示例#1
0
    def __init__(self, polygon, center=0, n_node=8, method='krylov'):
        """
        polygon = target polygon of SC transformation
        center = point in polygon where disk center is mapped to
        n_node = number of nodes for gaussian quadrature
        method = used for root finding
        """
        p = polygon.copy()
        p.roll()

        w = p.vertex
        beta = p.angle
        n = len(w)

        k_rat = p.FiniteEdge([0, n - 1], n - 3)
        k_fix = p.InfVertex()
        if len(k_fix) == 0: k_fix = [1]

        node = np.empty([n + 1, n_node])
        weight = np.empty_like(node)

        for k in range(n):
            if np.isinf(w[k]): continue
            (node[k], weight[k]) = roots_jacobi(n_node, 0, -beta[k])

        (node[n], weight[n]) = roots_legendre(n_node)

        self.prevertex = np.empty(n, dtype=np.complex)
        self.vertex = w
        self.angle = beta
        self.node = node
        self.weight = weight
        self.A = center
        self.map = np.vectorize(self.map)
        self.invmap = np.vectorize(self.invmap)

        y = np.zeros(n - 1)
        f = np.empty_like(y)

        def scfun(y):
            z = self.yztran(y)
            C = (center - w[-1]) / self.zquad(1, 0, n - 1)

            i = 0
            for k in k_fix:
                q = w[k - 1] - center + C * self.zquad(z[k - 1], 0, k - 1)
                f[i] = np.real(q)
                f[i + 1] = np.imag(q)
                i += 2

            for k in k_rat:
                q = self.zquad(z[k], z[k + 1], k, k + 1)
                f[i] = np.abs(w[k + 1] - w[k]) - np.abs(C * q)
                i += 1

            self.C = C
            return f

        sol = root(scfun, y, method=method, options={'disp': True})
        self.yztran(sol.x)
示例#2
0
def zernike_quad(nmax, mmax):
    '''
    Construct a list of quadrature points and associated weights. These must be adapted to compute
    scalar products involved in the analysis (Zernike transform), hence must have >= 2mmax+1 radial branches,
    and >= nmax+1 radial points (which allows integration of polynomials up to degree 2nmax+1). Note that
    the radial measure is proportional to radius for Zernike polynomials orthogonality, hence the shifted Jacobi polynomial
    P_{nmax+1}^{0,1}(2r-1) is chosen for the radial quadrature.
    '''

    # First define radial points and weights
    from scipy.special import roots_jacobi

    xx, w8 = roots_jacobi(nmax + 1, 0, 1)  # xx in [-1,1]
    r = (xx + 1.) / 2.
    theta = np.arange(2 * mmax + 1) / (2. * mmax + 1.) * 2. * np.pi
    ctheta = np.cos(theta)
    stheta = np.sin(theta)

    X = np.outer(r, ctheta).flatten()
    Y = np.outer(r, stheta).flatten()
    # Normalize weights: factor of 4 for shifted polynomial variable change, factor of (2*mmax+1)/2. for angular integration
    w8 /= 2. * (2 * mmax + 1.)
    W = np.outer(w8, np.ones_like(ctheta)).flatten()

    return X, Y, W
示例#3
0
def jacobi_quad(nmax):

    # Here 2 = d-1 = 3-1 in 3D
    xx, ww = ss.roots_jacobi(nmax + 1, 0, 2)
    t = (xx + 1.) / 2.

    return (t, ww)
示例#4
0
def get_GLquadrature(k, a=0., b=1., quad='Gauss-Legendre'):
    """Get the weights and points of the k-th order Gauss-Legendre quadrature.
    Return the points shifted in (a, b)."""

    bmao2 = .5 * (b - a)
    if quad == 'Gauss-Legendre':
        # Gauss-Legendre (default interval is [-1, 1])
        x, w = np.polynomial.legendre.leggauss(k)
    elif quad == 'Gauss-Jacobi':
        # Gauss-Jacobi, overcoming the singularity of Ki3 at 0 (tangent)
        # warning: weights and points differ from Hebert's book!
        # the first parameters used by Hebert is unknown
        x, w = roots_jacobi(k, 1, 0)
    elif quad == 'Rectangular':
        x, w = np.linspace(-1., 1., k + 1), np.full(k, 2. / k)
        x = (x[1:] + x[:-1]) / 2.
    else:
        raise ValueError("Unknown type of numerical quadrature.")

