示例#1
0
def plotSIFGI():

    a = eqtools.EqdskReader(gfile='/afs/ipp-garching.mpg.de/home/i/ianf/codes/python/general/g33669.3000')
    a.remapLCFS()
    b = eqtools.AUGDDData(33669)
    tok = TRIPPy.Tokamak(b)
    cont = (pow(scipy.linspace(0,1,11),2)*(a.getFluxLCFS()-a.getFluxAxis())+a.getFluxAxis())

    print(a.getFluxAxis())
    print(a.getFluxLCFS())
    print(cont)
    temp = b.getMachineCrossSectionFull()
    plotEq.plot(a,33669,lims=temp,contours=-1*cont)
    
    GI = genGRW(tok)
    r = GI.r()[0][-2:]
    z = GI.r()[2][-2:]
    print(r,z)
    plt.plot(r,z,color='#0E525A',linewidth=2.)

    SIF = genSIF(tok)
    r = SIF.r()[0][-2:]
    z = SIF.r()[2][-2:]
    print(r,z)
    plt.plot(r,z,color='#228B22',linewidth=2.)
    plt.subplots_adjust(left=.2,right=.95)
    plt.gca().set_xlim([scipy.nanmin(temp[0].astype(float)),scipy.nanmax(temp[0].astype(float))])
    plt.gca().set_ylim([scipy.nanmin(temp[1].astype(float)),scipy.nanmax(temp[1].astype(float))])
    plt.text(1.4,.9,'CSXR',fontsize=22,zorder=10)
    plt.text(2.25,.1,'GI',fontsize=22,zorder=10)
    limy = plt.gca().get_ylim()
    limx = plt.gca().get_xlim()
    plt.gca().text(1.0075*(limx[1]-limx[0])+limx[0],.97*(limy[1]-limy[0])+limy[0],str(33669),rotation=90,fontsize=14)
示例#2
0
def get_hmf(dat, edat, vecs, nit=5, convergence=0.01):
    """
	dat should have the shape Nobs,Npix
	edat the same thing
	vecs should have the shape (npix, ncomp)
	returns the eigen vectors and the projections vector
	"""
    ncomp = vecs.shape[1]
    ndat = len(dat)
    npix = len(dat[0])
    # a step
    #	As = np.matrix(np.zeros((ndat,ncomp)))
    #	Gs = np.matrix(vecs)
    As = shared_zeros_matrix(ndat, ncomp)
    Gs = copy_as_shared(vecs)
    data_struct.dat = dat
    data_struct.edat = edat
    data_struct.Gs = Gs
    data_struct.As = As

    for i in range(nit):
        deltas1 = mapper(doAstep, range(ndat))
        deltas2 = mapper(doGstep, range(npix))

        curconv = scipy.nanmax([scipy.nanmax(deltas1), scipy.nanmax(deltas2)])
        print curconv
        if curconv < convergence:
            break

    # orthogonalize
    Gs, As = orthogonalize(Gs, As)
    return Gs, As
示例#3
0
文件: dohmf.py 项目: segasai/pyhmf
def get_hmf(dat, edat, vecs, nit=5, convergence=0.01):
    """
	dat should have the shape Nobs,Npix
	edat the same thing
	vecs should have the shape (npix, ncomp)
	returns the eigen vectors and the projections vector
	"""
    ncomp = vecs.shape[1]
    ndat = len(dat)
    npix = len(dat[0])
    # a step
    # 	As = np.matrix(np.zeros((ndat,ncomp)))
    # 	Gs = np.matrix(vecs)
    As = shared_zeros_matrix(ndat, ncomp)
    Gs = copy_as_shared(vecs)
    data_struct.dat = dat
    data_struct.edat = edat
    data_struct.Gs = Gs
    data_struct.As = As

    for i in range(nit):
        deltas1 = mapper(doAstep, range(ndat))
        deltas2 = mapper(doGstep, range(npix))

        curconv = scipy.nanmax([scipy.nanmax(deltas1), scipy.nanmax(deltas2)])
        print curconv
        if curconv < convergence:
            break

            # orthogonalize
    Gs, As = orthogonalize(Gs, As)
    return Gs, As
示例#4
0
def plot_map(outdict, e, savename, fig1=None, m=None):
    """
        This function will plot the output data in a scatter plot over a map of the
        satellite path.

        Args:
            outdict (dict[str, obj]): Output dictionary from analyzebeacons.
            e (dict[str, obj]): Output dictionary from ephem_doponly.
            savename(:obj:`str`): Name of the file the image will be saved to.
            fig1(:obj:'matplotlib figure'): Figure.
            m (:obj:'basemap obj'): Basemap object
    """

    t = outdict['time']
    slat = e['site_latitude']
    slon = e['site_longitude']
    if fig1 is None:
        fig1 = plt.figure()
    plt.figure(fig1.number)
    latlim = [math.floor(slat - 15.), math.ceil(slat + 15.)]
    lonlim = [math.floor(slon - 15.), math.ceil(slon + 15.)]
    if m is None:
        m = Basemap(lat_0=slat,
                    lon_0=slon,
                    llcrnrlon=lonlim[0],
                    llcrnrlat=latlim[0],
                    urcrnrlon=lonlim[1],
                    urcrnrlat=latlim[1])

    m.drawcoastlines(color="gray")

    m.plot(slon, slat, "rx")
    scat = m.scatter(e["sublon"](t),
                     e["sublat"](t),
                     c=outdict['rTEC'],
                     cmap='viridis',
                     vmin=0,
                     vmax=math.ceil(sp.nanmax(outdict['rTEC'])))
    plt.title('Map of TEC Over Satellite Path')
    cb = plt.colorbar(scat, label='rTEC in TECu')
    fig1.savefig(savename, dpi=300)

    #plt.draw()

    scat = m.scatter(e["sublon"](t),
                     e["sublat"](t),
                     c=outdict['rTEC_amp'],
                     cmap='viridis',
                     vmin=0,
                     vmax=math.ceil(sp.nanmax(outdict['rTEC_amp'])))
    plt.title('Map of TEC_Amp Over Satellite Path')
    cb.set_clim(vmin=0, vmax=math.ceil(sp.nanmax(outdict['rTEC_amp'])))
    cb.draw_all()

    #plt.tight_layout()
    figpath, name = os.path.split(savename)
    savename = os.path.join(figpath, 'amp' + name)
    fig1.savefig(savename, dpi=300)
    plt.close(fig1)
示例#5
0
 def sky(self):
     if self.skyid is None:
         skymax = scipy.nanmax(self.varspec)
         scimax = scipy.nanmax(self.current)
         scimin = scipy.nanmin(self.current)
         spec = self.varspec * scimax / skymax - abs(scimin)
         self.skyid = len(self.axes.lines)
         pylab.plot(self.wave, spec, color='green')
     else:
         self.axes.lines.remove(self.axes.lines[self.skyid])
         self.skyid = None
         pylab.draw()
示例#6
0
def CenteredLagProduct(rawbeams,
                       numtype=sp.complex128,
                       pulse=sp.ones(14),
                       lagtype='centered'):
    """ This function will create a centered lag product for each range using the
    raw IQ given to it.  It will form each lag for each pulse and then integrate
    all of the pulses.
    Inputs:
        rawbeams - This is a NpxNs complex numpy array where Ns is number of
        samples per pulse and Npu is number of pulses
        N - The number of lags that will be created, default is 14.
        numtype - The type of numbers used to create the data. Default is sp.complex128
        lagtype - Can be centered forward or backward.
    Output:
        acf_cent - This is a NrxNl complex numpy array where Nr is number of
        range gate and Nl is number of lags.
    """
    N = len(pulse)
    # It will be assumed the data will be pulses vs rangne
    rawbeams = rawbeams.transpose()
    (Nr, Np) = rawbeams.shape

    # Make masks for each piece of data
    if lagtype == 'forward':
        arback = sp.zeros(N, dtype=int)
        arfor = sp.arange(N, dtype=int)

    elif lagtype == 'backward':
        arback = sp.arange(N, dtype=int)
        arfor = sp.zeros(N, dtype=int)
    else:
        # arex = sp.arange(0,N/2.0,0.5);
        arback = -sp.floor(sp.arange(0, N / 2.0, 0.5)).astype(int)
        arfor = sp.ceil(sp.arange(0, N / 2.0, 0.5)).astype(int)

    # figure out how much range space will be kept
    ap = sp.nanmax(abs(arback))
    ep = Nr - sp.nanmax(arfor)
    rng_ar_all = sp.arange(ap, ep)
    #    wearr = (1./(N-sp.tile((arfor-arback)[:,sp.newaxis],(1,Np)))).astype(numtype)
    #acf_cent = sp.zeros((ep-ap,N))*(1+1j)
    acf_cent = sp.zeros((ep - ap, N), dtype=numtype)
    for irng, curange in enumerate(rng_ar_all):
        rng_ar1 = int(curange) + arback
        rng_ar2 = int(curange) + arfor
        # get all of the acfs across pulses # sum along the pulses
        acf_tmp = sp.conj(rawbeams[rng_ar1, :]) * rawbeams[rng_ar2, :]  #*wearr
        acf_ave = sp.sum(acf_tmp, 1)
        acf_cent[irng, :] = acf_ave  # might need to transpose this
    return acf_cent
示例#7
0
def get_hmf_smooth(dat, edat, vecs, nit=5, eps=0.01, convergence=0.01):
    """
	dat should have the shape Nobs,Npix
	edat the same thing
	vecs should have the shape (npix, ncomp)
	returns the eigen vectors and the projections vector
	"""
    ncomp = vecs.shape[1]
    ndat = len(dat)
    npix = len(dat[0])

    As = shared_zeros_matrix(ndat, ncomp)
    Gs = copy_as_shared(vecs)
    Gsold = shared_zeros_matrix(Gs.shape[0], Gs.shape[1])

    #arrays used for processing
    data_struct.Gs = Gs
    data_struct.Gsold = Gsold
    data_struct.As = As

    # input data
    data_struct.dat = dat
    data_struct.edat = edat

    # parameters
    data_struct.eps = eps
    data_struct.ncomp = ncomp
    data_struct.npix = npix

    for i in range(nit):
        # a step
        deltas1 = mapper(doAstep, range(ndat))

        data_struct.Gsold, data_struct.Gs = data_struct.Gs, data_struct.Gsold
        # swapping variables, because we going to update Gs while still using
        # original Gs from A step

        # g step

        deltas2 = mapper(doGstepSmooth, range(npix))

        curconv = scipy.nanmax([scipy.nanmax(deltas1), scipy.nanmax(deltas2)])
        print curconv
        if curconv < convergence:
            break

    Gs, As = orthogonalize(Gs, As)
    return Gs, As
示例#8
0
文件: dohmf.py 项目: segasai/pyhmf
def get_hmf_smooth(dat, edat, vecs, nit=5, eps=0.01, convergence=0.01):
    """
	dat should have the shape Nobs,Npix
	edat the same thing
	vecs should have the shape (npix, ncomp)
	returns the eigen vectors and the projections vector
	"""
    ncomp = vecs.shape[1]
    ndat = len(dat)
    npix = len(dat[0])

    As = shared_zeros_matrix(ndat, ncomp)
    Gs = copy_as_shared(vecs)
    Gsold = shared_zeros_matrix(Gs.shape[0], Gs.shape[1])

    # arrays used for processing
    data_struct.Gs = Gs
    data_struct.Gsold = Gsold
    data_struct.As = As

    # input data
    data_struct.dat = dat
    data_struct.edat = edat

    # parameters
    data_struct.eps = eps
    data_struct.ncomp = ncomp
    data_struct.npix = npix

    for i in range(nit):
        # a step
        deltas1 = mapper(doAstep, range(ndat))

        data_struct.Gsold, data_struct.Gs = data_struct.Gs, data_struct.Gsold
        # swapping variables, because we going to update Gs while still using
        # original Gs from A step

        # g step

        deltas2 = mapper(doGstepSmooth, range(npix))

        curconv = scipy.nanmax([scipy.nanmax(deltas1), scipy.nanmax(deltas2)])
        print curconv
        if curconv < convergence:
            break

    Gs, As = orthogonalize(Gs, As)
    return Gs, As
示例#9
0
def CenteredLagProduct(rawbeams, numtype=sp.complex128, pulse=sp.ones(14), lagtype='centered'):
    """
        This function will create a centered lag product for each range using the
        raw IQ given to it.  It will form each lag for each pulse and then integrate
        all of the pulses.
        Inputs:
            rawbeams - This is a NpxNs complex numpy array where Ns is number of
            samples per pulse and Npu is number of pulses
            N - The number of lags that will be created, default is 14.
            numtype - The type of numbers used to create the data. Default is sp.complex128
            lagtype - Can be centered forward or backward.
        Output:
            acf_cent - This is a NrxNl complex numpy array where Nr is number of
            range gate and Nl is number of lags.
    """
    n_pulse = len(pulse)
    # It will be assumed the data will be pulses vs range
    rawbeams = rawbeams.transpose()
    n_range = rawbeams.shape[0]

    # Make masks for each piece of data
    if lagtype == 'forward':
        arback = sp.zeros(n_pulse, dtype=int)
        arfor = sp.arange(n_pulse, dtype=int)

    elif lagtype == 'backward':
        arback = sp.arange(n_pulse, dtype=int)
        arfor = sp.zeros(n_pulse, dtype=int)
    else:
       # arex = sp.arange(0,N/2.0,0.5);
        arback = -sp.floor(sp.arange(0, n_pulse/2.0, 0.5)).astype(int)
        arfor = sp.ceil(sp.arange(0, n_pulse/2.0, 0.5)).astype(int)

    # figure out how much range space will be kept
    a_p = sp.nanmax(abs(arback))
    e_p = n_range - sp.nanmax(arfor)
    rng_ar_all = sp.arange(a_p, e_p)
#    wearr = (1./(N-sp.tile((arfor-arback)[:,sp.newaxis],(1,Np)))).astype(numtype)
    #acf_cent = sp.zeros((ep-ap,N))*(1+1j)
    acf_cent = sp.zeros((e_p-a_p, n_pulse), dtype=numtype)
    for irng, curange in enumerate(rng_ar_all):
        rng_ar1 = int(curange) + arback
        rng_ar2 = int(curange) + arfor
        # get all of the acfs across pulses # sum along the pulses
        acf_tmp = sp.conj(rawbeams[rng_ar1, :])*rawbeams[rng_ar2, :]#*wearr
        acf_ave = sp.sum(acf_tmp, 1)
        acf_cent[irng, :] = acf_ave# might need to transpose this
    return acf_cent
示例#10
0
    def print_verbose_message(self):
        """Method to print training statistics if Verbose is TRUE"""

        # Memory usage (does not work in Windows)
        # print('Peak memory usage: %.2f MB' % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / infer_platform() ))

        # Variance explained
        r2 = s.asarray(self.calculate_variance_explained(total=True)).mean(axis=0)
        r2[r2<0] = 0.
        print("- Variance explained:  " + "   ".join([ "View %s: %.2f%%" % (m,100*r2[m]) for m in range(self.dim["M"])]))

        # Sparsity levels of the weights
        W = self.nodes["W"].getExpectation()
        foo = [s.mean(s.absolute(W[m])<1e-3) for m in range(self.dim["M"])]
        print("- Fraction of zero weights:  " + "   ".join([ "View %s: %.0f%%" % (m,100*foo[m]) for m in range(self.dim["M"])]))

        # Correlation between factors
        Z = self.nodes["Z"].getExpectation()
        Z += s.random.normal(s.zeros(Z.shape),1e-10)
        r = s.absolute(corr(Z.T,Z.T)); s.fill_diagonal(r,0)
        print("- Maximum correlation between factors: %.2f" % (s.nanmax(r)))

        # Factor norm
        bar = s.mean(s.square(Z),axis=0)
        print("- Factor norms:  " + " ".join([ "%.2f" % bar[k] for k in range(Z.shape[1])]))

        # Tau
        tau = self.nodes["Tau"].getExpectation()
        print("- Tau per view (average):  " + "   ".join([ "View %s: %.2f" % (m,tau[m].mean()) for m in range(self.dim["M"])]))

        print("\n")
示例#11
0
def max_filter_bord(im, size=3):
    """The function performs a local max filter on a flat image. Border's
    pixels are processed.

    Args:
    im: the image to process
    size: the size in pixels of the local square window. Default value is 3.
    
