be 0.0001 m

    num_pts = int(lw / 0.0003)
    x_arr = linspace((lc - lw) / 2, (lc + lw) / 2, num=num_pts)
    Bx_sq_arr = np.empty(num_pts, dtype='float')

    for i in range(num_pts):
        temp = Bx.subs(x, x_arr[i])
        Bx_sq_arr[i] = temp**2

    P = beta * trap(Bx_sq_arr, x_arr)
    rate = P / (lw * 2700 * math.pi * rw * rw * 910)

    return rate
示例#4
0
def calc_Zc1(f, Rd, r, mu_r, rho):

    n = np.shape(Rd)[0]
    Zc = np.empty((n), np.complex128)
    for i in range(n):
        m = np.sqrt(2 * np.pi * f * mu_r[i] * 4 * np.pi * 10**-7 / rho[i])
        mr = m * r[i]
        #    print(mr)
        a = special.ber(mr) + 1j * special.bei(mr)
        b = special.berp(mr) + 1j * special.beip(mr)
        c = 1j * a / b
        #    print('a=',a)
        #    print('b=',b)
        #    print('c=',c)

        alphaR = (mr / 2) * np.real(c)
        alphaL = (4 / mr) * np.imag(c)
        #    print('alphaL = ',alphaL)
        Rc = Rd[i] * alphaR
        Xc = np.pi * f * 10**-4 * mu_r[i] * alphaL
        Zc[i] = Rc + 1j * Xc
        print(Zc[i])

    return Zc
示例#5
0
文件: calc.py 项目: qed11/thernalDiff
    lol = abs(exp[i] - result)
    #print(np.amin(five_min))
    #print("min val",np.amin(lol))
    index = np.where(lol == np.amin(lol))
    return index[0][0]


if __name__ == '__main__':
    data = read('thernalDiff5\phaseDiff.txt')
    phi = data / times * 2 * np.pi * -1
    print("phi is", phi)
    ratio = np.tan(phi)  #tan(phi)
    print(ratio)

    a = np.linspace(0, 3, 100000)
    result = fnc.bei(a) / fnc.ber(a)  #the bernoulli equations

    plt.plot(a, result)
    plt.ylim(-10, 10)
    index = []

    for i in range(len(ratio)):
        index.append(get_intersect(result, ratio, i))  #get interseciton

    x = a[index]
    print('x vals', x)
    #get x value

    plt.scatter(x, result[index])  #validate on plot
    a = np.linspace(0, 10, 100000)
    result = fnc.bei(a) / fnc.ber(a)  #the bernoulli equations
示例#6
0
import numpy as np
from scipy import linalg
from scipy import constants as C
from scipy import special
conductors_equivalent_radius = 0.001 * np.array([
    6.18, 4.74, 9.03, 49.65, 49.65, 7.22, 4.055, 6.18, 4.74, 9.03, 49.65,
    49.65, 7.22, 4.055
])
conductors_rho = 10**-10 * np.array([
    172.41, 0.185, 0.29731, 2.1121, 2.1121, 0.029667, 0.19264, 172.41, 0.185,
    0.29731, 2.1121, 2.1121, 0.029667, 0.19264
])
f = 50
mu = 4 * np.pi * 10**-7
r = conductors_equivalent_radius
rho = conductors_rho
m = np.sqrt(2 * np.pi * f * mu / rho)
print(rho)
print(r)
print(m)
A1 = m * r / 2
A2 = 4 / (m * r)
B1 = special.ber(m * r)
B2 = special.bei(m * r)
C1 = special.berp(m * r)
C2 = special.beip(m * r)
aR = A1 * ((B1 * C2 - C1 * B2) / (C1**2 + C2**2))
aL = A2 * ((B2 * C2 - C1 * B1) / (C1**2 + C2**2))
print(aR)
print(aL)