    # Translate x values from the interval [-1, 1] to [a, b]
    ## return (x + 1) * bmao2 + a, w * bmao2
    c = 1 - x
    if quad == 'Gauss-Jacobi':
        c *= .5 * (1 - x)
    return b - c * bmao2, w * bmao2
示例#5
0
    def __init__(self, polygon, n_node=8, method='krylov'):
        """
        polygon = target polygon of SC transformation
        n_node = number of nodes for gaussian quadrature
        method = used for root finding
        """
        if np.any(np.isinf(polygon.vertex)):
            print('infinite vertex is not allowed'); exit()

        p = polygon.copy()
        p.flip()
        p.roll(1)

        w = p.vertex
        b = p.angle
        b[b==-1] = 1
        n = len(w)

        node = np.empty([n+1, n_node])
        weight = np.empty_like(node)

        for k in range(n):
            if np.isfinite(w[k]):
                (node[k], weight[k]) = roots_jacobi(n_node, 0, b[k])

        (node[n], weight[n]) = roots_legendre(n_node)

        self.prevertex = np.empty(n, dtype=np.complex)
        self.vertex = w
        self.angle = b
        self.node = node
        self.weight = weight
        self.map = np.vectorize(self.map)

        y = np.zeros(n-1)
        f = np.empty_like(y)

        def scfun(y):
            z = self.yztran(y)
            C = (w[-1] - w[0])/self.zquad(z[0], z[-1], 0, n-1)

            for k in range(n-3):
                q = self.zquad(z[k], z[k+1], k, k+1)
                f[k] = np.abs(w[k+1] - w[k]) - np.abs(C*q)
 
            r = np.sum(b/z)
            f[n-3] = np.real(r)
            f[n-2] = np.imag(r)

            self.C = C
            return f

        sol = root(scfun, y, method=method, options={'disp': True})
        self.yztran(sol.x)
示例#6
0
文件: kirch.py 项目: tt-nakamura/jet
    def __init__(self, z, n_node=8, method='krylov'):
        """
        z = vertices as complex numbers on boundary
        n_node = number of nodes for gaussian quadrature
        method = used for root finding
        """
        if len(z)<2:
            print('there must be 2 or more vertices'); exit()
        if len(z)==2:
            z.insert(1, (z[0]+z[1])/2)

        n = len(z) - 1

        beta = np.empty(n+1)
        node = np.empty([n+1, n_node])
        weight = np.empty_like(node)

        (node[n], weight[n]) = roots_legendre(n_node)
        (node[0], weight[0]) = (node[n], weight[n])
        gamma = np.angle(z[1] - z[0])/np.pi

        for k in range(1,n):
            beta[k] = np.angle(z[k+1] - z[k])/np.pi - gamma
            beta[k] = (beta[k] + 1)%2 - 1
            if beta[k]-1 > 1.e-8: beta[k] = -1

            gamma += beta[k]
            (node[k], weight[k]) = roots_jacobi(n_node, 0, -beta[k])

        self.prevertex = np.empty(n+1, dtype=np.complex)
        self.prevertex[0] = -1
        self.vertex = np.array(z, dtype=np.complex)
        self.angle = beta
        self.node = node
        self.weight = weight
        self.reflect = False
        self.map = np.vectorize(self.map)

        y = np.zeros(n-1)
        f = np.empty_like(y)

        def kfun(y):
            x = self.yxtran(y)
            C = (z[1] - z[0])/self.xquad(x[0], x[1], 0, 1)

            for k in range(1,n):
                q = self.xquad(x[k], x[k+1], k, k+1)
                f[k-1] = np.abs(z[k+1] - z[k]) - np.abs(C*q)