    Returns:
    out: the filtered image
    """

    ## Get the size of the image
    [nl, nc, d] = im.shape

    ## Get the size of the moving window
    s = (size - 1) / 2

    ## Initialization of the output
    out = sp.empty((nl, nc, d), dtype=im.dtype.name)
    temp = sp.empty((nl + 2 * s, nc + 2 * s, d), dtype=im.dtype.name)  # A temporary file is created
    temp[0:s, :, :] = sp.NaN
    temp[:, 0:s, :] = sp.NaN
    temp[-s:, :, :] = sp.NaN
    temp[:, -s:, :] = sp.NaN
    temp[s : s + nl, s:nc, :] = im

    ## Apply the max filter
    for i in range(s, nl + s):  # Shift the origin to remove border effect
        for j in range(s, nc + s):
            for k in range(d):
                out[i - s, j - s, k] = sp.nanmax(temp[i - s : i + 1 + s, j - s : j + s + 1, k])

    return out.astype(im.dtype.name)
示例#12
0
文件: dohmf.py 项目: segasai/pyhmf
def doGstepSmooth(j):
    dat, edat = data_struct.dat, data_struct.edat
    Gsold, Gs, As = data_struct.Gsold, data_struct.Gs, data_struct.As
    npix = data_struct.npix
    ncomp = data_struct.ncomp
    eps = data_struct.eps

    if j > 0 and j < (npix - 1):
        mult = 2
    else:
        mult = 1
        # Covj = np.matrix(np.diag(1. / edat[:, j] ** 2))
        # Aj = As.T * Covj * As + mult * eps * np.identity(ncomp)
        # del Covj
        # rewrite of less performant code
    Aj = As.T * np.matrix((1.0 / edat[:, j] ** 2)[:, None] * np.asarray(As), copy=False)
    Aj[np.arange(ncomp), np.arange(ncomp)] = np.asarray(
        Aj[np.arange(ncomp), np.arange(ncomp)] + (mult * eps) * np.ones(ncomp)
    ).flatten()

    if j > 0 and j < (npix - 1):
        Fj = As.T * np.matrix(dat[:, j] / (edat[:, j]) ** 2, copy=False).T + eps * (Gsold[j - 1, :] + Gsold[j + 1, :]).T
    elif j == 0:
        Fj = As.T * np.matrix(dat[:, j] / (edat[:, j]) ** 2, copy=False).T + eps * Gsold[1, :].T
    elif j == npix - 1:
        Fj = As.T * np.matrix(dat[:, j] / (edat[:, j]) ** 2, copy=False).T + eps * Gsold[npix - 2, :].T

    Gj = scipy.linalg.solve(Aj, Fj, sym_pos=True)
    newGj = Gj.flatten()
    oldGj = Gsold[j, :]
    delta = scipy.nanmax(np.abs((newGj - oldGj) / (np.abs(oldGj).max() + 1e-100)))
    Gs[j, :] = newGj
    return delta
示例#13
0
    def initTau(self, pa, pb, qa, qb, qE):
        # Method to initialise the precision of the noise
        # Inputs:
        #  pa (float): 'a' parameter of the prior distribution
        #  pb (float): 'b' parameter of the prior distribution
        #  qb (float): initialisation of the 'b' parameter of the variational distribution
        #  qE (float): initial expectation of the variational distribution
        tau_list = [None] * self.M
        for m in range(self.M):
            if self.lik[m] == "poisson":
                tmp = 0.25 + 0.17 * s.nanmax(self.data[m], axis=0)
                tau_list[m] = Constant_Node(dim=((self.N, self.D[m])),
                                            value=s.repeat(
                                                tmp[None, :], self.N, 0))

            elif self.lik[m] == "bernoulli":
                # seeger
                # tau_list[m] = Constant_Node(dim=((self.N,self.D[m])), value=0.25)
                # Jaakkola
                tau_list[m] = Tau_Jaakkola(dim=((self.N, self.D[m])), value=1.)
            elif self.lik[m] == "binomial":
                print("Not implemented")
                # tmp = 0.25*s.amax(self.data["tot"][m],axis=0)
                # tau_list[m] = Constant_Node(dim=(self.D[m],), value=tmp)
            elif self.lik[m] == "gaussian":
                tau_list[m] = Tau_Node(dim=(self.D[m], ),
                                       pa=pa[m],
                                       pb=pb[m],
                                       qa=qa[m],
                                       qb=qb[m],
                                       qE=qE[m])
        self.Tau = Multiview_Mixed_Node(self.M, *tau_list)
        self.nodes["Tau"] = self.Tau
示例#14
0
文件: cover.py 项目: Minimong/Circulo
def maximum_out_degree_fraction(cover, weights=None):
    '''
    Out Degree Fraction (ODF) of a node in a cluster is the ratio between its number of external (boundary) edges
    and its internal edges. Maximum ODF returns the maximum fraction for the cluster.
    '''
    odf = out_degree_fraction(cover, weights=weights)
    return [ nanmax(ratios) for ratios in odf ]
示例#15
0
def veldist_1d_vrconvolve(plotfilename,phi=_DEFAULTPHI,R=_DEFAULTR,
                        ngrid=201,saveDir='../bar/1dvar/'):
    """
    NAME:
       veldist_1d_vrconvolve
    PURPOSE:
       make a plot showing the influence of the los velocity uncertainties
    INPUT:
       plotfilename - filename for figure
       phi - Galactocentric azimuth
       R - Galactocentric radius
       ngrid - number of grid-points to calculate the los velocity distribution
               on
       saveDir - save pickles here
    OUTPUT:
       Figure in plotfilename
    HISTORY:
       2010-09-11 - Written - Bovy (NYU)
    """
    convolves= [0.02,0.04,0.08]#0, 5, 10, 20 km/s

    vloslinspace= (-.9,.9,ngrid)
    vloss= sc.linspace(*vloslinspace)

    vlosds= []
    thissavefilename= os.path.join(saveDir,'convolve_')+'%.1f.sav' % 0.
    print "Restoring los-velocity distribution at distance uncertainties %.1f" % 0.
    savefile= open(thissavefilename,'r')
    vlosd= pickle.load(savefile)
    savefile.close()
    vlosds.append(vlosd)
    basesavefilename= os.path.join(saveDir,'vrconvolve_')
    for distsig in convolves:
        thissavefilename= os.path.join(saveDir,'convolve_')+'%.1f.sav' % 0.
        print "Restoring los-velocity distribution at distance uncertainties %.1f" % 0.
        savefile= open(thissavefilename,'r')
        vlosd= pickle.load(savefile)
        savefile.close()
        #Create Gaussian
        gauss= sc.exp(-0.5*vloss**2./distsig**2.)
        #gauss= gauss/sc.sum(gauss)/(vloss[1]-vloss[0])
        vlosd= signal.convolve(vlosd,gauss,mode='same')
        vlosd= vlosd/sc.sum(vlosd)/(vloss[1]-vloss[0])
        vlosds.append(vlosd)
    #Plot
    plot.bovy_print()
    plot.bovy_plot(vloss,vlosds[0],'k-',zorder=3,
                   xrange=[vloslinspace[0],vloslinspace[1]],
                   yrange=[0.,sc.nanmax(sc.array(vlosds).flatten())*1.1],
                   xlabel=r'$v_{\mathrm{los}} / v_0$')
    plot.bovy_plot(vloss,vlosds[1],ls='-',color='0.75',
                   overplot=True,zorder=2,lw=2.)
    plot.bovy_plot(vloss,vlosds[2],ls='-',color='0.6',
                   overplot=True,zorder=2,lw=2.)
    plot.bovy_plot(vloss,vlosds[3],ls='-',color='0.45',
                   overplot=True,zorder=2,lw=2.)
    kms= r' \mathrm{km\ s}^{-1}$'
    plot.bovy_text(r'$\mathrm{line-of-sight\ velocity\ uncertainties}$',title=True)
    plot.bovy_text(0.4,.65,r'$\sigma_v = 0\ '+kms+'\n'+r'$\sigma_v = 5\ '+kms+'\n'+r'$\sigma_v = 10\ '+kms+'\n'+r'$\sigma_v = 20\ '+kms)
    plot.bovy_end_print(plotfilename)
示例#16
0
def CalcStats(samples):
    return dict(
        zip(['mean', 'max', 'min', 'sdeviation'], [
            float(sp.mean(samples)),
            float(sp.nanmax(samples)),
            float(sp.nanmin(samples)),
            float(sp.std(samples))
        ]))
示例#17
0
def defaultValueStoppingCriterion(nIter, currentVArray, newVArray, criterion=0.001):
	diff = newVArray - currentVArray
	pct = diff / currentVArray
	a = abs(pct)		
	# when we allow zero utility, sometimes the pct will have NaNs
	maxdiff = scipy.nanmax(a)
	if (scipy.isnan(maxdiff)):
		assert(False)
	return ((maxdiff < criterion), maxdiff)
示例#18
0
文件: dataset.py 项目: h2r/slu_core
    def to_discrete_dataset(self, dfactor=36, dataset=None):
        #get maximum and minimum values
        print "getting feature summary"
        f_summary = self.get_feature_summary()

        print "min/max val"
        f_min_max = {}
        for name in f_summary.keys():
            #if(nan in f_summary[name]):
            #    print "f_summary[name]", fsummary[name]
            #try:
            #    f_summary[name].remove(nan)
            #except:
            #    print "not removed"
            #print f_summary, name
            #print list(f_summary[name])
            min_val = nanmin(list(f_summary[name]))
            max_val = nanmax(list(f_summary[name]))

            #if(isnan(min_val) or isnan(max_val)):
            #    print "name:", name, min_val, max_val
            #else:
            #    print "name:", name, min_val, max_val
            #    print "nan in summary:", nan in f_summary[name]
            #    print "set:", f_summary[name]
            #    print "dataset.py: error neither should be nan"
            #    exit(0)
            f_min_max[name] = [min_val, max_val]
            #print name, [min_val, max_val]
            #raw_input()

        # print "computed keys"
        # for key in f_min_max.keys():
        #     if "3d" in key and "w_pick" in key:
        #         print key, f_min_max[key]

        #convert other datset if applicable
        if (dataset == None):
            observations = self.observations
        else:
            observations = dataset

        obs_discrete = []
        print "converting observations"
        for o in observations:
            dobs = o.to_discrete_observation(f_min_max, dfactor=dfactor)
            dobs.annotation = o.annotation
            obs_discrete.append(dobs)

        print "constructing dataset"

        return DiscreteDataset(
            obs_discrete,
            dfactor,
            f_min_max=f_min_max,
            feature_extractor_cls=self.feature_extractor_cls)
示例#19
0
文件: Compare.py 项目: mands/ode
def compare_arrays(a, b, inc_time=False):
    diffAbs = (sp.absolute(sp.subtract(a, b)))
    diffMax = sp.nanmax(diffAbs)
    diffEps = (diffMax / sys.float_info.epsilon
               ) * 2  # we have to mult by two as python epsilon is not correct

    if inc_time:
        return sp.column_stack((a[:, 0], diffAbs)), diffMax, diffEps
    else:
        return diffAbs, diffMax, diffEps
示例#20
0
    def initTau(self, pa=1e-3, pb=1e-3, qa=1., qb=1., qE=None):
        """Method to initialise the precision of the noise

        PARAMETERS
        ----------
        pa: float
            'a' parameter of the prior distribution
        pb :float
            'b' parameter of the prior distribution
        qb: float
            initialisation of the 'b' parameter of the variational distribution
        qE: float
            initial expectation of the variational distribution
        """

        tau_list = [None] * self.M

        for m in range(self.M):

            # Poisson noise model for count data
            if self.lik[m] == "poisson":
                tmp = 0.25 + 0.17 * s.nanmax(self.data[m], axis=0)
                tmp = s.repeat(tmp[None, :], self.N, axis=0)
                tau_list[m] = Tau_Seeger(dim=(self.N, self.D[m]), value=tmp)

            # Bernoulli noise model for binary data
            elif self.lik[m] == "bernoulli":
                # tau_list[m] = Constant_Node(dim=(self.D[m],), value=s.ones(self.D[m])*0.25)
                # tau_list[m] = Tau_Jaakkola(dim=(self.D[m],), value=0.25)
                tau_list[m] = Tau_Jaakkola(dim=((self.N, self.D[m])), value=1.)

            elif self.lik[m] == "zero_inflated":
                # contains parameters to initialise both normal and jaakola tau
                tau_list[m] = Zero_Inflated_Tau_Jaakkola(dim=((self.G,
                                                               self.D[m])),
                                                         value=1.,
                                                         pa=pa,
                                                         pb=pb,
                                                         qa=qa,
                                                         qb=qb,
                                                         groups=self.groups_ix,
                                                         qE=qE)

            # Gaussian noise model for continuous data
            elif self.lik[m] == "gaussian":
                tau_list[m] = TauD_Node(dim=(self.G, self.D[m]),
                                        pa=pa,
                                        pb=pb,
                                        qa=qa,
                                        qb=qb,
                                        groups=self.groups_ix,
                                        qE=qE)

        self.nodes["Tau"] = Multiview_Mixed_Node(self.M, *tau_list)
示例#21
0
def get_cb_ticks(values):
    min_tick = sp.nanmin(values)
    max_tick = sp.nanmax(values)
    med_tick = min_tick + (max_tick - min_tick) / 2.0
    if max_tick > 1.0:
        min_tick = sp.ceil(min_tick)
        max_tick = sp.floor(max_tick)
        med_tick = sp.around(med_tick)
    else:
        min_tick = sp.ceil(min_tick * 100.0) / 100.0
        max_tick = sp.floor(max_tick * 100.0) / 100.0
        med_tick = sp.around(med_tick, 2)
    return [min_tick, med_tick, max_tick]
示例#22
0
def CenteredLagProduct(rawbeams,numtype=sp.complex128,pulse =sp.ones(14)):
    """ This function will create a centered lag product for each range using the
    raw IQ given to it.  It will form each lag for each pulse and then integrate
    all of the pulses.
    Inputs:
        rawbeams - This is a NpxNs complex numpy array where Ns is number of
        samples per pulse and Npu is number of pulses
        N - The number of lags that will be created, default is 14.
        numtype - The type of numbers used to create the data. Default is sp.complex128
    Output:
        acf_cent - This is a NrxNl complex numpy array where Nr is number of
        range gate and Nl is number of lags.
    """
    N=len(pulse)
    # It will be assumed the data will be pulses vs rangne
    rawbeams = rawbeams.transpose()
    (Nr,Np) = rawbeams.shape

    # Make masks for each piece of data
    arex = sp.arange(0,N/2.0,0.5);
    arback = sp.array([-sp.int_(sp.floor(k)) for k in arex]);
    arfor = sp.array([sp.int_(sp.ceil(k)) for k in arex]) ;

    # figure out how much range space will be kept
    ap = sp.nanmax(abs(arback));
    ep = Nr- sp.nanmax(arfor);
    rng_ar_all = sp.arange(ap,ep);
#    wearr = (1./(N-sp.tile((arfor-arback)[:,sp.newaxis],(1,Np)))).astype(numtype)
    #acf_cent = sp.zeros((ep-ap,N))*(1+1j)
    acf_cent = sp.zeros((ep-ap,N),dtype=numtype)
    for irng in  sp.arange(len(rng_ar_all)):
        rng_ar1 =sp.int_(rng_ar_all[irng]) + arback
        rng_ar2 = sp.int_(rng_ar_all[irng]) + arfor
        # get all of the acfs across pulses # sum along the pulses
        acf_tmp = sp.conj(rawbeams[rng_ar1,:])*rawbeams[rng_ar2,:]#*wearr
        acf_ave = sp.sum(acf_tmp,1)
        acf_cent[irng,:] = acf_ave# might need to transpose this
    return acf_cent
示例#23
0
 def processDebug1(self, rawImagePath):
     logger.info("using standard Andor 0 process function")
     rawArray = self.read(rawImagePath)
     if not self.optionsDict["process?"]:
         return rawArray
     [atomsArray, lightArray] = self.fastKineticsCrop(rawArray, 2)
     if self.optionsDict["darkSubtraction"]:
         darkArray = self.loadDarkImage(self.darkImagePath)
         rawArray -= darkArray
         rawArray.clip(1)
     logger.info("atomsArray = %s" % atomsArray)
     logger.info("lightArray = %s" % lightArray)
     logger.info("atomsArray/lightArray = %s" % (atomsArray / lightArray))
     logger.info("min , max atoms = %s, %s" %
                 (scipy.nanmin(atomsArray), scipy.nanmax(atomsArray)))
     logger.info("min , max light = %s, %s" %
                 (scipy.nanmin(lightArray), scipy.nanmax(lightArray)))
     logger.info("min , max atoms/light = %s, %s" % (scipy.nanmin(
         atomsArray / lightArray), scipy.nanmax(atomsArray / lightArray)))
     corrected = atomsArray / lightArray
     if self.optionsDict["rotate?"]:
         rotated = self.rotate(corrected, self.optionsDict["rotationAngle"])
     return rotated
示例#24
0
 def _statisticsButton_fired(self):
     from scipy.stats import pearsonr
     xs, ys = self.dataSets[self.selectedDataSet]
     mean = scipy.mean(ys)
     median = scipy.median(ys)
     std = scipy.std(ys)
     minimum = scipy.nanmin(ys)
     maximum = scipy.nanmax(ys)
     peakToPeak = maximum - minimum
     pearsonCorrelation = pearsonr(xs, ys)
     resultString = "mean=%G , median=%G stdev =%G\nmin=%G,max=%G, pk-pk=%G\nPearson Correlation=(%G,%G)\n(stdev/mean)=%G" % (
         mean, median, std, minimum, maximum, peakToPeak,
         pearsonCorrelation[0], pearsonCorrelation[1], std / mean)
     self.statisticsString = resultString
示例#25
0
    def print_verbose_message(self, i):
        """Method to print training statistics if Verbose is TRUE"""

        # Memory usage (does not work in Windows)
        # print('Peak memory usage: %.2f MB' % (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / infer_platform() ))

        # Variance explained
        r2 = s.asarray(
            self.calculate_variance_explained(total=True)).mean(axis=0)
        r2[r2 < 0] = 0.
        print("- Variance explained:  " + "   ".join([
            "View %s: %.2f%%" % (m, 100 * r2[m]) for m in range(self.dim["M"])
        ]))

        # Sparsity levels of the weights
        W = self.nodes["W"].getExpectation()
        foo = [s.mean(s.absolute(W[m]) < 1e-3) for m in range(self.dim["M"])]
        print("- Fraction of zero weights:  " + "   ".join([
            "View %s: %.0f%%" % (m, 100 * foo[m]) for m in range(self.dim["M"])
        ]))

        # Correlation between factors
        Z = self.nodes["Z"].getExpectation()
        Z += s.random.normal(s.zeros(Z.shape), 1e-10)
        r = s.absolute(corr(Z.T, Z.T))
        s.fill_diagonal(r, 0)
        print("- Maximum correlation between factors: %.2f" % (s.nanmax(r)))

        # Factor norm
        bar = s.mean(s.square(Z), axis=0)
        print("- Factor norms:  " +
              " ".join(["%.2f" % bar[k] for k in range(Z.shape[1])]))

        # Tau
        tau = self.nodes["Tau"].getExpectation()
        print("- Tau per view (average):  " + "   ".join([
            "View %s: %.2f" % (m, tau[m].mean()) for m in range(self.dim["M"])
        ]))