            self.C = C
            return f

        sol = root(kfun, y, method=method, options={'disp': True})
        self.yxtran(sol.x)
示例#7
0
文件: bases.py 项目: mstf1985/shenfun
 def points_and_weights(self,
                        N=None,
                        map_true_domain=False,
                        weighted=True,
                        **kw):
     if N is None:
         N = self.N
     assert self.quad == "JG"
     points, weights = roots_jacobi(N, 0, 0)
     if map_true_domain is True:
         points = self.map_true_domain(points)
     return points, weights
示例#8
0
def jacobz(n, alpha, beta):
    """
    compute zeros jacobi polynomial P_n^{alpha,beta}
    :param n: order of jacobi polynomial, integer
    :param alpha: parameter, alpha > -1
    :param beta: parameter, beta > -1
    :return: zeros of jacobi polynomials
    """
    if n <= 0:
        return None
    z, _ = roots_jacobi(n, alpha, beta)
    return z
示例#9
0
 def points_and_weights(self,
                        N=None,
                        map_true_domain=False,
                        weighted=True,
                        **kw):
     if N is None:
         N = self.shape(False)
     assert self.quad == "JG"
     points, weights = roots_jacobi(N, self.alpha + 1, self.beta + 1)
     if map_true_domain is True:
         points = self.map_true_domain(points)
     return points, weights
示例#10
0
def zwgj(n, alpha, beta):
    """
    compute Gauss-Jacobi quadrature points and weights associated with
    polynomial P_n^{alpha,beta}
    :param n: order of Jacobi polynomial
    :param alpha: parameter, alpha > -1
    :param beta: parameter, beta > -1
    :return: tuple (z,w), where z contains quadrature points, w contains weights
    """
    if n <= 0:
        return None, None
    else:
        return roots_jacobi(n, alpha, beta)
示例#11
0
def gauss_jacobi(n, alpha, beta, lower=-1, upper=1):
    '''
    Gauss-Jacobi quadrature:
    
    A rule of order 2*n-1 on the interval [-1, 1] with respect to
    the weight function w(x) = (1-x)**alpha*(1+x)**beta.
    '''
    nodes, weights = special.roots_jacobi(n, alpha, beta)
    if lower != -1 or upper != 1:
        nodes = (upper+lower)/2 + (upper-lower)/2*nodes
        weights = (upper-lower)/2*weights
    
    return nodes, weights
示例#12
0
def cumulative_sfs(k1: int,
                   k2: int,
                   n: int,
                   c: float,
                   t: float,
                   theta: float,
                   m_max: int,
                   order: int = None) -> float:
    """Compute the CDF of the expected joint site frequency spectrum.

    Parameters
    ----------
    k1 : int
        the allele count in population 1
    k2 : int
        the allele count in population 2
    n : int
        the sample size in each population
    c : float
        the admixture proportion in the present
    t : float
        the population-scaled split time
    theta : float
        the population-scaled mutation rate
    m_max : int
        the largest basis function to compute
    order : int, optional
        the quadrature order (default=2n)

    Returns
    -------
    float

    """
    m = np.arange(m_max + 1)
    lambdas = jacobi_eigenval(m, theta)
    norms = jacobi_norm(m, theta)
    # The jacobi_norm(0, theta) scales the density to integrate to 1
    weights = np.exp(-2 * lambdas * t) / norms / jacobi_norm(0, theta)

    if order is None:
        order = 2 * n
    x, w = roots_jacobi(order, theta - 1, theta - 1)
    x = (x + 1) / 2
    w /= 2**(2 * theta - 1)
    W = w * w[:, np.newaxis]

    evals = __integrand(x, x[:, np.newaxis], k1, k2, n, c, t, theta, m,
                        weights)
    return np.sum(W * evals)
示例#13
0
def gll(n):
    """Compute the points and weights of the Gouss-Lenendre-Lobbato quadrature

    Parameters
    ----------
        n, int
        The number of points.

    """
    # Special case
    if n == 2:
        return np.array([-1, 1]), np.array([1, 1])

    x, w = roots_jacobi(n - 2, 1, 1)
    for i in range(x.size):
        w[i] /= 1 - x[i]**2

    x = np.append(-1, np.append(x, 1))
    w = np.append(2 / (n * (n - 1)), np.append(w, 2 / (n * (n - 1))))
    return x, w
示例#14
0
def gauss_lobatto_jacobi_weights(n, a, b):
    X = roots_jacobi(n - 2, a + 1, b + 1)[0]

    Wl = (b + 1) * 2**(a + b + 1) * gamma(a + n) * gamma(b + n) / (
        (n - 1) * gamma(n) * gamma(a + b + n + 1) *
        (jacobi_polynomial(n - 1, a, b, -1)**2))

    W = 2**(a + b + 1) * gamma(a + n) * gamma(b + n) / (
        (n - 1) * gamma(n) * gamma(a + b + n + 1) *
        (jacobi_polynomial(n - 1, a, b, X)**2))

    Wr = (a + 1) * 2**(a + b + 1) * gamma(a + n) * gamma(b + n) / (
        (n - 1) * gamma(n) * gamma(a + b + n + 1) *
        (jacobi_polynomial(n - 1, a, b, 1)**2))

    W = np.append(W, Wr)
    W = np.append(Wl, W)
    X = np.append(-1, X)
    X = np.append(X, 1)
    return [X, W]
示例#15
0
def GaussLobattoJacobiWeights(Q: int, a, b):
    W = []
    X = roots_jacobi(Q - 2, a + 1, b + 1)[0]
    if a == 0 and b == 0:
        W = 2 / ((Q - 1) * (Q) * (Jacobi(Q - 1, 0, 0, X)**2))
        Wl = 2 / ((Q - 1) * (Q) * (Jacobi(Q - 1, 0, 0, -1)**2))
        Wr = 2 / ((Q - 1) * (Q) * (Jacobi(Q - 1, 0, 0, 1)**2))
    else:
        W = 2**(a + b + 1) * gamma(a + Q) * gamma(b + Q) / (
            (Q - 1) * gamma(Q) * gamma(a + b + Q + 1) *
            (Jacobi(Q - 1, a, b, X)**2))
        Wl = (b + 1) * 2**(a + b + 1) * gamma(a + Q) * gamma(b + Q) / (
            (Q - 1) * gamma(Q) * gamma(a + b + Q + 1) *
            (Jacobi(Q - 1, a, b, -1)**2))
        Wr = (a + 1) * 2**(a + b + 1) * gamma(a + Q) * gamma(b + Q) / (
            (Q - 1) * gamma(Q) * gamma(a + b + Q + 1) *
            (Jacobi(Q - 1, a, b, 1)**2))
    W = np.append(W, Wr)
    W = np.append(Wl, W)
    X = np.append(X, 1)
    X = np.append(-1, X)
    return [X, W]
示例#16
0
def test_roots_jacobi():
    rf = lambda a, b: lambda n, mu: sc.roots_jacobi(n, a, b, mu)
    ef = lambda a, b: lambda n, x: sc.eval_jacobi(n, a, b, x)
    wf = lambda a, b: lambda x: (1 - x)**a * (1 + x)**b

    vgq = verify_gauss_quad
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1., 5)
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
        25, atol=1e-12)
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
        100, atol=1e-11)

    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 5)
    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 25, atol=1.5e-13)
    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 100, atol=2e-12)

    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 5, atol=2e-13)
    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 25, atol=2e-13)
    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 100, atol=1e-12)

    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 5)
    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 25, atol=1e-13)
    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 100, atol=3e-13)

    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 5)
    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 25,
        atol=1.1e-14)
    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1.,
        100, atol=1e-13)

    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 5, atol=1e-13)
    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 25, atol=2e-13)
    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1.,
        100, atol=1e-11)

    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 5)
    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 25, atol=1e-13)
    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1.,
        100, atol=1e-13)

    # when alpha == beta == 0, P_n^{a,b}(x) == P_n(x)
    xj, wj = sc.roots_jacobi(6, 0.0, 0.0)
    xl, wl = sc.roots_legendre(6)
    assert_allclose(xj, xl, 1e-14, 1e-14)
    assert_allclose(wj, wl, 1e-14, 1e-14)