        #Sigma:
        if 'Sigma' in self.nodes.keys():
            sigma = self.nodes["Sigma"]
            if i >= sigma.start_opt and i % sigma.opt_freq == 0:
                print('Sigma node has been optimised:\n- Lengthscales = %s \n- Scale = %s' % \
                (np.array2string(sigma.get_ls(), precision=2, separator=", "), np.array2string(1-sigma.get_zeta(), precision=2, separator=", ")))

        print("\n")
    def getImageData(self, imageFile):
        logger.debug("pulling image data")
        # The xs and ys used for the image plot range need to be the
        # edges of the cells.
        self.imageFile = imageFile
        self.xs = scipy.linspace(0.0, self.pixelsX - 1, self.pixelsX)
        self.ys = scipy.linspace(0.0, self.pixelsY - 1, self.pixelsY)
        if not os.path.exists(imageFile):
            #if no file is define the image is flat 0s of camera size
            logger.error("image file not found. filling with zeros")
            self.zs = scipy.zeros((self.pixelsX, self.pixelsY))
            print self.zs
            self.minZ = 0.0
            self.maxZ = 1.0
            self.model_changed = True
        else:
            try:
                self.rawImage = scipy.misc.imread(imageFile)
                self.zs = (self.rawImage - self.offset) / self.scale
                if self.ODCorrectionBool:
                    logger.info("Correcting for OD saturation")
                    self.zs = scipy.log(
                        (1.0 - scipy.exp(-self.ODSaturationValue)) /
                        (scipy.exp(-self.zs) -
                         scipy.exp(-self.ODSaturationValue)))
                    #we should account for the fact if ODSaturation value is wrong or there is noise we can get complex numbers!
                    self.zs[scipy.imag(self.zs) > 0] = scipy.nan
                    self.zs = self.zs.astype(float)
                self.minZ = scipy.nanmin(self.zs)
                self.maxZ = scipy.nanmax(self.zs)
                self.model_changed = True
                for fit in self.fitList:
                    fit.xs = self.xs
                    fit.ys = self.ys
                    fit.zs = self.zs

            except Exception as e:
                logger.error("error in setting data %s" % e.message)
                logger.debug(
                    "Sometimes we get an error  unsupported operand type(s) for -: 'instance' and 'float'. "
                )
                logger.debug(
                    "checking for what could cause this . Tell Tim if you see this error message!!!!"
                )
                logger.debug("type(self.rawImage) ->  %s" %
                             type(self.rawImage))
                logger.debug("type(self.offset) ->  %s" % type(self.offset))
示例#27
0
文件: dohmf.py 项目: segasai/pyhmf
def doAstep(i):
    # we use the fact that dat,edat aren't changed on the way,
    # so they shouldn't be copied to a different thread
    dat, edat = data_struct.dat, data_struct.edat
    Gs, As = data_struct.Gs, data_struct.As
    Fi = np.matrix(dat[i] / edat[i] ** 2, copy=False) * Gs

    # Covi = np.matrix(np.diag(1. / edat[i] ** 2), copy=False)
    # Gi = Gs.T * Covi * Gs
    # del Covi
    Gi = Gs.T * np.matrix((1.0 / edat[i] ** 2)[:, None] * np.asarray(Gs), copy=False)

    Ai = scipy.linalg.solve(Gi, Fi.T, sym_pos=True)
    newAi = Ai.flatten()
    oldAi = As[i, :]
    delta = scipy.nanmax(np.abs((newAi - oldAi) / (np.abs(oldAi).max() + 1e-100)))
    As[i, :] = newAi
    return delta
示例#28
0
def metrique_pheno_derivative(ndvi=sp.empty):
    """
    This method use the second derivative of the NDVI to identifie the dates of beginning of season, end of season and more.
     Parameters:
     ----------
        
        ndvi : correspond à l'evolution DU NDVI pour un pixel sur une année
    
    """

    try:
        ndviMin = ndvi.min()  #valeur minimale
        ndviMax = ndvi.max()  #valeur maximale
        #ndviMean=ndvi.mean() #valeur moyenne

        indMin = int(sp.median(sp.where(ndvi == ndviMin)))  #indice du minimum
        indMax = int(sp.median(sp.where(ndvi == ndviMax)))  #indice du max
        d1 = sp.convolve(ndvi, [1, -1],
                         'same')  #first derivative approximation
        d2 = sp.convolve(ndvi, [1, -2, 1],
                         'same')  #second derivative approximation

        k1 = d1[:-1] * d1[1:]  #to find inflection point
        k2 = d2[:-1] * d2[1:]  #to find inflection point

        ind0d1 = (sp.where(k1[:indMax] < 0))[0][-1]
        ind0d2 = (sp.where(k2[:indMax] < 0))[0][-1]

        sos = ind0d2
        sos = sp.nanmax([ind0d1, ind0d2])

        ind0d22 = (sp.where(k2[indMax + 1:] < 0))[0][0]

        eos = ind0d22 + indMax

        los = eos - sos
        out = [sos, eos + 1, los, indMin + 1, indMax + 1, ndviMin,
               ndviMax]  # +1 parceque l'indice commence à 0
    except:
        out = [-1, -1, -1, -1, -1, -1, -1]

    return out
示例#29
0
def doAstep(i):
    # we use the fact that dat,edat aren't changed on the way,
    # so they shouldn't be copied to a different thread
    dat, edat = data_struct.dat, data_struct.edat
    Gs, As = data_struct.Gs, data_struct.As
    Fi = np.matrix(dat[i] / edat[i]**2, copy=False) * Gs

    # Covi = np.matrix(np.diag(1. / edat[i] ** 2), copy=False)
    # Gi = Gs.T * Covi * Gs
    # del Covi
    Gi = Gs.T * np.matrix(
        (1. / edat[i]**2)[:, None] * np.asarray(Gs), copy=False)

    Ai = scipy.linalg.solve(Gi, Fi.T, sym_pos=True)
    newAi = Ai.flatten()
    oldAi = As[i, :]
    delta = scipy.nanmax(
        np.abs((newAi - oldAi) / (np.abs(oldAi).max() + 1e-100)))
    As[i, :] = newAi
    return delta
示例#30
0
文件: dohmf.py 项目: segasai/pyhmf
def doGstep(j):

    dat, edat = data_struct.dat, data_struct.edat
    Gs, As = data_struct.Gs, data_struct.As

    # Covj = np.matrix(np.diag(1. / edat[:, j] ** 2), copy=False)
    # Aj = As.T * Covj * As
    # del Covj
    # the rewrite uses the fact that
    # diagonal matrix times matrix can be rewritten as
    # np.matrix(xs[:,None]*np.asarray(Gs)) ==
    # np.matrix(np.diag(xs))*Gs
    Aj = As.T * np.matrix((1.0 / edat[:, j] ** 2)[:, None] * np.asarray(As), copy=False)

    Fj = As.T * np.matrix((dat[:, j] / (edat[:, j]) ** 2), copy=False).T
    Gj = scipy.linalg.solve(Aj, Fj, sym_pos=True)
    newGj = Gj.flatten()
    oldGj = Gs[j, :]
    delta = scipy.nanmax(np.abs((newGj - oldGj) / (np.abs(oldGj).max() + 1e-100)))
    Gs[j, :] = newGj
    return delta
示例#31
0
def get_ls_ls_market_price_dispersion(ls_ls_market_ids, master_price, series):
  # if numpy.version.version = '1.8' or above => switch from scipy to numpy
  # checks nb of prices (non nan) per period (must be 2 prices at least)
  ls_ls_market_price_dispersion = []
  for ls_market_ids in ls_ls_market_ids:
    list_market_prices = [master_price[series][master_price['ids'].index(indiv_id)] for indiv_id in ls_market_ids]
    arr_market_prices = np.array(list_market_prices, dtype = np.float32)
    arr_nb_market_prices = (~np.isnan(arr_market_prices)).sum(0)
    arr_bool_enough_market_prices = np.where(arr_nb_market_prices > 1, 1, np.nan)
    arr_market_prices = arr_bool_enough_market_prices * arr_market_prices
    range_price_array = scipy.nanmax(arr_market_prices, 0) - scipy.nanmin(arr_market_prices, axis = 0)
    std_price_array = scipy.stats.nanstd(arr_market_prices, 0)
    coeff_var_price_array = scipy.stats.nanstd(arr_market_prices, 0) / scipy.stats.nanmean(arr_market_prices, 0)
    gain_from_search_array = scipy.stats.nanmean(arr_market_prices, 0) - scipy.nanmin(arr_market_prices, axis = 0)
    list_list_market_price_dispersion.append(( ls_market_ids,
                                               len(ls_market_ids),
                                               range_price_array,
                                               std_price_array,
                                               coeff_var_price_array,
                                               gain_from_search_array ))
  return list_list_market_price_dispersion
示例#32
0
def metrique_pheno_derivative(ndvi=sp.empty):
    """
    This method use the second derivative of the NDVI to identifie the dates of beginning of season, end of season and more.
     Parameters:
     ----------
        
        ndvi : correspond à l'evolution DU NDVI pour un pixel sur une année
    
    """
    
    try:
        ndviMin=ndvi.min() #valeur minimale
        ndviMax=ndvi.max() #valeur maximale
        #ndviMean=ndvi.mean() #valeur moyenne
        
        indMin=int(sp.median(sp.where(ndvi==ndviMin))) #indice du minimum
        indMax=int(sp.median(sp.where(ndvi==ndviMax))) #indice du max
        d1=sp.convolve(ndvi, [1, -1],'same') #first derivative approximation
        d2=sp.convolve(ndvi, [1, -2, 1],'same') #second derivative approximation
        
        k1=d1[:-1]*d1[1:] #to find inflection point
        k2=d2[:-1]*d2[1:] #to find inflection point
        
        ind0d1=(sp.where(k1[:indMax]<0))[0][-1]
        ind0d2=(sp.where(k2[:indMax]<0))[0][-1]

        sos=ind0d2
        sos=sp.nanmax([ind0d1,ind0d2])
        
        ind0d22=(sp.where(k2[indMax+1:]<0))[0][0]

        
        eos=ind0d22+indMax
        
        los=eos-sos
        out=[sos,eos+1,los,indMin+1,indMax+1,ndviMin,ndviMax] # +1 parceque l'indice commence à 0
    except:
        out=[-1,-1,-1,-1,-1,-1,-1] 
    
    return out
示例#33
0
def doGstepSmooth(j):
    dat, edat = data_struct.dat, data_struct.edat
    Gsold, Gs, As = data_struct.Gsold, data_struct.Gs, data_struct.As
    npix = data_struct.npix
    ncomp = data_struct.ncomp
    eps = data_struct.eps

    if j > 0 and j < (npix - 1):
        mult = 2
    else:
        mult = 1
    # Covj = np.matrix(np.diag(1. / edat[:, j] ** 2))
    # Aj = As.T * Covj * As + mult * eps * np.identity(ncomp)
    # del Covj
    # rewrite of less performant code
    Aj = As.T * np.matrix(
        (1. / edat[:, j]**2)[:, None] * np.asarray(As), copy=False)
    Aj[np.arange(ncomp),
       np.arange(ncomp)] = np.asarray(Aj[np.arange(ncomp),
                                         np.arange(ncomp)] +
                                      (mult * eps) * np.ones(ncomp)).flatten()

    if j > 0 and j < (npix - 1):
        Fj = As.T * np.matrix(dat[:,j] / (edat[:,j]) ** 2, copy=False).T + \
         eps * (Gsold[j - 1, :] + Gsold[j + 1, :]).T
    elif j == 0:
        Fj = As.T * np.matrix(dat[:,j] / (edat[:,j]) ** 2, copy=False).T + \
         eps * Gsold[1, :].T
    elif j == npix - 1:
        Fj = As.T * np.matrix(dat[:,j] / (edat[:,j]) ** 2, copy=False).T + \
         eps * Gsold[npix - 2, :].T

    Gj = scipy.linalg.solve(Aj, Fj, sym_pos=True)
    newGj = Gj.flatten()
    oldGj = Gsold[j, :]
    delta = scipy.nanmax(
        np.abs((newGj - oldGj) / (np.abs(oldGj).max() + 1e-100)))
    Gs[j, :] = newGj
    return delta
示例#34
0
def doGstep(j):

    dat, edat = data_struct.dat, data_struct.edat
    Gs, As = data_struct.Gs, data_struct.As

    # Covj = np.matrix(np.diag(1. / edat[:, j] ** 2), copy=False)
    # Aj = As.T * Covj * As
    # del Covj
    # the rewrite uses the fact that
    # diagonal matrix times matrix can be rewritten as
    # np.matrix(xs[:,None]*np.asarray(Gs)) ==
    # np.matrix(np.diag(xs))*Gs
    Aj = As.T * np.matrix(
        (1. / edat[:, j]**2)[:, None] * np.asarray(As), copy=False)

    Fj = As.T * np.matrix((dat[:, j] / (edat[:, j])**2), copy=False).T
    Gj = scipy.linalg.solve(Aj, Fj, sym_pos=True)
    newGj = Gj.flatten()
    oldGj = Gs[j, :]
    delta = scipy.nanmax(
        np.abs((newGj - oldGj) / (np.abs(oldGj).max() + 1e-100)))
    Gs[j, :] = newGj
    return delta
示例#35
0
def plotbeamparametersv2(times, configfile, maindir, fitdir='Fitted', params=['Ne'],
                         filetemplate='params', suptitle='Parameter Comparison',
                         werrors=False, nelog=True):
    """
        This function will plot the desired parameters for each beam along range.
        The values of the input and measured parameters will be plotted
        Inputs
            Times - A list of times that will be plotted.
            configfile - The INI file with the simulation parameters that will be useds.
            maindir - The directory the images will be saved in.
            params - List of Parameter names that will be ploted. These need to match
                in the ionocontainer names.
            filetemplate - The first part of a the file names.
            suptitle - The supertitle for the plots.
            werrors - A bools that determines if the errors will be plotted.
    """
    sns.set_style("whitegrid")
    sns.set_context("notebook")
#    rc('text', usetex=True)
    maindir = Path(maindir)
    ffit = maindir/fitdir/'fitteddata.h5'
    inputfiledir = maindir/'Origparams'
    (sensdict, simparams) = readconfigfile(configfile)

    paramslower = [ip.lower() for ip in params]
    Nt = len(times)
    Np = len(params)

    #Read in fitted data

    Ionofit = IonoContainer.readh5(str(ffit))
    dataloc = Ionofit.Sphere_Coords
    pnames = Ionofit.Param_Names
    pnameslower = sp.array([ip.lower() for ip in pnames.flatten()])
    p2fit = [sp.argwhere(ip == pnameslower)[0][0]
             if ip in pnameslower else None for ip in paramslower]
    time2fit = [None]*Nt
    # Have to fix this because of time offsets
    if times[0] == 0:
        times += Ionofit.Time_Vector[0, 0]
    for itn, itime in enumerate(times):
        filear = sp.argwhere(Ionofit.Time_Vector[:, 0] >= itime)
        if len(filear) == 0:
            filenum = len(Ionofit.Time_Vector)-1
        else:
            filenum = sp.argmin(sp.absolute(Ionofit.Time_Vector[:, 0]-itime))
        time2fit[itn] = filenum
    times_int = [Ionofit.Time_Vector[i] for i in time2fit]

    # determine the beams
    angles = dataloc[:, 1:]
    rng = sp.unique(dataloc[:, 0])
    b_arr = np.ascontiguousarray(angles).view(np.dtype((np.void,
                                                        angles.dtype.itemsize * angles.shape[1])))
    _, idx, invidx = np.unique(b_arr, return_index=True, return_inverse=True)

    beamlist = angles[idx]

    Nb = beamlist.shape[0]

    # Determine which imput files are to be used.

    dirlist = sorted(inputfiledir.glob('*.h5'))
    dirliststr = [str(i) for i in dirlist]
    sortlist, outime, outfilelist,timebeg,timelist_s = IonoContainer.gettimes(dirliststr)
    timelist = timebeg.copy()
    time2file = [None]*Nt

    time2intime = [None]*Nt
    # go through times find files and then times in files
    for itn, itime in enumerate(times):

        filear = sp.argwhere(timelist >= itime)
        if len(filear) == 0:
            filenum = [len(timelist)-1]
        else:
            filenum = filear[0]

        flist1 = []
        timeinflist = []
        for ifile in filenum:
            filetimes = timelist_s[ifile]
            log1 = (filetimes[:, 0] >= times_int[itn][0]) & (filetimes[:, 0] < times_int[itn][1])
            log2 = (filetimes[:, 1] > times_int[itn][0]) & (filetimes[:, 1] <= times_int[itn][1])
            log3 = (filetimes[:, 0] <= times_int[itn][0]) & (filetimes[:, 1] > times_int[itn][1])
            log4 = (filetimes[:, 0] > times_int[itn][0]) & (filetimes[:, 1] < times_int[itn][1])
            curtimes1 = sp.where(log1|log2|log3|log4)[0].tolist()
            flist1 = flist1+ [ifile]*len(curtimes1)
            timeinflist = timeinflist+curtimes1
        time2intime[itn] = timeinflist
        time2file[itn] = flist1
    nfig = int(sp.ceil(Nt*Nb))

    imcount = 0
    curfilenum = -1
    # Loop for the figures
    for i_fig in range(nfig):
        lines = [None]*2
        labels = [None]*2
        (figmplf, axmat) = plt.subplots(int(sp.ceil(Np/2)), 2, figsize=(20, 15), facecolor='w')
        axvec = axmat.flatten()
        # loop that goes through each axis loops through each parameter, beam
        # then time.
        for ax in axvec:
            if imcount >= Nt*Nb*Np:
                break
            imcount_f = float(imcount)
            itime = int(sp.floor(imcount_f/Nb/Np))
            iparam = int(imcount_f/Nb-Np*itime)
            ibeam = int(imcount_f-(itime*Np*Nb+iparam*Nb))
            curbeam = beamlist[ibeam]

            altlist = sp.sin(curbeam[1]*sp.pi/180.)*rng

            curparm = paramslower[iparam]
            # Use Ne from input to compare the ne derived from the power.
            if curparm == 'nepow':
                curparm_in = 'ne'
            else:
                curparm_in = curparm

            curcoord = sp.zeros(3)
            curcoord[1:] = curbeam

            for iplot, filenum in enumerate(time2file[itime]):