    # when alpha == beta != 0, P_n^{a,b}(x) == C_n^{alpha+0.5}(x)
    xj, wj = sc.roots_jacobi(6, 4.0, 4.0)
    xc, wc = sc.roots_gegenbauer(6, 4.5)
    assert_allclose(xj, xc, 1e-14, 1e-14)
    assert_allclose(wj, wc, 1e-14, 1e-14)

    x, w = sc.roots_jacobi(5, 2, 3, False)
    y, v, m = sc.roots_jacobi(5, 2, 3, True)
    assert_allclose(x, y, 1e-14, 1e-14)
    assert_allclose(w, v, 1e-14, 1e-14)

    muI, muI_err = integrate.quad(wf(2,3), -1, 1)
    assert_allclose(m, muI, rtol=muI_err)

    assert_raises(ValueError, sc.roots_jacobi, 0, 1, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3.3, 1, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3, -2, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3, 1, -2)
    assert_raises(ValueError, sc.roots_jacobi, 3, -2, -2)
示例#17
0
def JacobiGQ(alpha, beta, N):
    x, w = sci.roots_jacobi(N, alpha, beta)
    return x, w
示例#18
0
import numpy as np
from numpy import sqrt
from numpy.testing import assert_allclose
import scipy.special as sc
import scipy.special.orthogonal as orth

rf = lambda a, b: lambda n, mu: sc.roots_jacobi(n, a, b, mu)
ef = lambda a, b: lambda n, x: orth.eval_jacobi(n, a, b, x)

rtol = 1e-15
atol = 1e-14
N = 25

root_func = rf(18.24, 27.3)
eval_func = ef(18.24, 27.3)
x, w, mu = root_func(N, True)

# test orthogonality. Note that the results need to be normalized,
# otherwise the huge values that can arise from fast growing
# functions like Laguerre can be very confusing.

n = np.arange(N)
v = eval_func(n[:, np.newaxis], x)
vv = np.dot(v * w, v.T)
vd = 1 / np.sqrt(vv.diagonal())
vv = vd[:, np.newaxis] * vv * vd
assert_allclose(vv, np.eye(N), rtol, atol)
示例#19
0
    def __init__(self, z, alpha, n_node=8, method='krylov'):
        """
        z = vertices as complex numbers on boundary
        alpha = interior angles between edges
        n_node = number of nodes for gaussian quadrature
        method = used for root finding
        """
        if len(z) < 3:
            print('there must be 3 or more vertices')
            exit()
        if z.count(np.inf) != 1:
            print('there must be one Infinity')
            exit()
        if np.isinf(z[0]) or np.isinf(z[-1]):
            print('z[0], and z[-1] must be finite')
            exit()

        if np.isinf(z[1]):
            z.insert(1, z[0] + np.exp(-np.pi * alpha[0] * 1j))
            alpha[0] = 1

        n = len(z) - 1
        L = z.index(np.inf)

        beta = np.empty(n + 1)
        gamma = np.angle(z[1] - z[0]) / np.pi

        for k in range(1, n):
            if k == L or k + 1 == L:
                beta[k] = 1 - alpha[k + 1 - L]
            else:
                beta[k] = np.angle(z[k + 1] - z[k]) / np.pi - gamma
                beta[k] = (beta[k] + 1) % 2 - 1
                if beta[k] - 1 > 1.e-8: beta[k] = -1

            gamma += beta[k]

        beta[L] -= 1
        node = np.empty([n + 1, n_node])
        weight = np.empty_like(node)

        for k in range(1, n):
            if k == L: continue
            (node[k], weight[k]) = roots_jacobi(n_node, 0, -beta[k])

        (node[0], weight[0]) = roots_jacobi(n_node, 0, 1)
        (node[n], weight[n]) = roots_legendre(n_node)

        self.prevertex = np.empty(n + 1, dtype=np.complex)
        self.prevertex[0] = -1
        self.vertex = np.array(z, dtype=np.complex)
        self.angle = beta
        self.node = node
        self.weight = weight
        self.L = L
        self.map = np.vectorize(self.map)

        y = np.zeros(n - 1)
        f = np.empty_like(y)

        def jfun(y):
            s = self.ystran(y)
            C = (z[1] - z[0]) / self.squad(s[0], s[1], 0, 1)

            q = self.squad(s[0], 0.5j, 0) - self.squad(s[n], 0.5j, n)
            q = z[n] - z[0] - C * q
            f[L - 2] = np.real(q)
            f[L - 1] = np.imag(q)

            for k in range(1, n):
                if k == L or k + 1 == L: continue
                q = self.squad(s[k], s[k + 1], k, k + 1)
                f[k - 1] = np.abs(z[k + 1] - z[k]) - np.abs(C * q)

            self.C = C
            return f

        sol = root(jfun, y, method=method, options={'disp': True})
        self.ystran(sol.x)

        s = np.real(self.prevertex[1:-1])
        t = 1 / (1 + s[L - 1]**2)
        self.q = np.abs(self.C) * np.pi * t
        self.theta = np.angle(self.C)\
            - np.dot(beta[1:-1], np.pi/2 + 2 * np.arctan(s))
        t *= 2 * s[L - 1]
        self.w1 = self.q * (np.log((1 + t) / (1 - t)) / np.pi + 1j)
        self.sigma_L = t
示例#20
0
def test_roots_jacobi():
    rf = lambda a, b: lambda n, mu: sc.roots_jacobi(n, a, b, mu)
    ef = lambda a, b: lambda n, x: orth.eval_jacobi(n, a, b, x)
    wf = lambda a, b: lambda x: (1 - x)**a * (1 + x)**b

    vgq = verify_gauss_quad
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1., 5)
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
        25, atol=1e-12)
    vgq(rf(-0.5, -0.75), ef(-0.5, -0.75), wf(-0.5, -0.75), -1., 1.,
        100, atol=1e-11)

    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 5)
    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 25, atol=1.5e-13)
    vgq(rf(0.5, -0.5), ef(0.5, -0.5), wf(0.5, -0.5), -1., 1., 100, atol=1e-12)

    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 5, atol=2e-13)
    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 25, atol=2e-13)
    vgq(rf(1, 0.5), ef(1, 0.5), wf(1, 0.5), -1., 1., 100, atol=1e-12)

    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 5)
    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 25, atol=1e-13)
    vgq(rf(0.9, 2), ef(0.9, 2), wf(0.9, 2), -1., 1., 100, atol=2e-13)

    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 5)
    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1., 25)
    vgq(rf(18.24, 27.3), ef(18.24, 27.3), wf(18.24, 27.3), -1., 1.,
        100, atol=1e-13)

    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 5, atol=1e-13)
    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1., 25, atol=2e-13)
    vgq(rf(47.1, -0.2), ef(47.1, -0.2), wf(47.1, -0.2), -1., 1.,
        100, atol=1e-11)

    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 5)
    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1., 25, atol=1e-13)
    vgq(rf(2.25, 68.9), ef(2.25, 68.9), wf(2.25, 68.9), -1., 1.,
        100, atol=1e-13)

    # when alpha == beta == 0, P_n^{a,b}(x) == P_n(x)
    xj, wj = sc.roots_jacobi(6, 0.0, 0.0)
    xl, wl = sc.roots_legendre(6)
    assert_allclose(xj, xl, 1e-14, 1e-14)
    assert_allclose(wj, wl, 1e-14, 1e-14)