                if curfilenum != filenum:
                    curfilenum = filenum
                    datafilename = dirlist[filenum]
                    Ionoin = IonoContainer.readh5(str(datafilename))
                    if ('ti' in paramslower) or ('vi' in paramslower):
                        Ionoin = maketi(Ionoin)
                    pnames = Ionoin.Param_Names
                    pnameslowerin = sp.array([ip.lower() for ip in pnames.flatten()])
                prmloc = sp.argwhere(curparm_in == pnameslowerin)
                if prmloc.size != 0:
                    curprm = prmloc[0][0]
                # build up parameter vector bs the range values by finding the closest point in space in the input
                curdata = sp.zeros(len(rng))
                for irngn, irng in enumerate(rng):
                    curcoord[0] = irng
                    tempin = Ionoin.getclosestsphere(curcoord)[0][time2intime[itime]]
                    Ntloc = tempin.shape[0]
                    tempin = sp.reshape(tempin, (Ntloc, len(pnameslowerin)))
                    curdata[irngn] = tempin[0, curprm]
                #actual plotting of the input data
                lines[0] = ax.plot(curdata, altlist, marker='o', c='b', linewidth=2)[0]
                labels[0] = 'Input Parameters'
            # Plot fitted data for the axis

            indxkep = np.argwhere(invidx == ibeam)[:, 0]
            curfit = Ionofit.Param_List[indxkep, time2fit[itime], p2fit[iparam]]
            rng_fit = dataloc[indxkep, 0]
            alt_fit = rng_fit*sp.sin(curbeam[1]*sp.pi/180.)
            errorexist = 'n'+paramslower[iparam] in pnameslower
            if errorexist and werrors:
                eparam = sp.argwhere('n'+paramslower[iparam] == pnameslower)[0][0]
                curerror = Ionofit.Param_List[indxkep, time2fit[itime], eparam]
                lines[1] = ax.errorbar(curfit, alt_fit, xerr=curerror, fmt='-.',
                                       c='g', linewidth=2)[0]
            else:
                lines[1] = ax.plot(curfit, alt_fit, marker='o', c='g', linewidth=2)[0]
            labels[1] = 'Fitted Parameters'
            # get and plot the input data

            numplots = len(time2file[itime])
            # set the limit for the parameter
            if curparm == 'vi':
                 ax.set(xlim=[-1.25*sp.nanmax(sp.absolute(curfit)), 1.25*sp.nanmax(sp.absolute(curfit))])
            elif curparm_in != 'ne':
                ax.set(xlim=[0.75*sp.nanmin(curfit), sp.minimum(1.25*sp.nanmax(curfit), 8000.)])
            elif (curparm_in == 'ne') and nelog:
                ax.set_xscale('log')

            ax.set_xlabel(params[iparam])
            ax.set_ylabel('Alt km')
            ax.set_title('{0} vs Altitude, Time: {1}s Az: {2}$^o$ El: {3}$^o$'.format(params[iparam], times[itime], *curbeam))
            imcount += 1
        # save figure
        figmplf.suptitle(suptitle, fontsize=20)
        if None in labels:
            labels.remove(None)
            lines.remove(None)
        plt.figlegend(lines, labels, loc = 'lower center', ncol=5, labelspacing=0.)
        fname = filetemplate+'_{0:0>3}.png'.format(i_fig)
        plt.savefig(fname)
        plt.close(figmplf)
示例#36
0
def defaultPolicyStoppingCriterion(nIter, currentPolicyArrayList, greedyPolicyList, criterion=0.0001):
	diffList = [(greedyPolicyList[i] - currentPolicyArrayList[i]) for i in range(len(greedyPolicyList))]
	pctDiffList = [(diffList[i] / currentPolicyArrayList[i]) for i in range(len(greedyPolicyList))]
	maxdiffList = [scipy.nanmax(abs(diff)) for diff in diffList]
	maxdiff = scipy.amax(maxdiffList)
	return ((maxdiff < criterion), maxdiff)
示例#37
0
    def _sort_chunk(self):
        """sort this chunk on the calculated discriminant functions

        method: "och"
            Examples for overlap samples
                  tau=-2     tau=-1      tau=0      tau=1      tau=2
            f1:  |-----|    |-----|    |-----|    |-----|    |-----|
            f2:    |-----|   |-----|   |-----|   |-----|   |-----|
            res:    +++       ++++      +++++      ++++       +++
        method: "sic"
            TODO:
        """

        # init
        if self.nf == 0:
            return
        spk_ep = epochs_from_binvec(
            sp.nanmax(self._disc, axis=1) > self._lpr_n)
        if spk_ep.size == 0:
            return
        l, r = get_cut(self._tf)
        for i in xrange(spk_ep.shape[0]):
            # FIX: for now we just continue for empty epochs,
            # where do they come from anyways?!
            if spk_ep[i, 1] - spk_ep[i, 0] < 1:
                continue
            mc = self._disc[spk_ep[i, 0]:spk_ep[i, 1], :].argmax(0).argmax()
            s = self._disc[spk_ep[i, 0]:spk_ep[i, 1], mc].argmax() + spk_ep[
                                                                     i, 0]
            spk_ep[i] = [s - l, s + r]

        # check epochs
        spk_ep = merge_epochs(spk_ep)
        n_ep = spk_ep.shape[0]

        for i in xrange(n_ep):
            #
            # method: overlap channels
            #
            if self._ovlp_taus is not None:
                # get event time and channel
                ep_t, ep_c = matrix_argmax(
                    self._disc[spk_ep[i, 0]:spk_ep[i, 1]])
                ep_t += spk_ep[i, 0]

                # lets fill in the results
                if ep_c < self.nf:
                    # was single unit
                    fid = self.get_idx_for(ep_c)
                    self.rval[fid].append(ep_t + self._chunk_offset)
                else:
                    # was overlap
                    my_oc_idx = self._oc_idx[ep_c]
                    fid0 = self.get_idx_for(my_oc_idx[0])
                    self.rval[fid0].append(ep_t + self._chunk_offset)
                    fid1 = self.get_idx_for(my_oc_idx[1])
                    self.rval[fid1].append(
                        ep_t + my_oc_idx[2] + self._chunk_offset)

            #
            # method: subtractive interference cancellation
            #
            else:
                ep_fout = self._fout[spk_ep[i, 0]:spk_ep[i, 1], :]
                ep_fout_norm = sp_la.norm(ep_fout)
                ep_disc = self._disc[spk_ep[i, 0]:spk_ep[i, 1], :].copy()

                niter = 0
                while sp.nanmax(ep_disc) > self._lpr_n:
                    # warn on spike overflow
                    niter += 1
                    if niter > self.nf:
                        warnings.warn(
                            'more spikes than filters found! '
                            'epoch: [%d:%d] %d' % (
                                spk_ep[i][0] + self._chunk_offset,
                                spk_ep[i][1] + self._chunk_offset,
                                niter))
                        if niter > 2 * self.nf:
                            break

                    # find epoch details
                    ep_t = sp.nanargmax(sp.nanmax(ep_disc, axis=1))
                    ep_c = sp.nanargmax(ep_disc[ep_t])

                    # build subtrahend
                    sub = shifted_matrix_sub(
                        sp.zeros_like(ep_disc),
                        self._xcorrs[ep_c, :, :].T,
                        ep_t - self._tf + 1)

                    # apply subtrahend
                    if ep_fout_norm > sp_la.norm(ep_fout + sub):
                        ## DEBUG

                        if self.verbose.get_has_plot(1):
                            try:
                                from spikeplot import xvf_tensor, plt, COLOURS

                                x_range = sp.arange(
                                    spk_ep[i, 0] + self._chunk_offset,
                                    spk_ep[i, 1] + self._chunk_offset)
                                f = plt.figure()
                                f.suptitle('spike epoch [%d:%d] #%d' %
                                           (spk_ep[i, 0] + self._chunk_offset,
                                            spk_ep[i, 1] + self._chunk_offset,
                                            niter))
                                ax1 = f.add_subplot(211)
                                ax1.set_color_cycle(
                                    ['k'] + COLOURS[:self.nf] * 2)
                                ax1.plot(x_range, sp.zeros_like(x_range),
                                         ls='--')
                                ax1.plot(x_range, ep_disc, label='pre_sub')
                                ax1.axvline(x_range[ep_t], c='k')
                                ax2 = f.add_subplot(212, sharex=ax1, sharey=ax1)
                                ax2.set_color_cycle(['k'] + COLOURS[:self.nf])
                                ax2.plot(x_range, sp.zeros_like(x_range),
                                         ls='--')
                                ax2.plot(x_range, sub)
                                ax2.axvline(x_range[ep_t], c='k')
                            except:
                                pass

                        ## BUGED

                        ep_disc += sub + self._lpr_s
                        if self._pr_s_b is not None:
                            bias, extend = self._pr_s_b
                            ep_disc[ep_t:min(ep_t + extend,
                                             ep_disc.shape[0]), ep_c] -= bias

                        ## DEBUG

                        if self.verbose.get_has_plot(1):
                            try:
                                ax1.plot(x_range, ep_disc, ls=':', lw=2,
                                         label='post_sub')
                                ax1.legend(loc=2)
                            except:
                                pass

                        ## BUGED

                        fid = self.get_idx_for(ep_c)
                        self.rval[fid].append(
                            spk_ep[i, 0] + ep_t + self._chunk_offset)
                    else:
                        break
                del ep_fout, ep_disc, sub
示例#38
0
def contourGD(geod,axstr,slicenum,vbounds=None,time = 0,gkey = None,cmap=defmap,
              fig=None,ax=None,title='',cbar=True,m=None,levels=None):
    """ """
    poscoords = ['cartesian','wgs84','enu','ecef']
    assert geod.coordnames.lower() in poscoords

    if geod.coordnames.lower() in ['cartesian','enu','ecef']:
        axdict = {'x':0,'y':1,'z':2}
        veckeys = ['x','y','z']
    elif geod.coordnames.lower() == 'wgs84':
        axdict = {'lat':0,'long':1,'alt':2}# shows which row is this coordinate
        veckeys = ['long','lat','alt']# shows which is the x, y and z axes for plotting
    if type(axstr)==str:
        axis=axstr
    else:
        axis= veckeys[axstr]
    veckeys.remove(axis.lower())
    veckeys.append(axis.lower())
    datacoords = geod.dataloc
    xyzvecs = {l:sp.unique(datacoords[:,axdict[l]]) for l in veckeys}
    #make matrices
    M1,M2 = sp.meshgrid(xyzvecs[veckeys[0]],xyzvecs[veckeys[1]])
    slicevec = sp.unique(datacoords[:,axdict[axis]])
    min_idx = sp.argmin(sp.absolute(slicevec-slicenum))
    slicenum=slicevec[min_idx]
    rec_coords = {axdict[veckeys[0]]:M1.flatten(),axdict[veckeys[1]]:M2.flatten(),
                  axdict[axis]:slicenum*sp.ones(M2.size)}


    new_coords = sp.zeros((M1.size,3))
    #make coordinates
    for ckey in rec_coords.keys():
        new_coords[:,ckey] = rec_coords[ckey]
    #determine the data name
    if gkey is None:
        gkey = geod.data.keys[0]

    # get the data location, first check if the data can be just reshaped then do a
    # search

    sliceindx = slicenum==datacoords[:,axdict[axis]]

    datacoordred = datacoords[sliceindx]
    rstypes = ['C','F','A']
    nfounds = True
    M1dlfl = datacoordred[:,axdict[veckeys[0]]]
    M2dlfl = datacoordred[:,axdict[veckeys[1]]]
    for ir in rstypes:
        M1dl = sp.reshape(M1dlfl,M1.shape,order =ir)
        M2dl = sp.reshape(M2dlfl,M1.shape,order =ir)
        if sp.logical_and(sp.allclose(M1dl,M1),sp.allclose(M2dl,M2)):
            nfounds=False
            break
    if nfounds:
        dataout = geod.datareducelocation(new_coords,geod.coordnames,gkey)[:,time]
        dataout = sp.reshape(dataout,M1.shape)
    else:
        dataout = sp.reshape(geod.data[gkey][sliceindx,time],M1.shape,order=ir)

    title = insertinfo(title,gkey,geod.times[time,0],geod.times[time,1])

    if (ax is None) and (fig is None):
        fig = plt.figure(facecolor='white')
        ax = fig.gca()
    elif ax is None:
        ax = fig.gca()

    if vbounds is None:
        vbounds=[sp.nanmin(dataout),sp.nanmax(dataout)]
    if levels is None:
        levels=sp.linspace(vbounds[0],vbounds[1],5)
    if m is None:
        ploth = ax.contour(M1,M2,dataout,levels = levels,vmin=vbounds[0], vmax=vbounds[1],cmap = cmap)
        ax.axis([xyzvecs[veckeys[0]].min(), xyzvecs[veckeys[0]].max(),
                 xyzvecs[veckeys[1]].min(), xyzvecs[veckeys[1]].max()])
        if cbar:
            cbar2 = plt.colorbar(ploth, ax=ax, format='%.0e')
        else:
            cbar2 = None
        ax.set_title(title)
        ax.set_xlabel(veckeys[0])
        ax.set_ylabel(veckeys[1])
    else:
        N1,N2 = m(M1,M2)
        ploth = ax.contour(N1,N2,dataout,levels = levels,vmin=vbounds[0], vmax=vbounds[1],cmap = cmap)

        if cbar:
            #cbar2 = m.colorbar(ploth,  format='%.0e')
            cbar2 = m.colorbar(ploth)
        else:
            cbar2 = None


    return(ploth,cbar2)
                tmp_psi_ = hdf5_handles[t]['psi'][:, tmp_idx]
                tmp_iso1 = hdf5_handles[t]['iso1'][:,
                                                   tmp_idx] * sf[t][:,
                                                                    sp.newaxis]
                tmp_iso2 = hdf5_handles[t]['iso2'][:,
                                                   tmp_idx] * sf[t][:,
                                                                    sp.newaxis]
                for mr in mr_t:
                    for i, p in enumerate(tissues):
                        tmp_psi = tmp_psi_[t_idx[(t, p)], :]
                        n_idx = sp.c_[tmp_iso1[t_idx[(t, p)], :].max(axis=0),
                                      tmp_iso2[t_idx[(t, p)], :].max(
                                          axis=0)].min(axis=1) < mr
                        tmp_psi[:, n_idx] = sp.nan
                        idx_nn = ~sp.isnan(tmp_psi)
                        d_psi = sp.nanmax(tmp_psi, axis=0) - sp.nanmin(tmp_psi,
                                                                       axis=0)
                        d_psi[sp.isnan(d_psi)] = 0
                        for dp in d_psi_t:
                            if cc == 0:
                                count[(t, p)][(mr, dp)] = tmp_idx[
                                    (sp.sum(idx_nn, axis=0) >= nan_t)
                                    & (d_psi >= dp)]
                            else:
                                count[(t, p)][(mr, dp)] = sp.r_[
                                    count[(t, p)][(mr, dp)],
                                    tmp_idx[(sp.sum(idx_nn, axis=0) >= nan_t)
                                            & (d_psi >= dp)]]

        ### store count as pre-processed pickle
        cPickle.dump((count, tissues, dsets, tids, is_tumor, t_idx),
示例#40
0
def veldist_1d_slope(plotfilename,phi=_DEFAULTPHI,R=_DEFAULTR,
                     ngrid=201,saveDir='../bar/1dvar/'):
    """
    NAME:
       veldist_1d_slope
    PURPOSE:
       make a plot showing the influence of the shape of the rotation curve
    INPUT:
       plotfilename - filename for figure
       phi - Galactocentric azimuth
       R - Galactocentric radius
       ngrid - number of grid-points to calculate the los velocity distribution
               on
       saveDir - save pickles here
    OUTPUT:
       Figure in plotfilename
    HISTORY:
       2010-05-15 - Written - Bovy (NYU)
    """
    slopes= [-0.2,-0.1,0.,0.1,0.2]

    vloslinspace= (-.9,.9,ngrid)
    vloss= sc.linspace(*vloslinspace)

    vlosds= []
    basesavefilename= os.path.join(saveDir,'slope_')
    for slope in slopes:
        thissavefilename= basesavefilename+'%.1f.sav' % slope
        if os.path.exists(thissavefilename):
            print "Restoring los-velocity distribution at slope %.1f" % slope
            savefile= open(thissavefilename,'r')
            vlosd= pickle.load(savefile)
            savefile.close()
        else:
            print "Calculating los-velocity distribution at slope %.1f" % slope
            potparams= (0.9,0.01,25.*_degtorad,.8,None)
            vlosd= predictVlos(vloslinspace,
                               l=phi,
                               d=R,
                               distCoord='GCGC',
                               pot='bar',beta=slope,
                               potparams=potparams)
            vlosd= vlosd/(sc.nansum(vlosd)*(vloss[1]-vloss[0]))
            savefile= open(thissavefilename,'w')
            pickle.dump(vlosd,savefile)
            savefile.close()
        vlosds.append(vlosd)
    #Plot
    plot.bovy_print()
    plot.bovy_plot(vloss,vlosds[2],'k-',zorder=3,
                   xrange=[vloslinspace[0],vloslinspace[1]],
                   yrange=[0.,sc.nanmax(sc.array(vlosds).flatten())*1.1],
                   xlabel=r'$v_{\mathrm{los}} / v_0$')
    plot.bovy_plot(vloss,vlosds[0],ls='-',color='0.75',
                   overplot=True,zorder=2,lw=2.)
    plot.bovy_plot(vloss,vlosds[1],ls='-',color='0.60',
                   overplot=True,zorder=2,lw=2.)
    plot.bovy_plot(vloss,vlosds[3],ls='-',color='0.45',
                   overplot=True,zorder=2,lw=1.5)
    plot.bovy_plot(vloss,vlosds[4],ls='-',color='0.3',
                   overplot=True,zorder=2,lw=1.5)
    plot.bovy_text(r'$\mathrm{shape\ of\ the\ rotation\ curve}$',title=True)
    plot.bovy_text(0.5,.5,r'$\beta = -0.2$'+'\n'+r'$\beta = -0.1$'+ '\n'+
                   r'$\beta = \phantom{-}0.0$'+'\n'+
                   r'$\beta= \phantom{-}0.1$'+'\n'+
                   r'$\beta= \phantom{-}0.2$')
    plot.bovy_end_print(plotfilename)
示例#41
0
def bovy_dens2d(X,**kwargs):
    """
    NAME:

       bovy_dens2d

    PURPOSE:

       plot a 2d density with optional contours

    INPUT:

       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

       xrange

       yrange

       noaxes - don't plot any axes

       overplot - if True, overplot

       colorbar - if True, add colorbar

       shrink= colorbar argument: shrink the colorbar by the factor (optional)

       Contours:
       
       contours - if True, draw contours (10 by default)

       levels - contour-levels

       cntrmass - if True, the density is a probability and the levels 
                  are probability masses contained within the contour

       cntrcolors - colors for contours (single color or array)

       cntrlabel - label the contours

       cntrlw, cntrls - linewidths and linestyles for contour

       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

       onedhists - if True, make one-d histograms on the sides

       onedhistcolor - histogram color

       retAxes= return all Axes instances

    OUTPUT:

    HISTORY:

       2010-03-09 - Written - Bovy (NYU)

    """
    if kwargs.has_key('overplot'):
        overplot= kwargs['overplot']
        kwargs.pop('overplot')
    else:
        overplot= False
    if not overplot:
        pyplot.figure()
    if kwargs.has_key('xlabel'):
        xlabel= kwargs['xlabel']
        kwargs.pop('xlabel')
    else:
        xlabel=None
    if kwargs.has_key('ylabel'):
        ylabel= kwargs['ylabel']
        kwargs.pop('ylabel')
    else:
        ylabel=None
    if kwargs.has_key('zlabel'):
        zlabel= kwargs['zlabel']
        kwargs.pop('zlabel')
    else:
        zlabel=None   
    if kwargs.has_key('extent'):
        extent= kwargs['extent']
        kwargs.pop('extent')
    else:
        if kwargs.has_key('xrange'):
            xlimits=list(kwargs['xrange'])
            kwargs.pop('xrange')
        else:
            xlimits=[0,X.shape[0]]
        if kwargs.has_key('yrange'):
            ylimits=list(kwargs['yrange'])
            kwargs.pop('yrange')
        else:
            ylimits=[0,X.shape[1]]
        extent= xlimits+ylimits
    if not kwargs.has_key('aspect'):
        kwargs['aspect']= (xlimits[1]-xlimits[0])/float(ylimits[1]-ylimits[0])
    if kwargs.has_key('noaxes'):
        noaxes= kwargs['noaxes']
        kwargs.pop('noaxes')
    else:
        noaxes= False
    if (kwargs.has_key('contours') and kwargs['contours']) or \
            kwargs.has_key('levels') or \
            (kwargs.has_key('cntrmass') and kwargs['cntrmass']):
        contours= True
    else:
        contours= False
    if kwargs.has_key('contours'): kwargs.pop('contours')
    if kwargs.has_key('levels'):
        levels= kwargs['levels']
        kwargs.pop('levels')
    elif contours:
        if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
            levels= sc.linspace(0.,1.,_DEFAULTNCNTR)
        elif True in sc.isnan(sc.array(X)):
            levels= sc.linspace(sc.nanmin(X),sc.nanmax(X),_DEFAULTNCNTR)
        else:
            levels= sc.linspace(sc.amin(X),sc.amax(X),_DEFAULTNCNTR)
    if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
        cntrmass= True
        kwargs.pop('cntrmass')
    else:
        cntrmass= False
        if kwargs.has_key('cntrmass'): kwargs.pop('cntrmass')
    if kwargs.has_key('cntrcolors'):
        cntrcolors= kwargs['cntrcolors']
        kwargs.pop('cntrcolors')
    elif contours:
        cntrcolors='k'
    if kwargs.has_key('cntrlabel') and kwargs['cntrlabel']:
        cntrlabel= True
        kwargs.pop('cntrlabel')
    else:
        cntrlabel= False
        if kwargs.has_key('cntrlabel'): kwargs.pop('cntrlabel')
    if kwargs.has_key('cntrlw'):
        cntrlw= kwargs['cntrlw']
        kwargs.pop('cntrlw')
    elif contours:
        cntrlw= None
    if kwargs.has_key('cntrls'):
        cntrls= kwargs['cntrls']
        kwargs.pop('cntrls')
    elif contours:
        cntrls= None
    if kwargs.has_key('cntrlabelsize'):
        cntrlabelsize= kwargs['cntrlabelsize']
        kwargs.pop('cntrlabelsize')
    elif contours:
        cntrlabelsize= None
    if kwargs.has_key('cntrlabelcolors'):
        cntrlabelcolors= kwargs['cntrlabelcolors']
        kwargs.pop('cntrlabelcolors')
    elif contours:
        cntrlabelcolors= None
    if kwargs.has_key('cntrinline'):
        cntrinline= kwargs['cntrinline']
        kwargs.pop('cntrinline')
    elif contours:
        cntrinline= None
    if kwargs.has_key('retCumImage'):
        retCumImage= kwargs['retCumImage']
        kwargs.pop('retCumImage')
    else:
        retCumImage= False
    if kwargs.has_key('colorbar'):
        cb= kwargs['colorbar']
        kwargs.pop('colorbar')
    else:
        cb= False
    if kwargs.has_key('shrink'):
        shrink= kwargs['shrink']
        kwargs.pop('shrink')
    else:
        shrink= None
    if kwargs.has_key('onedhists'):
        onedhists= kwargs['onedhists']
        kwargs.pop('onedhists')
    else:
        onedhists= False
    if kwargs.has_key('onedhistcolor'):
        onedhistcolor= kwargs['onedhistcolor']
        kwargs.pop('onedhistcolor')
    else:
        onedhistcolor= 'k'
    if kwargs.has_key('retAxes'):
        retAxes= kwargs['retAxes']
        kwargs.pop('retAxes')
    else:
        retAxes= False
    if onedhists:
        if overplot: fig= pyplot.gcf()
        else: fig= pyplot.figure()
        nullfmt   = NullFormatter()         # no labels
        # definitions for the axes
        left, width = 0.1, 0.65
        bottom, height = 0.1, 0.65
        bottom_h = left_h = left+width
        rect_scatter = [left, bottom, width, height]
        rect_histx = [left, bottom_h, width, 0.2]
        rect_histy = [left_h, bottom, 0.2, height]
        axScatter = pyplot.axes(rect_scatter)
        axHistx = pyplot.axes(rect_histx)
        axHisty = pyplot.axes(rect_histy)
        # no labels
        axHistx.xaxis.set_major_formatter(nullfmt)
        axHistx.yaxis.set_major_formatter(nullfmt)
        axHisty.xaxis.set_major_formatter(nullfmt)
        axHisty.yaxis.set_major_formatter(nullfmt)
        fig.sca(axScatter)
    ax=pyplot.gca()
    ax.set_autoscale_on(False)
    out= pyplot.imshow(X,extent=extent,**kwargs)
    pyplot.axis(extent)
    _add_axislabels(xlabel,ylabel)
    _add_ticks()
    #Add colorbar
    if cb:
        if shrink is None:
            if kwargs.has_key('aspect'):
                shrink= sc.amin([float(kwargs['aspect'])*0.87,1.])
            else:
                shrink= 0.87
        CB1= pyplot.colorbar(out,shrink=shrink)
        if not zlabel is None:
            if zlabel[0] != '$':
                thiszlabel=r'$'+zlabel+'$'
            else:
                thiszlabel=zlabel
            CB1.set_label(zlabel)
    if contours or retCumImage:
        if kwargs.has_key('aspect'):
            aspect= kwargs['aspect']
        else:
            aspect= None
        if kwargs.has_key('origin'):
            origin= kwargs['origin']
        else:
            origin= None
        if cntrmass:
            #Sum from the top down!
            X[sc.isnan(X)]= 0.
            sortindx= sc.argsort(X.flatten())[::-1]
            cumul= sc.cumsum(sc.sort(X.flatten())[::-1])/sc.sum(X.flatten())
            cntrThis= sc.zeros(sc.prod(X.shape))
            cntrThis[sortindx]= cumul
            cntrThis= sc.reshape(cntrThis,X.shape)
        else:
            cntrThis= X
        if contours:
            cont= pyplot.contour(cntrThis,levels,colors=cntrcolors,
                                 linewidths=cntrlw,extent=extent,aspect=aspect,
                                 linestyles=cntrls,origin=origin)
            if cntrlabel:
                pyplot.clabel(cont,fontsize=cntrlabelsize,
                              colors=cntrlabelcolors,
                              inline=cntrinline)
    if noaxes:
        ax.set_axis_off()
    #Add onedhists
    if not onedhists:
        if retCumImage:
            return cntrThis
        elif retAxes:
            return pyplot.gca()
        else:
            return out
    histx= sc.nansum(X.T,axis=1)*m.fabs(ylimits[1]-ylimits[0])/X.shape[1] #nansum bc nan is *no dens value*
    histy= sc.nansum(X.T,axis=0)*m.fabs(xlimits[1]-xlimits[0])/X.shape[0]
    histx[sc.isnan(histx)]= 0.
    histy[sc.isnan(histy)]= 0.
    dx= (extent[1]-extent[0])/float(len(histx))
    axHistx.plot(sc.linspace(extent[0]+dx,extent[1]-dx,len(histx)),histx,
                 drawstyle='steps-mid',color=onedhistcolor)
    dy= (extent[3]-extent[2])/float(len(histy))
    axHisty.plot(histy,sc.linspace(extent[2]+dy,extent[3]-dy,len(histy)),
                 drawstyle='steps-mid',color=onedhistcolor)
    axHistx.set_xlim( axScatter.get_xlim() )
    axHisty.set_ylim( axScatter.get_ylim() )
    axHistx.set_ylim( 0, 1.2*sc.amax(histx))
    axHisty.set_xlim( 0, 1.2*sc.amax(histy))
    if retCumImage:
        return cntrThis
    elif retAxes:
        return (axScatter,axHistx,axHisty)
    else:
        return out
示例#42
0
#cmd+="\cp -p "+northxyz_grd_path+" "+northxyz_filtered_grd_path+"\n";
#subprocess.call(cmd,shell=True);

out_f=netcdf.netcdf_file(eastxyz_filtered_grd_path,"w",True);
out_f.createDimension("x",x.shape[0]);
out_x=out_f.createVariable("x","f",("x",));
out_x[:]=x[:];
out_x._attributes["actual_range"]=scipy.array([x.min(), x.max()]);
out_f.createDimension("y",y.shape[0]);
out_y=out_f.createVariable("y","f",("y",));
out_y[:]=y[:];
out_y._attributes["actual_range"]=scipy.array([y.min(), y.max()]);
data_out=scipy.arange(x.shape[0]*y.shape[0]);
data_out.shape=(y.shape[0],x.shape[0]);
out_z=out_f.createVariable("z",scipy.dtype("float32").char,("y","x"));
out_z._attributes["actual_range"]=scipy.array([scipy.nanmin(eastvel), scipy.nanmax(eastvel)]);
out_z[:]=eastvel[:];
out_z._attributes["_FillValue"]="nan";
out_f.flush();
out_f.sync();
out_f.close();





exit();

# Write grid files...
cmd ="\nxyz2grd "+eastvel+" "+R+" -G"+eastxyz_filtered_grd_path+" -I120=\n";
cmd+="\nxyz2grd "+northvel+" "+R+" -G"+northxyz_filtered_grd_path+" -I120=\n";
示例#43
0
def bovy_dens2d(X, **kwargs):
    """
    NAME:
       bovy_dens2d

    PURPOSE:
       plot a 2d density with optional contours

    INPUT:
       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)
       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed
       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed
       xrange
       yrange
       noaxes - don't plot any axes
       overplot - if True, overplot

       Contours:
       contours - if True, draw contours (10 by default)
       levels - contour-levels
       cntrmass - if True, the density is a probability and the levels 
                  are probability masses contained within the contour
       cntrcolors - colors for contours (single color or array)
       cntrlabel - label the contours
       cntrlw, cntrls - linewidths and linestyles for contour
       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

    OUTPUT:

    HISTORY:
       2010-03-09 - Written - Bovy (NYU)
    """

    if 'overplot' in kwargs:
        overplot = kwargs['overplot']
        kwargs.pop('overplot')

    else:
        overplot = False

    if not overplot:
        pyplot.figure()

    ax = pyplot.gca()
    ax.set_autoscale_on(False)

    if 'xlabel' in kwargs:
        xlabel = kwargs['xlabel']
        kwargs.pop('xlabel')

    else:
        xlabel = None

    if 'ylabel' in kwargs:
        ylabel = kwargs['ylabel']
        kwargs.pop('ylabel')

    else:
        ylabel = None

    if 'extent' in kwargs:
        extent = kwargs['extent']
        kwargs.pop('extent')

    else:
        if 'xrange' in kwargs:
            xlimits = list(kwargs['xrange'])
            kwargs.pop('xrange')

        else:
            xlimits = [0, X.shape[0]]

        if 'yrange' in kwargs:
            ylimits = list(kwargs['yrange'])
            kwargs.pop('yrange')

        else:
            ylimits = [0, X.shape[1]]

        extent = xlimits + ylimits

    if 'noaxes' in kwargs:
        noaxes = kwargs['noaxes']
        kwargs.pop('noaxes')

    else:
        noaxes = False

    if 'contours' in kwargs and kwargs['contours']:
        contours = True
        kwargs.pop('contours')

    elif kwargs.has_key('levels') or 'cntrmass' in kwargs:
        contours = True

    else:
        contours = False

        if 'contours' in kwargs:
            kwargs.pop('contours')

    if 'levels' in kwargs:
        levels = kwargs['levels']
        kwargs.pop('levels')

    elif contours:
        if 'cntrmass' in kwargs and kwargs['cntrmass']:
            levels = sc.linspace(0., 1., _DEFAULTNCNTR)

        elif True in sc.isnan(sc.array(X)):
            levels = sc.linspace(sc.nanmin(X), sc.nanmax(X), _DEFAULTNCNTR)

        else:
            levels = sc.linspace(sc.amin(X), sc.amax(X), _DEFAULTNCNTR)

    if 'cntrmass' in kwargs and kwargs['cntrmass']:
        cntrmass = True
        kwargs.pop('cntrmass')

    else:
        cntrmass = False
        if 'cntrmass' in kwargs: kwargs.pop('cntrmass')

    if 'cntrcolors' in kwargs:
        cntrcolors = kwargs['cntrcolors']
        kwargs.pop('cntrcolors')

    elif contours:
        cntrcolors = 'k'

    if 'cntrlabel' in kwargs and kwargs['cntrlabel']:
        cntrlabel = True
        kwargs.pop('cntrlabel')

    else:
        cntrlabel = False
        if 'cntrlabel' in kwargs: kwargs.pop('cntrlabel')

    if 'cntrlw' in kwargs:
        cntrlw = kwargs['cntrlw']
        kwargs.pop('cntrlw')

    elif contours:
        cntrlw = None

    if 'cntrls' in kwargs:
        cntrls = kwargs['cntrls']
        kwargs.pop('cntrls')

    elif contours:
        cntrls = None

    if 'cntrlabelsize' in kwargs:
        cntrlabelsize = kwargs['cntrlabelsize']
        kwargs.pop('cntrlabelsize')

    elif contours:
        cntrlabelsize = None

    if 'cntrlabelcolors' in kwargs:
        cntrlabelcolors = kwargs['cntrlabelcolors']
        kwargs.pop('cntrlabelcolors')

    elif contours:
        cntrlabelcolors = None

    if 'cntrinline' in kwargs:
        cntrinline = kwargs['cntrinline']
        kwargs.pop('cntrinline')

    elif contours:
        cntrinline = None

    if 'retCumImage' in kwargs:
        retCumImage = kwargs['retCumImage']
        kwargs.pop('retCumImage')

    else:
        retCumImage = False

    out = pyplot.imshow(X, extent=extent, **kwargs)
    pyplot.axis(extent)

    _add_axislabels(xlabel, ylabel)
    _add_ticks()

    if contours:
        if 'aspect' in kwargs:
            aspect = kwargs['aspect']

        else:
            aspect = None

        if 'origin' in kwargs:
            origin = kwargs['origin']

        else:
            origin = None

        if cntrmass:
            #Sum from the top down!
            sortindx = sc.argsort(X.flatten())[::-1]
            cumul = sc.cumsum(sc.sort(X.flatten())[::-1]) / sc.sum(X.flatten())
            cntrThis = sc.zeros(sc.prod(X.shape))
            cntrThis[sortindx] = cumul
            cntrThis = sc.reshape(cntrThis, X.shape)

        else:
            cntrThis = X

        cont = pyplot.contour(cntrThis,
                              levels,
                              colors=cntrcolors,
                              linewidths=cntrlw,
                              extent=extent,
                              aspect=aspect,
                              linestyles=cntrls,
                              origin=origin)

        if cntrlabel:
            pyplot.clabel(cont,
                          fontsize=cntrlabelsize,
                          colors=cntrlabelcolors,
                          inline=cntrinline)

    if noaxes:
        ax.set_axis_off()

    if retCumImage:
        return cntrThis

    else:
        return out
示例#44
0
def veldist_1d_convolve(plotfilename,phi=_DEFAULTPHI,R=_DEFAULTR,
                        ngrid=201,saveDir='../bar/1dvar/'):
    """
    NAME:
       veldist_1d_convolve
    PURPOSE:
       make a plot showing the influence of the distance uncertainties
    INPUT:
       plotfilename - filename for figure
       phi - Galactocentric azimuth
       R - Galactocentric radius
       ngrid - number of grid-points to calculate the los velocity distribution
               on
       saveDir - save pickles here
    OUTPUT:
       Figure in plotfilename
    HISTORY:
       2010-05-15 - Written - Bovy (NYU)
    """
    convolves= [0.,0.2,0.3]

    vloslinspace= (-.9,.9,ngrid)
    vloss= sc.linspace(*vloslinspace)

    vlosds= []
    basesavefilename= os.path.join(saveDir,'convolve_')
    for distsig in convolves:
        thissavefilename= basesavefilename+'%.1f.sav' % distsig
        if os.path.exists(thissavefilename):
            print "Restoring los-velocity distribution at distance uncertainties %.1f" % distsig
            savefile= open(thissavefilename,'r')
            vlosd= pickle.load(savefile)
            savefile.close()
        else:
            print "Calculating los-velocity distribution at distance uncertainties %.1f" % distsig
            potparams= (0.9,0.01,25.*_degtorad,.8,None)
            if distsig == 0.:
                vlosd= predictVlos(vloslinspace,
                                   l=phi,
                                   d=R,
                                   distCoord='GCGC',
                                   pot='bar',beta=0.,
                                   potparams=potparams)
            else:
                vlosd= predictVlosConvolve(vloslinspace,
                                           l=phi,
                                           d=R,
                                           distCoord='GCGC',
                                           pot='bar',beta=0.,
                                           potparams=potparams,
                                           convolve=distsig)
            vlosd= vlosd/(sc.nansum(vlosd)*(vloss[1]-vloss[0]))
            savefile= open(thissavefilename,'w')
            pickle.dump(vlosd,savefile)
            savefile.close()
        vlosds.append(vlosd)
    #Plot
    plot.bovy_print()
    plot.bovy_plot(vloss,vlosds[0],'k-',zorder=3,
                   xrange=[vloslinspace[0],vloslinspace[1]],
                   yrange=[0.,sc.nanmax(sc.array(vlosds).flatten())*1.1],
                   xlabel=r'$v_{\mathrm{los}} / v_0$')
    plot.bovy_plot(vloss,vlosds[1],ls='-',color='0.75',
                   overplot=True,zorder=2,lw=2.)
    plot.bovy_plot(vloss,vlosds[2],ls='-',color='0.6',
                   overplot=True,zorder=2,lw=2.)
    #plot.bovy_plot(vloss,vlosds[3],ls='-',color='0.45',
    #               overplot=True,zorder=2,lw=2.)
    plot.bovy_text(r'$\mathrm{distance\ uncertainties}$',title=True)
    plot.bovy_text(0.5,.65,r'$\sigma_d = 0$'+'\n'+r'$\sigma_d = 20 \%$'+'\n'+r'$\sigma_d = 30 \%$')
    plot.bovy_end_print(plotfilename)
示例#45
0
ax = Axes3D(fig)