    # when alpha == beta != 0, P_n^{a,b}(x) == C_n^{alpha+0.5}(x)
    xj, wj = sc.roots_jacobi(6, 4.0, 4.0)
    xc, wc = sc.roots_gegenbauer(6, 4.5)
    assert_allclose(xj, xc, 1e-14, 1e-14)
    assert_allclose(wj, wc, 1e-14, 1e-14)

    x, w = sc.roots_jacobi(5, 2, 3, False)
    y, v, m = sc.roots_jacobi(5, 2, 3, True)
    assert_allclose(x, y, 1e-14, 1e-14)
    assert_allclose(w, v, 1e-14, 1e-14)

    muI, muI_err = integrate.quad(wf(2,3), -1, 1)
    assert_allclose(m, muI, rtol=muI_err)

    assert_raises(ValueError, sc.roots_jacobi, 0, 1, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3.3, 1, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3, -2, 1)
    assert_raises(ValueError, sc.roots_jacobi, 3, 1, -2)
    assert_raises(ValueError, sc.roots_jacobi, 3, -2, -2)
示例#21
0
def GaussJacobiWeights(Q: int, a, b):
    [X, W] = roots_jacobi(Q, a, b)
    return [X, W]
示例#22
0
    def __init__(self, polygon, n_node=8, method='krylov'):
        """
        polygon = target polygon of SC transformation
        n_node = number of nodes for gaussian quadrature
        method = used for root finding
        """
        p = polygon.copy()
        p.roll()

        w = p.vertex
        beta = p.angle
        n = len(w)

        node = np.empty([n + 1, n_node])
        weight = np.empty_like(node)

        for k in range(n):
            if np.isinf(w[k]): continue
            (node[k], weight[k]) = roots_jacobi(n_node, 0, -beta[k])

        (node[n], weight[n]) = roots_legendre(n_node)

        self.prevertex = np.empty(n, dtype=np.complex)
        self.prevertex[[0, -1, -2]] = [1, 0, np.inf]
        self.vertex = w
        self.angle = beta
        self.node = node
        self.weight = weight
        self.map = np.vectorize(self.map)
        self.invmap = np.vectorize(self.invmap)

        if n == 3:
            self.C = (w[0] - w[-1]) / self.zquad(0, 1, n - 1, 0)
            return

        k_rat = p.FiniteEdge([0, n - 3])

        k_fix = p.InfVertex([1, n - 3])

        y = np.zeros(n - 3)
        f = np.empty_like(y)

        def scfun(y):
            z = self.yztran(y)
            C = (w[0] - w[-1]) / self.zquad(0, 1, n - 1, 0)

            i = 0
            for k in k_rat:
                q = self.zquad(z[k], z[k + 1], k, k + 1)
                f[i] = np.abs(w[k + 1] - w[k]) - np.abs(C * q)
                i += 1

            for k in k_fix:
                zm = (z[k - 1] + z[k + 1] + (z[k + 1] - z[k - 1]) * 1j) / 2
                q = self.zquad(z[k - 1], zm, k - 1) - self.zquad(
                    z[k + 1], zm, k + 1)
                q = w[k + 1] - w[k - 1] - C * q
                f[i] = np.real(q)
                f[i + 1] = np.imag(q)
                i += 2

            self.C = C
            return f

        sol = root(scfun, y, method=method, options={'disp': True})
        self.yztran(sol.x)
示例#23
0
#1.double the legendre
n = 5
position_x, weight_x = np.polynomial.legendre.leggauss(n)

position_y = position_x
weight_y = weight_x

sum = 0
for i in range(len(position_x)):
    for j in range(len(position_y)):
        sum += weight_x[i] * weight_y[j] * f(position_x[i], position_y[j])
print(sum)

#2.half jacobi- half legendre - such as i get it

position_y, weight_y = sp.roots_jacobi(n, 0, 0)

sum = 0
for i in range(len(position_x)):
    for j in range(len(position_y)):
        sum += weight_x[i] * weight_y[j] * f(position_x[i], position_y[j]) * position_x[i]
print(sum)

#5.

import sobol_seq
def f(x, y):
    return math.exp(-(x * x + y * y))
answer = 0.25 * math.pi * sp.erf(1) ** 2
n = 2000
arr = sobol_seq.i4_sobol_generate(2, n)
示例#24
0
def JacobiGQ(alpha, beta, N):
    """Compute N'th order Gauss quadrature points and weights"""

    x, w = sci.roots_jacobi(N, alpha, beta)

    return x, w