#ax.plot3D(p[:,0], p[:,1], p[:,2])  #Plots the 3D graph - Stationary
def func(
    k
):  #########One of the input parameters needed for the animation.FuncAnimated which is used for iterating over the new points
    step = 10 * k  #The step size regulates the speed of the animation, very easy to change, just increase integer to speed up and decrease to slow down
    ax.plot3D(p[:step, 0], p[:step, 1], p[:step, 2],
              color='g')  #For each i integrates the new function


###################################################################################

###Degfining the axes
ax.set_xlim3d([sp.nanmin(p[:, 0]), sp.nanmax(p[:, 0])
               ])  ########ABLE TO PLOT AXIS EXCLUDING NAN VALUES
ax.set_xlabel('X')

ax.set_ylim3d([sp.nanmin(p[:, 1]), sp.nanmax(p[:, 1])])
ax.set_ylabel('Y')

ax.set_zlim3d([sp.nanmin(p[:, 2]), sp.nanmax(p[:, 2])])
ax.set_zlabel('Z')

###################################################################################
# ax.set_xlim3d([sp.amin(p[:,0]),sp.amax(p[:,0])]) #Axes without considering the nan values
# ax.set_xlabel('X')
#
# ax.set_ylim3d([sp.amin(p[:,1]),sp.amax(p[:,1])])
# ax.set_ylabel('Y')
示例#46
0
def contourGD(geod,axstr,slicenum,vbounds=None,time = 0,gkey = None,cmap=defmap,
              fig=None,ax=None,title='',cbar=True,m=None,levels=None):
    """ """
    poscoords = ['cartesian','wgs84','enu','ecef']
    assert geod.coordnames.lower() in poscoords

    if geod.coordnames.lower() in ['cartesian','enu','ecef']:
        axdict = {'x':0,'y':1,'z':2}
        veckeys = ['x','y','z']
    elif geod.coordnames.lower() == 'wgs84':
        axdict = {'lat':0,'long':1,'alt':2}# shows which row is this coordinate
        veckeys = ['long','lat','alt']# shows which is the x, y and z axes for plotting
    if type(axstr)==str:
        axis=axstr
    else:
        axis= veckeys[axstr]
    veckeys.remove(axis.lower())
    veckeys.append(axis.lower())
    datacoords = geod.dataloc
    xyzvecs = {l:sp.unique(datacoords[:,axdict[l]]) for l in veckeys}
    #make matrices
    M1,M2 = sp.meshgrid(xyzvecs[veckeys[0]],xyzvecs[veckeys[1]])
    slicevec = sp.unique(datacoords[:,axdict[axis]])
    min_idx = sp.argmin(sp.absolute(slicevec-slicenum))
    slicenum=slicevec[min_idx]
    rec_coords = {axdict[veckeys[0]]:M1.flatten(),axdict[veckeys[1]]:M2.flatten(),
                  axdict[axis]:slicenum*sp.ones(M2.size)}


    new_coords = sp.zeros((M1.size,3))
    #make coordinates
    for ckey in rec_coords.keys():
        new_coords[:,ckey] = rec_coords[ckey]
    #determine the data name
    if gkey is None:
        gkey = geod.data.keys[0]

    # get the data location, first check if the data can be just reshaped then do a
    # search

    sliceindx = slicenum==datacoords[:,axdict[axis]]

    datacoordred = datacoords[sliceindx]
    rstypes = ['C','F','A']
    nfounds = True
    M1dlfl = datacoordred[:,axdict[veckeys[0]]]
    M2dlfl = datacoordred[:,axdict[veckeys[1]]]
    for ir in rstypes:
        M1dl = sp.reshape(M1dlfl,M1.shape,order =ir)
        M2dl = sp.reshape(M2dlfl,M1.shape,order =ir)
        if sp.logical_and(sp.allclose(M1dl,M1),sp.allclose(M2dl,M2)):
            nfounds=False
            break
    if nfounds:
        dataout = geod.datareducelocation(new_coords,geod.coordnames,gkey)[:,time]
        dataout = sp.reshape(dataout,M1.shape)
    else:
        dataout = sp.reshape(geod.data[gkey][sliceindx,time],M1.shape,order=ir)

    title = insertinfo(title,gkey,geod.times[time,0],geod.times[time,1])

    if (ax is None) and (fig is None):
        fig = plt.figure(facecolor='white')
        ax = fig.gca()
    elif ax is None:
        ax = fig.gca()

    if vbounds is None:
        vbounds=[sp.nanmin(dataout),sp.nanmax(dataout)]
    if levels is None:
        levels=sp.linspace(vbounds[0],vbounds[1],5)
    if m is None:
        ploth = ax.contour(M1,M2,dataout,levels = levels,vmin=vbounds[0], vmax=vbounds[1],cmap = cmap)
        ax.axis([xyzvecs[veckeys[0]].min(), xyzvecs[veckeys[0]].max(),
                 xyzvecs[veckeys[1]].min(), xyzvecs[veckeys[1]].max()])
        if cbar:
            cbar2 = plt.colorbar(ploth, ax=ax, format='%.0e')
        else:
            cbar2 = None
        ax.set_title(title)
        ax.set_xlabel(veckeys[0])
        ax.set_ylabel(veckeys[1])
    else:
        N1,N2 = m(M1,M2)
        ploth = ax.contour(N1,N2,dataout,levels = levels,vmin=vbounds[0], vmax=vbounds[1],cmap = cmap)

        if cbar:
            #cbar2 = m.colorbar(ploth,  format='%.0e')
            cbar2 = m.colorbar(ploth)
        else:
            cbar2 = None


    return(ploth,cbar2)
示例#47
0
def bovy_dens2d(X,**kwargs):
    """
    NAME:

       bovy_dens2d

    PURPOSE:

       plot a 2d density with optional contours

    INPUT:

       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

       xrange

       yrange

       noaxes - don't plot any axes

       overplot - if True, overplot

       colorbar - if True, add colorbar

       shrink= colorbar argument: shrink the colorbar by the factor (optional)

       conditional - normalize each column separately (for probability densities, i.e., cntrmass=True)

       Contours:
       
       justcontours - if True, only draw contours

       contours - if True, draw contours (10 by default)

       levels - contour-levels

       cntrmass - if True, the density is a probability and the levels are probability masses contained within the contour

       cntrcolors - colors for contours (single color or array)

       cntrlabel - label the contours

       cntrlw, cntrls - linewidths and linestyles for contour

       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

       cntrSmooth - use ndimage.gaussian_filter to smooth before contouring

       onedhists - if True, make one-d histograms on the sides

       onedhistcolor - histogram color

       retAxes= return all Axes instances

       retCont= return the contour instance

    OUTPUT:

       plot to output device, Axes instances depending on input

    HISTORY:

       2010-03-09 - Written - Bovy (NYU)

    """
    overplot= kwargs.pop('overplot',False)
    if not overplot:
        pyplot.figure()
    xlabel= kwargs.pop('xlabel',None)
    ylabel= kwargs.pop('ylabel',None)
    zlabel= kwargs.pop('zlabel',None)
    if 'extent' in kwargs:
        extent= kwargs.pop('extent')
    else:
        xlimits= kwargs.pop('xrange',[0,X.shape[1]])
        ylimits= kwargs.pop('yrange',[0,X.shape[0]])
        extent= xlimits+ylimits
    if not 'aspect' in kwargs:
        kwargs['aspect']= (xlimits[1]-xlimits[0])/float(ylimits[1]-ylimits[0])
    noaxes= kwargs.pop('noaxes',False)
    justcontours= kwargs.pop('justcontours',False)
    if ('contours' in kwargs and kwargs['contours']) or \
            'levels' in kwargs or justcontours or \
            ('cntrmass' in kwargs and kwargs['cntrmass']):
        contours= True
    else:
        contours= False
    kwargs.pop('contours',None)
    if 'levels' in kwargs:
        levels= kwargs['levels']
        kwargs.pop('levels')
    elif contours:
        if 'cntrmass' in kwargs and kwargs['cntrmass']:
            levels= sc.linspace(0.,1.,_DEFAULTNCNTR)
        elif True in sc.isnan(sc.array(X)):
            levels= sc.linspace(sc.nanmin(X),sc.nanmax(X),_DEFAULTNCNTR)
        else:
            levels= sc.linspace(sc.amin(X),sc.amax(X),_DEFAULTNCNTR)
    cntrmass= kwargs.pop('cntrmass',False)
    conditional= kwargs.pop('conditional',False)
    cntrcolors= kwargs.pop('cntrcolors','k')
    cntrlabel= kwargs.pop('cntrlabel',False)
    cntrlw= kwargs.pop('cntrlw',None)
    cntrls= kwargs.pop('cntrls',None)
    cntrSmooth= kwargs.pop('cntrSmooth',None)
    cntrlabelsize= kwargs.pop('cntrlabelsize',None)
    cntrlabelcolors= kwargs.pop('cntrlabelcolors',None)
    cntrinline= kwargs.pop('cntrinline',None)
    retCumImage= kwargs.pop('retCumImage',False)
    cb= kwargs.pop('colorbar',False)
    shrink= kwargs.pop('shrink',None)
    onedhists= kwargs.pop('onedhists',False)
    onedhistcolor= kwargs.pop('onedhistcolor','k')
    retAxes= kwargs.pop('retAxes',False)
    retCont= kwargs.pop('retCont',False)
    if onedhists:
        if overplot: fig= pyplot.gcf()
        else: fig= pyplot.figure()
        nullfmt   = NullFormatter()         # no labels
        # definitions for the axes
        left, width = 0.1, 0.65
        bottom, height = 0.1, 0.65
        bottom_h = left_h = left+width
        rect_scatter = [left, bottom, width, height]
        rect_histx = [left, bottom_h, width, 0.2]
        rect_histy = [left_h, bottom, 0.2, height]
        axScatter = pyplot.axes(rect_scatter)
        axHistx = pyplot.axes(rect_histx)
        axHisty = pyplot.axes(rect_histy)
        # no labels
        axHistx.xaxis.set_major_formatter(nullfmt)
        axHistx.yaxis.set_major_formatter(nullfmt)
        axHisty.xaxis.set_major_formatter(nullfmt)
        axHisty.yaxis.set_major_formatter(nullfmt)
        fig.sca(axScatter)
    ax=pyplot.gca()
    ax.set_autoscale_on(False)
    if conditional:
        plotthis= X/sc.tile(sc.sum(X,axis=0),(X.shape[1],1))
    else:
        plotthis= X
    if not justcontours:
        out= pyplot.imshow(plotthis,extent=extent,**kwargs)
    if not overplot:
        pyplot.axis(extent)
        _add_axislabels(xlabel,ylabel)
        _add_ticks()
    #Add colorbar
    if cb and not justcontours:
        if shrink is None:
            shrink= sc.amin([float(kwargs.pop('aspect',1.))*0.87,1.])
        CB1= pyplot.colorbar(out,shrink=shrink)
        if not zlabel is None:
            if zlabel[0] != '$':
                thiszlabel=r'$'+zlabel+'$'
            else:
                thiszlabel=zlabel
            CB1.set_label(thiszlabel)
    if contours or retCumImage:
        aspect= kwargs.get('aspect',None)
        origin= kwargs.get('origin',None)
        if cntrmass:
            #Sum from the top down!
            plotthis[sc.isnan(plotthis)]= 0.
            sortindx= sc.argsort(plotthis.flatten())[::-1]
            cumul= sc.cumsum(sc.sort(plotthis.flatten())[::-1])/sc.sum(plotthis.flatten())
            cntrThis= sc.zeros(sc.prod(plotthis.shape))
            cntrThis[sortindx]= cumul
            cntrThis= sc.reshape(cntrThis,plotthis.shape)
        else:
            cntrThis= plotthis
        if contours:
            if not cntrSmooth is None:
                cntrThis= ndimage.gaussian_filter(cntrThis,cntrSmooth,
                                                  mode='nearest')
            cont= pyplot.contour(cntrThis,levels,colors=cntrcolors,
                                 linewidths=cntrlw,extent=extent,aspect=aspect,
                                 linestyles=cntrls,origin=origin)
            if cntrlabel:
                pyplot.clabel(cont,fontsize=cntrlabelsize,
                              colors=cntrlabelcolors,
                              inline=cntrinline)
    if noaxes:
        ax.set_axis_off()
    #Add onedhists
    if not onedhists:
        if retCumImage:
            return cntrThis
        elif retAxes:
            return pyplot.gca()
        elif retCont:
            return cont
        elif justcontours:
            return cntrThis
        else:
            return out
    histx= sc.nansum(X.T,axis=1)*m.fabs(ylimits[1]-ylimits[0])/X.shape[1] #nansum bc nan is *no dens value*
    histy= sc.nansum(X.T,axis=0)*m.fabs(xlimits[1]-xlimits[0])/X.shape[0]
    histx[sc.isnan(histx)]= 0.
    histy[sc.isnan(histy)]= 0.
    dx= (extent[1]-extent[0])/float(len(histx))
    axHistx.plot(sc.linspace(extent[0]+dx,extent[1]-dx,len(histx)),histx,
                 drawstyle='steps-mid',color=onedhistcolor)
    dy= (extent[3]-extent[2])/float(len(histy))
    axHisty.plot(histy,sc.linspace(extent[2]+dy,extent[3]-dy,len(histy)),
                 drawstyle='steps-mid',color=onedhistcolor)
    axHistx.set_xlim( axScatter.get_xlim() )
    axHisty.set_ylim( axScatter.get_ylim() )
    axHistx.set_ylim( 0, 1.2*sc.amax(histx))
    axHisty.set_xlim( 0, 1.2*sc.amax(histy))
    if retCumImage:
        return cntrThis
    elif retAxes:
        return (axScatter,axHistx,axHisty)
    elif justcontours:
        return cntrThis
    else:
        return out
示例#48
0
def bovy_dens2d(X,**kwargs):
    """
    NAME:

       bovy_dens2d

    PURPOSE:

       plot a 2d density with optional contours

    INPUT:

       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

       xrange

       yrange

       noaxes - don't plot any axes

       overplot - if True, overplot

       colorbar - if True, add colorbar

       shrink= colorbar argument: shrink the colorbar by the factor (optional)

       Contours:
       
       contours - if True, draw contours (10 by default)

       levels - contour-levels

       cntrmass - if True, the density is a probability and the levels 
                  are probability masses contained within the contour

       cntrcolors - colors for contours (single color or array)

       cntrlabel - label the contours

       cntrlw, cntrls - linewidths and linestyles for contour

       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

    OUTPUT:

    HISTORY:

       2010-03-09 - Written - Bovy (NYU)

    """
    if kwargs.has_key('overplot'):
        overplot= kwargs['overplot']
        kwargs.pop('overplot')
    else:
        overplot= False
    if not overplot:
        pyplot.figure()
    ax=pyplot.gca()
    ax.set_autoscale_on(False)
    if kwargs.has_key('xlabel'):
        xlabel= kwargs['xlabel']
        kwargs.pop('xlabel')
    else:
        xlabel=None
    if kwargs.has_key('ylabel'):
        ylabel= kwargs['ylabel']
        kwargs.pop('ylabel')
    else:
        ylabel=None
    if kwargs.has_key('zlabel'):
        zlabel= kwargs['zlabel']
        kwargs.pop('zlabel')
    else:
        zlabel=None   
    if kwargs.has_key('extent'):
        extent= kwargs['extent']
        kwargs.pop('extent')
    else:
        if kwargs.has_key('xrange'):
            xlimits=list(kwargs['xrange'])
            kwargs.pop('xrange')
        else:
            xlimits=[0,X.shape[0]]
        if kwargs.has_key('yrange'):
            ylimits=list(kwargs['yrange'])
            kwargs.pop('yrange')
        else:
            ylimits=[0,X.shape[1]]
        extent= xlimits+ylimits
    if not kwargs.has_key('aspect'):
        kwargs['aspect']= (xlimits[1]-xlimits[0])/float(ylimits[1]-ylimits[0])
    if kwargs.has_key('noaxes'):
        noaxes= kwargs['noaxes']
        kwargs.pop('noaxes')
    else:
        noaxes= False
    if (kwargs.has_key('contours') and kwargs['contours']) or \
            kwargs.has_key('levels') or \
            (kwargs.has_key('cntrmass') and kwargs['cntrmass']):
        contours= True
    else:
        contours= False
    if kwargs.has_key('contours'): kwargs.pop('contours')
    if kwargs.has_key('levels'):
        levels= kwargs['levels']
        kwargs.pop('levels')
    elif contours:
        if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
            levels= sc.linspace(0.,1.,_DEFAULTNCNTR)
        elif True in sc.isnan(sc.array(X)):
            levels= sc.linspace(sc.nanmin(X),sc.nanmax(X),_DEFAULTNCNTR)
        else:
            levels= sc.linspace(sc.amin(X),sc.amax(X),_DEFAULTNCNTR)
    if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
        cntrmass= True
        kwargs.pop('cntrmass')
    else:
        cntrmass= False
        if kwargs.has_key('cntrmass'): kwargs.pop('cntrmass')
    if kwargs.has_key('cntrcolors'):
        cntrcolors= kwargs['cntrcolors']
        kwargs.pop('cntrcolors')
    elif contours:
        cntrcolors='k'
    if kwargs.has_key('cntrlabel') and kwargs['cntrlabel']:
        cntrlabel= True
        kwargs.pop('cntrlabel')
    else:
        cntrlabel= False
        if kwargs.has_key('cntrlabel'): kwargs.pop('cntrlabel')
    if kwargs.has_key('cntrlw'):
        cntrlw= kwargs['cntrlw']
        kwargs.pop('cntrlw')
    elif contours:
        cntrlw= None
    if kwargs.has_key('cntrls'):
        cntrls= kwargs['cntrls']
        kwargs.pop('cntrls')
    elif contours:
        cntrls= None
    if kwargs.has_key('cntrlabelsize'):
        cntrlabelsize= kwargs['cntrlabelsize']
        kwargs.pop('cntrlabelsize')
    elif contours:
        cntrlabelsize= None
    if kwargs.has_key('cntrlabelcolors'):
        cntrlabelcolors= kwargs['cntrlabelcolors']
        kwargs.pop('cntrlabelcolors')
    elif contours:
        cntrlabelcolors= None
    if kwargs.has_key('cntrinline'):
        cntrinline= kwargs['cntrinline']
        kwargs.pop('cntrinline')
    elif contours:
        cntrinline= None
    if kwargs.has_key('retCumImage'):
        retCumImage= kwargs['retCumImage']
        kwargs.pop('retCumImage')
    else:
        retCumImage= False
    if kwargs.has_key('colorbar'):
        cb= kwargs['colorbar']
        kwargs.pop('colorbar')
    else:
        cb= False
    if kwargs.has_key('shrink'):
        shrink= kwargs['shrink']
        kwargs.pop('shrink')
    else:
        shrink= None
    out= pyplot.imshow(X,extent=extent,**kwargs)
    pyplot.axis(extent)
    _add_axislabels(xlabel,ylabel)
    _add_ticks()
    #Add colorbar
    if cb:
        if shrink is None:
            if kwargs.has_key('aspect'):
                shrink= sc.amin([float(kwargs['aspect'])*0.87,1.])
            else:
                shrink= 0.87
        CB1= pyplot.colorbar(out,shrink=shrink)
        if not zlabel is None:
            if zlabel[0] != '$':
                thiszlabel=r'$'+zlabel+'$'
            else:
                thiszlabel=zlabel
            CB1.set_label(zlabel)
    if contours or retCumImage:
        if kwargs.has_key('aspect'):
            aspect= kwargs['aspect']
        else:
            aspect= None
        if kwargs.has_key('origin'):
            origin= kwargs['origin']
        else:
            origin= None
        if cntrmass:
            #Sum from the top down!
            X[sc.isnan(X)]= 0.
            sortindx= sc.argsort(X.flatten())[::-1]
            cumul= sc.cumsum(sc.sort(X.flatten())[::-1])/sc.sum(X.flatten())
            cntrThis= sc.zeros(sc.prod(X.shape))
            cntrThis[sortindx]= cumul
            cntrThis= sc.reshape(cntrThis,X.shape)
        else:
            cntrThis= X
        if contours:
            cont= pyplot.contour(cntrThis,levels,colors=cntrcolors,
                                 linewidths=cntrlw,extent=extent,aspect=aspect,
                                 linestyles=cntrls,origin=origin)
            if cntrlabel:
                pyplot.clabel(cont,fontsize=cntrlabelsize,
                              colors=cntrlabelcolors,
                              inline=cntrinline)
    if noaxes:
        ax.set_axis_off()
    if retCumImage:
        return cntrThis
    else:
        return out
示例#49
0
def mcdata(data, other=None, x_offset=0, div=2, zero_line=True, events=None,
           epochs=None, plot_handle=None, colours=None, title=None,
           filename=None, show=True):
    """plot multichanneled data

    -> general plot parameter

    :type data: ndarray
    :param data: The base data to plot with observations(samples) on the rows
        and variables(channels) on the columns. This data will be plotted on in
        the n topmost axes.
    :type other: ndarray
    :param other: Other data that augments the base data. The other data will
        be plotted in one axe visibly divided from the base data.
        Default=None
    :type x_offset: int
    :param x_offset: A offset value for the x-axis(samples). This allows for
        the x-axis to show proper values for windows not starting at x=0. All
        values for events and epochs etc. will not be shown if they do not
        fall into the frame defined.
        Default=0
    :type div: float
    :param div: Percentage of the figure height to use as divider for the
        others plot.
        Default=1
    :type zero_line: bool
    :param zero_line: if True, mark the zero line for the data channels
        Default=True
    :type events: dict
    :param events: dict of events from [x_offset, x_offset+len(data)]. If the
        dict entries are lists/ndarrays, vertical markers will be placed at
        these samples. If the dict entries are tuples of length 2, like
        (ndarray,ndarray), the first is interpreted as the waveform, and the
        second as the events. Each unit will be coloured according to the
        'colours' vector.
        Default={}
    :type epochs: dict
    :param epochs: dict of epochs from [x_offset, x_offset+len(data)]. Epochs
        with numeric keys will be interpreted as belonging to the unit with
        that key and will be coloured according to the '' vector. All other
        epochs will appear in grey colour. Epochs are passed as a 2dim vector,
        like [[start,stop]].
        Default={}
    """

    # checks
    if not isinstance(data, sp.ndarray):
        raise ValueError("data is no ndarray!")
    if data.ndim != 2:
        raise ValueError("data is not dim=2!")
    fig, ax = check_plotting_handle(plot_handle, create_ax=False)

    # init
    fig.clear()
    has_other = other is not None
    ns, nc = data.shape
    x_vals = sp.arange(ns) + x_offset
    if colours is None:
        col_lst = COLOURS
    elif colours == 'black':
        col_lst = ['k'] * nc
    else:
        col_lst = colours
    ax_spacer = div * 0.01

    # prepare axes
    if has_other:
        ax_height = (0.8 - (nc + 1) * ax_spacer) / (nc + 1)
    else:
        ax_height = (0.8 - (nc - 1) * ax_spacer) / nc
    for c in xrange(nc):
        ax_size = (
            0.1, 0.9 - (c + 1) * ax_height - c * ax_spacer, 0.8, ax_height)
        ax = fig.add_axes(ax_size, sharex=ax, sharey=ax)
        ax.set_ylabel('CH %d' % c)
        if c != nc - 1:
            plt.setp(ax.get_xticklabels(), visible=False)
            #ax.set_xticklabels([tl.get_text() for tl in ax.get_xticklabels()], visible=False)
            #ax.set_xlim(x_vals[0], x_vals[-1])
            #ax.set_ylim(data.min() * 1.1, data.max() * 1.1)
    if has_other:
        ax = fig.add_axes((0.1, 0.1, 0.8, ax_height), sharex=ax)
        ax.set_ylabel('OTHER')
        #ax.set_xlim(x_vals[0], x_vals[-1])
        #ax.set_ylim(-other.max() * 1.1, other.max() * 1.1)

    # plot data
    for c, a in enumerate(fig.axes[:nc]):
        a.add_collection(
            mpl.collections.LineCollection(
                [sp.vstack((x_vals, data[:, c])).T], colors=[(0, 0, 0)]))

    # plot other
    if has_other:
        fig.axes[-1].add_collection(mpl.collections.LineCollection(
            [sp.vstack((x_vals, other[:, c])).T for c in
             xrange(other.shape[1])], colors=col_lst))

    # plot events
    if events is not None:
        for u in sorted(events):
            try:
                col = col_lst[u % len(col_lst)]
            except:
                col = 'gray'
            if isinstance(events[u], tuple):
                if len(events[u]) != 2:
                    raise ValueError('Event entry for unit %s is not a tuple '
                                     'of length 2' % u)
                u_wf, u_ev = events[u]
                if not u_wf.shape[1] == nc:
                    raise ValueError('Waveform for unit %s has mismatching '
                                     'channel count' % u)
                cut = int(sp.floor(u_wf.shape[0] / 2.0))
                for c, a in enumerate(fig.axes[:nc]):
                    a.add_collection(
                        mpl.collections.LineCollection(
                            [sp.vstack((sp.arange(u_wf.shape[0]) - cut + u_ev[i],
                                        u_wf[:, c])).T
                             for i in xrange(u_ev.size)], colors=[col]))
                if has_other:
                    for e in u_ev:
                        fig.axes[-1].axvline(e, c=col)
            elif isinstance(events[u], (list, sp.ndarray)):
                for a in fig.axes:
                    for e in events[u]:
                        a.axvline(e, c=col)
            else:
                raise ValueError('events for unit %s are messed up' % u)

    # plot epochs
    if epochs is not None:
        for u in sorted(epochs):
            try:
                col = col_lst[u % len(col_lst)]
            except:
                col = 'gray'
            for ep in epochs[u]:
                for a in fig.axes:
                    a.axvspan(ep[0], ep[1], fc=col, alpha=0.2)

    # zero lines
    if zero_line:
        for a in fig.axes:
            a.add_collection(
                mpl.collections.LineCollection(
                    [sp.vstack(([x_vals[0], x_vals[-1]], sp.zeros(2))).T],
                    linestyles='dashed',
                    colors=[(0, 0, 0)]))

    # scale axes
    fig.axes[0].set_xlim(x_vals[0], x_vals[-1])
    fig.axes[0].set_ylim(sp.nanmin(data) * 1.05, sp.nanmax(data) * 1.05)
    if has_other:
        fig.axes[-1].set_ylim(sp.nanmin(other) * 1.1, sp.nanmax(other) * 1.1)

    # figure title
    if title is not None:
        fig.suptitle(title)

    # produce plot
    if filename is not None:
        save_figure(fig, filename, '')
    if show is True:
        plt.show()

    # return
    return fig
示例#50
0
    def initTau(self, groups, pa=1e-3, pb=1e-3, qa=1., qb=1., qE=None):
        """Method to initialise the precision of the noise

        PARAMETERS
        ----------
        pa: float
            'a' parameter of the prior distribution
        pb :float
            'b' parameter of the prior distribution
        qb: float
            initialisation of the 'b' parameter of the variational distribution
        qE: float
            initial expectation of the variational distribution
        """

        # Sanity checks
        assert len(
            groups
        ) == self.N, 'sample groups labels do not match number of samples'

        tau_list = [None] * self.M

        # convert groups into integers from 0 to n_groups
        tmp = np.unique(groups, return_inverse=True)
        groups_ix = tmp[1]

        n_group = len(np.unique(groups_ix))

        for m in range(self.M):

            # Poisson noise model for count data
            if self.lik[m] == "poisson":
                tmp = 0.25 + 0.17 * s.nanmax(self.data[m], axis=0)
                tmp = s.repeat(tmp[None, :], self.N, axis=0)
                tau_list[m] = Tau_Seeger(dim=(self.N, self.D[m]), value=tmp)

            # Bernoulli noise model for binary data
            elif self.lik[m] == "bernoulli":
                # tau_list[m] = Constant_Node(dim=(self.D[m],), value=s.ones(self.D[m])*0.25)
                # tau_list[m] = Tau_Jaakkola(dim=(self.D[m],), value=0.25)
                tau_list[m] = Tau_Jaakkola(dim=((self.N, self.D[m])), value=1.)

            elif self.lik[m] == "zero_inflated":
                # contains parameters to initialise both normal and jaakola tau
                tau_list[m] = Zero_Inflated_Tau_Jaakkola(dim=((n_group,
                                                               self.D[m])),
                                                         value=1.,
                                                         pa=pa,
                                                         pb=pb,
                                                         qa=qa,
                                                         qb=qb,
                                                         groups=groups_ix,
                                                         qE=qE)

            # Gaussian noise model for continuous data
            elif self.lik[m] == "gaussian":
                tau_list[m] = TauD_Node(dim=(n_group, self.D[m]),
                                        pa=pa,
                                        pb=pb,
                                        qa=qa,
                                        qb=qb,
                                        groups=groups_ix,
                                        qE=qE)

        self.nodes["Tau"] = Multiview_Mixed_Node(self.M, *tau_list)
示例#51
0
def TVDI_function(inNDVI,inLST,pas=0.02,t=1,s1Min=0.3,s2Max=0.8,ss1Min=0.2,ss2Max=0.8):
    """
    Allows to calculates the TVDI.

    this function is a modified version of the IDL script published by Monica Garcia:
    (Garcia,M., Fernández, N., Villagarcía, L., Domingo, F.,  Puigdefábregas,J. & I. Sandholt. 2014. 2014. 
    Accuracy of the Temperature–Vegetation Dryness Index using MODIS under water-limited vs. 
    energy-limited evapotranspiration conditions  Remote Sensing of Environment 149, 100-117.) 

    Input:
        inNDVI: NDVI 
        inLST: land surface temperature
        pas: intervall of the NDVI


        S1min: lower threshold to determine the interval which will be used to determine the design parameters of LSTmax
        S2max: upper threshold to determine the interval which will be used to determine the design parameters of LSTmax
        ss1Min: lower threshold to determine the interval which will be used to determine the calculation of parmaètres LSTmin
        ss2Max: upper threshold to determine the interval which will be used to determine the design parameters of LSTmin

        
        t : t=0 to use Garcia M method  and t=1 to calculate the TVDI without using the threshold .
    Output: 
    
        TVDI
    """
    TVDI=sp.zeros(inLST.shape)
    if inNDVI.shape == inLST.shape :
        
        inNdvi=sp.reshape(inNDVI,(inNDVI.size))  
        inLst=sp.reshape(inLST,(inLST.size))  
        
        mini=sp.nanmin(inNdvi) # valeur minimale
        maxi=sp.nanmax(inNdvi) # valeur maximale
        
        
        arg=sp.argsort(inNdvi) #trie et renvoi les indices des valeurs ordonnées
    
        
        inV=inNdvi[arg] # on récupère les valeurs de NDVI
        inT=inLst[arg] # on récupère les valeurs de temperature
          # pas de decoupade du NDVI en intervalle
        
        
        percentileMax=99.0 
        
        percentileMin=1.0
        
        nObsMin=5 # la longeur minimale que doit avoir un intervalle pour être considéré
        
        ni= int(round((maxi-mini)/pas ) + 1) # Nombre total d'intervalle
        iValMax=0 
        iValMin=ni
        #création des vecteurs de stockage
        vx= sp.zeros((ni),dtype="float")
        vMaxi=sp.zeros((ni),dtype="float")
        vMini=sp.zeros((ni),dtype="float")
        
        vMaxi[0:]=None
        vMini[0:]=None
    
        vNpi=sp.zeros((ni),dtype="float")
        
        
        for k in range (ni):
            
            hi=k*pas + mini # valeur de depart de l'intervalle
            hs=k*pas + hi # valeur de fin de l'intervalle
            
            a=sp.where(inV <= hi)
            ii=a[0].max()
            
            b=sp.where(inV <= hs)
            iis=b[0].max()
            
            vNpi[k]=  iis - ii
            inTp=inT[ii:iis+1] #recuperation des valeurs de temperature contenues dans cet intervalle       
            vx[k]=(hs - hi )/2 +hi #recuperation de valeur de NDVI qui se trouve au milieu intervalle
            if vNpi[k] > nObsMin : #on teste si l'intervalle defini a suffisamment de valeur
    
                inTp=inTp[sp.argsort(inTp)] #on trie les valeurs de temperature contenu dans cet intervalle
                vMaxi[k]=inTp[ int( ( vNpi[k] *percentileMax/100 )) ] #on recupère la valeur de temperature qui correspond au 99em percentile de l'intervalle
                vMini[k]=inTp[ int( ( vNpi[k] *percentileMin/100 ))] #on recupère la valeur de temperature qui correspond au 99em percentile de l'intervalle
                if k >iValMax:
                    iValMax=k
                if k < iValMin:
                    iValMin=k
        
    	# calcul de LSTmax et LSTmin
        if (t==0):
            # Dry Edge     
        	   # on utilise un seuil inferieur pour trouver la fin de l'intervalle qui va servir pour le calcul de la regression linéaire
            # on utilise iValMin et iValMax pour eviter les nan c'est à dire on reste dans les intervalles qui respecte le nObsMin
            try:
                b=sp.where(vx < s1Min) # seuil inferieur à modifier
                ii=sp.nanmax([sp.nanmax(b[0]),iValMin]) 
                
                b=sp.where(vx < s2Max) # seuil superieur à modifier
                iis=sp.nanmin([sp.nanmax(b[0]),iValMax])
            
        
                # Wet Edge        
                c=sp.where(vx < ss1Min) # seuil inferieur à modifier
                ii2=sp.nanmax([sp.nanmax(c[0]),iValMin]) 
                
                c=sp.where(vx < ss2Max) # seuil superieur à modifier
                iis2=sp.nanmin([sp.nanmax(c[0]),iValMax])
            except:
                print "problème avec les valeurs inferieures et superieures utilisées"
        else:
            ii=iValMin
            iis=iValMax
            ii2=iValMin
            iis2=iValMax
            
        #calcul de la regression linéaire
        estimation1=sp.stats.linregress(vx[ii:iis+1],vMaxi[ii:iis+1])
        
        #LSTmax= a * NDVI + b
        lstmax_a=estimation1[0] #recuperation du paramètre de pente
        lstmax_b=estimation1[1] #recuperation du paramètre de l'ordonnée à l'origine
        
        estimation1=sp.stats.linregress(vx[ii2:iis2+1],vMini[ii2:iis2+1])
        #LSTmax= a * NDVI + b
        lstmin=sp.nanmin(vMini[ii2:iis2+1])
        #calcul de TVDI
        TVDI=( inLST - lstmin) / ( lstmax_b + (lstmax_a * inNDVI )- lstmin+0.00000001 )
#        TVDI=( inLST - lstmin) / ( ( lstmax_b + (lstmax_a * inNDVI ))- lstmin +0.00001 )
    else:
        print "les deux tableaux n'ont pas la même taille"
        exit
    
    return TVDI
示例#52
0
def plotbeamparametersv2(times,
                         configfile,
                         maindir,
                         fitdir='Fitted',
                         params=['Ne'],
                         filetemplate='params',
                         suptitle='Parameter Comparison',
                         werrors=False,
                         nelog=True):
    """
        This function will plot the desired parameters for each beam along range.
        The values of the input and measured parameters will be plotted
        Inputs
            Times - A list of times that will be plotted.
            configfile - The INI file with the simulation parameters that will be useds.
            maindir - The directory the images will be saved in.
            params - List of Parameter names that will be ploted. These need to match
                in the ionocontainer names.
            filetemplate - The first part of a the file names.
            suptitle - The supertitle for the plots.
            werrors - A bools that determines if the errors will be plotted.
    """
    sns.set_style("whitegrid")
    sns.set_context("notebook")
    #    rc('text', usetex=True)
    maindir = Path(maindir)
    ffit = maindir / fitdir / 'fitteddata.h5'
    inputfiledir = maindir / 'Origparams'
    (sensdict, simparams) = readconfigfile(configfile)

    paramslower = [ip.lower() for ip in params]
    Nt = len(times)
    Np = len(params)

    #Read in fitted data

    Ionofit = IonoContainer.readh5(str(ffit))
    dataloc = Ionofit.Sphere_Coords
    pnames = Ionofit.Param_Names
    pnameslower = sp.array([ip.lower() for ip in pnames.flatten()])
    p2fit = [
        sp.argwhere(ip == pnameslower)[0][0] if ip in pnameslower else None
        for ip in paramslower
    ]
    time2fit = [None] * Nt
    # Have to fix this because of time offsets
    if times[0] == 0:
        times += Ionofit.Time_Vector[0, 0]
    for itn, itime in enumerate(times):
        filear = sp.argwhere(Ionofit.Time_Vector[:, 0] >= itime)
        if len(filear) == 0:
            filenum = len(Ionofit.Time_Vector) - 1
        else:
            filenum = sp.argmin(sp.absolute(Ionofit.Time_Vector[:, 0] - itime))
        time2fit[itn] = filenum
    times_int = [Ionofit.Time_Vector[i] for i in time2fit]

    # determine the beams
    angles = dataloc[:, 1:]
    rng = sp.unique(dataloc[:, 0])
    b_arr = np.ascontiguousarray(angles).view(
        np.dtype((np.void, angles.dtype.itemsize * angles.shape[1])))
    _, idx, invidx = np.unique(b_arr, return_index=True, return_inverse=True)

    beamlist = angles[idx]

    Nb = beamlist.shape[0]

    # Determine which imput files are to be used.

    dirlist = sorted(inputfiledir.glob('*.h5'))
    dirliststr = [str(i) for i in dirlist]
    sortlist, outime, outfilelist, timebeg, timelist_s = IonoContainer.gettimes(
        dirliststr)
    timelist = timebeg.copy()
    time2file = [None] * Nt

    time2intime = [None] * Nt
    # go through times find files and then times in files
    for itn, itime in enumerate(times):

        filear = sp.argwhere(timelist >= itime)
        if len(filear) == 0:
            filenum = [len(timelist) - 1]
        else:
            filenum = filear[0]

        flist1 = []
        timeinflist = []
        for ifile in filenum:
            filetimes = timelist_s[ifile]
            log1 = (filetimes[:, 0] >= times_int[itn][0]) & (filetimes[:, 0] <
                                                             times_int[itn][1])
            log2 = (filetimes[:, 1] > times_int[itn][0]) & (filetimes[:, 1] <=
                                                            times_int[itn][1])
            log3 = (filetimes[:, 0] <= times_int[itn][0]) & (filetimes[:, 1] >
                                                             times_int[itn][1])
            log4 = (filetimes[:, 0] > times_int[itn][0]) & (filetimes[:, 1] <
                                                            times_int[itn][1])
            curtimes1 = sp.where(log1 | log2 | log3 | log4)[0].tolist()
            flist1 = flist1 + [ifile] * len(curtimes1)
            timeinflist = timeinflist + curtimes1
        time2intime[itn] = timeinflist
        time2file[itn] = flist1
    nfig = int(sp.ceil(Nt * Nb))

    imcount = 0
    curfilenum = -1
    # Loop for the figures
    for i_fig in range(nfig):
        lines = [None] * 2
        labels = [None] * 2
        (figmplf, axmat) = plt.subplots(int(sp.ceil(Np / 2)),
                                        2,
                                        figsize=(20, 15),
                                        facecolor='w')
        axvec = axmat.flatten()
        # loop that goes through each axis loops through each parameter, beam
        # then time.
        for ax in axvec:
            if imcount >= Nt * Nb * Np:
                break
            imcount_f = float(imcount)
            itime = int(sp.floor(imcount_f / Nb / Np))
            iparam = int(imcount_f / Nb - Np * itime)
            ibeam = int(imcount_f - (itime * Np * Nb + iparam * Nb))
            curbeam = beamlist[ibeam]

            altlist = sp.sin(curbeam[1] * sp.pi / 180.) * rng

            curparm = paramslower[iparam]
            # Use Ne from input to compare the ne derived from the power.
            if curparm == 'nepow':
                curparm_in = 'ne'
            else:
                curparm_in = curparm

            curcoord = sp.zeros(3)
            curcoord[1:] = curbeam

            for iplot, filenum in enumerate(time2file[itime]):

                if curfilenum != filenum:
                    curfilenum = filenum
                    datafilename = dirlist[filenum]
                    Ionoin = IonoContainer.readh5(str(datafilename))
                    if ('ti' in paramslower) or ('vi' in paramslower):
                        Ionoin = maketi(Ionoin)
                    pnames = Ionoin.Param_Names
                    pnameslowerin = sp.array(
                        [ip.lower() for ip in pnames.flatten()])
                prmloc = sp.argwhere(curparm_in == pnameslowerin)
                if prmloc.size != 0:
                    curprm = prmloc[0][0]
                # build up parameter vector bs the range values by finding the closest point in space in the input
                curdata = sp.zeros(len(rng))
                for irngn, irng in enumerate(rng):
                    curcoord[0] = irng
                    tempin = Ionoin.getclosestsphere(curcoord)[0][
                        time2intime[itime]]
                    Ntloc = tempin.shape[0]
                    tempin = sp.reshape(tempin, (Ntloc, len(pnameslowerin)))
                    curdata[irngn] = tempin[0, curprm]
                #actual plotting of the input data
                lines[0] = ax.plot(curdata,
                                   altlist,
                                   marker='o',
                                   c='b',
                                   linewidth=2)[0]
                labels[0] = 'Input Parameters'
            # Plot fitted data for the axis

            indxkep = np.argwhere(invidx == ibeam)[:, 0]
            curfit = Ionofit.Param_List[indxkep, time2fit[itime],
                                        p2fit[iparam]]
            rng_fit = dataloc[indxkep, 0]
            alt_fit = rng_fit * sp.sin(curbeam[1] * sp.pi / 180.)
            errorexist = 'n' + paramslower[iparam] in pnameslower
            if errorexist and werrors:
                eparam = sp.argwhere('n' +
                                     paramslower[iparam] == pnameslower)[0][0]
                curerror = Ionofit.Param_List[indxkep, time2fit[itime], eparam]
                lines[1] = ax.errorbar(curfit,
                                       alt_fit,
                                       xerr=curerror,
                                       fmt='-.',
                                       c='g',
                                       linewidth=2)[0]
            else:
                lines[1] = ax.plot(curfit,
                                   alt_fit,
                                   marker='o',
                                   c='g',
                                   linewidth=2)[0]
            labels[1] = 'Fitted Parameters'
            # get and plot the input data

            numplots = len(time2file[itime])
            # set the limit for the parameter
            if curparm == 'vi':
                ax.set(xlim=[
                    -1.25 * sp.nanmax(sp.absolute(curfit)), 1.25 *
                    sp.nanmax(sp.absolute(curfit))
                ])
            elif curparm_in != 'ne':
                ax.set(xlim=[
                    0.75 * sp.nanmin(curfit),
                    sp.minimum(1.25 * sp.nanmax(curfit), 8000.)
                ])
            elif (curparm_in == 'ne') and nelog:
                ax.set_xscale('log')

            ax.set_xlabel(params[iparam])
            ax.set_ylabel('Alt km')
            ax.set_title(
                '{0} vs Altitude, Time: {1}s Az: {2}$^o$ El: {3}$^o$'.format(
                    params[iparam], times[itime], *curbeam))
            imcount += 1
        # save figure
        figmplf.suptitle(suptitle, fontsize=20)
        if None in labels:
            labels.remove(None)
            lines.remove(None)
        plt.figlegend(lines,
                      labels,
                      loc='lower center',
                      ncol=5,
                      labelspacing=0.)
        fname = filetemplate + '_{0:0>3}.png'.format(i_fig)
        plt.savefig(fname)
        plt.close(figmplf)
示例#53
0
def bovy_dens2d(X, **kwargs):
    """
    NAME:

       bovy_dens2d

    PURPOSE:

       plot a 2d density with optional contours

    INPUT:

       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

       xrange

       yrange

       noaxes - don't plot any axes

       overplot - if True, overplot

       colorbar - if True, add colorbar

       shrink= colorbar argument: shrink the colorbar by the factor (optional)

       conditional - normalize each column separately (for probability densities, i.e., cntrmass=True)

       gcf=True does not start a new figure (does change the ranges and labels)

       Contours:
       
       justcontours - if True, only draw contours

       contours - if True, draw contours (10 by default)

       levels - contour-levels

       cntrmass - if True, the density is a probability and the levels are probability masses contained within the contour

       cntrcolors - colors for contours (single color or array)

       cntrlabel - label the contours

       cntrlw, cntrls - linewidths and linestyles for contour

       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

       cntrSmooth - use ndimage.gaussian_filter to smooth before contouring

       onedhists - if True, make one-d histograms on the sides

       onedhistcolor - histogram color

       retAxes= return all Axes instances

       retCont= return the contour instance

    OUTPUT:

       plot to output device, Axes instances depending on input

    HISTORY:

       2010-03-09 - Written - Bovy (NYU)

    """
    overplot = kwargs.pop('overplot', False)
    gcf = kwargs.pop('gcf', False)
    if not overplot and not gcf:
        pyplot.figure()
    xlabel = kwargs.pop('xlabel', None)
    ylabel = kwargs.pop('ylabel', None)
    zlabel = kwargs.pop('zlabel', None)
    if 'extent' in kwargs:
        extent = kwargs.pop('extent')
    else:
        xlimits = kwargs.pop('xrange', [0, X.shape[1]])
        ylimits = kwargs.pop('yrange', [0, X.shape[0]])
        extent = xlimits + ylimits
    if not 'aspect' in kwargs:
        kwargs['aspect'] = (xlimits[1] - xlimits[0]) / float(ylimits[1] -
                                                             ylimits[0])
    noaxes = kwargs.pop('noaxes', False)
    justcontours = kwargs.pop('justcontours', False)
    if ('contours' in kwargs and kwargs['contours']) or \
            'levels' in kwargs or justcontours or \
            ('cntrmass' in kwargs and kwargs['cntrmass']):
        contours = True
    else:
        contours = False
    kwargs.pop('contours', None)
    if 'levels' in kwargs:
        levels = kwargs['levels']
        kwargs.pop('levels')
    elif contours:
        if 'cntrmass' in kwargs and kwargs['cntrmass']:
            levels = sc.linspace(0., 1., _DEFAULTNCNTR)
        elif True in sc.isnan(sc.array(X)):
            levels = sc.linspace(sc.nanmin(X), sc.nanmax(X), _DEFAULTNCNTR)
        else:
            levels = sc.linspace(sc.amin(X), sc.amax(X), _DEFAULTNCNTR)
    cntrmass = kwargs.pop('cntrmass', False)
    conditional = kwargs.pop('conditional', False)
    cntrcolors = kwargs.pop('cntrcolors', 'k')
    cntrlabel = kwargs.pop('cntrlabel', False)
    cntrlw = kwargs.pop('cntrlw', None)
    cntrls = kwargs.pop('cntrls', None)
    cntrSmooth = kwargs.pop('cntrSmooth', None)
    cntrlabelsize = kwargs.pop('cntrlabelsize', None)
    cntrlabelcolors = kwargs.pop('cntrlabelcolors', None)
    cntrinline = kwargs.pop('cntrinline', None)
    retCumImage = kwargs.pop('retCumImage', False)
    cb = kwargs.pop('colorbar', False)
    shrink = kwargs.pop('shrink', None)
    onedhists = kwargs.pop('onedhists', False)
    onedhistcolor = kwargs.pop('onedhistcolor', 'k')
    retAxes = kwargs.pop('retAxes', False)
    retCont = kwargs.pop('retCont', False)
    if onedhists:
        if overplot or gcf: fig = pyplot.gcf()
        else: fig = pyplot.figure()
        nullfmt = NullFormatter()  # no labels
        # definitions for the axes
        left, width = 0.1, 0.65
        bottom, height = 0.1, 0.65
        bottom_h = left_h = left + width
        rect_scatter = [left, bottom, width, height]
        rect_histx = [left, bottom_h, width, 0.2]
        rect_histy = [left_h, bottom, 0.2, height]
        axScatter = pyplot.axes(rect_scatter)
        axHistx = pyplot.axes(rect_histx)
        axHisty = pyplot.axes(rect_histy)
        # no labels
        axHistx.xaxis.set_major_formatter(nullfmt)
        axHistx.yaxis.set_major_formatter(nullfmt)
        axHisty.xaxis.set_major_formatter(nullfmt)
        axHisty.yaxis.set_major_formatter(nullfmt)
        fig.sca(axScatter)
    ax = pyplot.gca()
    ax.set_autoscale_on(False)
    if conditional:
        plotthis = X / sc.tile(sc.sum(X, axis=0), (X.shape[1], 1))
    else:
        plotthis = X
    if not justcontours:
        out = pyplot.imshow(plotthis, extent=extent, **kwargs)
    if not overplot:
        pyplot.axis(extent)
        _add_axislabels(xlabel, ylabel)
        _add_ticks()
    #Add colorbar
    if cb and not justcontours:
        if shrink is None:
            shrink = sc.amin([float(kwargs.pop('aspect', 1.)) * 0.87, 1.])
        CB1 = pyplot.colorbar(out, shrink=shrink)
        if not zlabel is None:
            if zlabel[0] != '$':
                thiszlabel = r'$' + zlabel + '$'
            else:
                thiszlabel = zlabel
            CB1.set_label(thiszlabel)
    if contours or retCumImage:
        aspect = kwargs.get('aspect', None)
        origin = kwargs.get('origin', None)
        if cntrmass:
            #Sum from the top down!
            plotthis[sc.isnan(plotthis)] = 0.
            sortindx = sc.argsort(plotthis.flatten())[::-1]
            cumul = sc.cumsum(sc.sort(plotthis.flatten())[::-1]) / sc.sum(
                plotthis.flatten())
            cntrThis = sc.zeros(sc.prod(plotthis.shape))
            cntrThis[sortindx] = cumul
            cntrThis = sc.reshape(cntrThis, plotthis.shape)
        else:
            cntrThis = plotthis
        if contours:
            if not cntrSmooth is None:
                cntrThis = ndimage.gaussian_filter(cntrThis,
                                                   cntrSmooth,
                                                   mode='nearest')
            cont = pyplot.contour(cntrThis,
                                  levels,
                                  colors=cntrcolors,
                                  linewidths=cntrlw,
                                  extent=extent,
                                  aspect=aspect,
                                  linestyles=cntrls,
                                  origin=origin)
            if cntrlabel:
                pyplot.clabel(cont,
                              fontsize=cntrlabelsize,
                              colors=cntrlabelcolors,
                              inline=cntrinline)
    if noaxes:
        ax.set_axis_off()
    #Add onedhists
    if not onedhists:
        if retCumImage:
            return cntrThis
        elif retAxes:
            return pyplot.gca()
        elif retCont:
            return cont
        elif justcontours:
            return cntrThis
        else:
            return out
    histx = sc.nansum(X.T, axis=1) * m.fabs(ylimits[1] - ylimits[0]) / X.shape[
        1]  #nansum bc nan is *no dens value*
    histy = sc.nansum(X.T,
                      axis=0) * m.fabs(xlimits[1] - xlimits[0]) / X.shape[0]
    histx[sc.isnan(histx)] = 0.
    histy[sc.isnan(histy)] = 0.
    dx = (extent[1] - extent[0]) / float(len(histx))
    axHistx.plot(sc.linspace(extent[0] + dx, extent[1] - dx, len(histx)),
                 histx,
                 drawstyle='steps-mid',
                 color=onedhistcolor)
    dy = (extent[3] - extent[2]) / float(len(histy))
    axHisty.plot(histy,
                 sc.linspace(extent[2] + dy, extent[3] - dy, len(histy)),
                 drawstyle='steps-mid',
                 color=onedhistcolor)
    axHistx.set_xlim(axScatter.get_xlim())
    axHisty.set_ylim(axScatter.get_ylim())
    axHistx.set_ylim(0, 1.2 * sc.amax(histx))
    axHisty.set_xlim(0, 1.2 * sc.amax(histy))
    if retCumImage:
        return cntrThis
    elif retAxes:
        return (axScatter, axHistx, axHisty)
    elif justcontours:
        return cntrThis
    else:
        return out
示例#54
0
def bovy_dens2d(X, **kwargs):
    """
    NAME:

       bovy_dens2d

    PURPOSE:

       plot a 2d density with optional contours

    INPUT:

       first argument is the density

       matplotlib.pyplot.imshow keywords (see http://matplotlib.sourceforge.net/api/axes_api.html#matplotlib.axes.Axes.imshow)

       xlabel - (raw string!) x-axis label, LaTeX math mode, no $s needed

       ylabel - (raw string!) y-axis label, LaTeX math mode, no $s needed

       xrange

       yrange

       noaxes - don't plot any axes

       overplot - if True, overplot

       colorbar - if True, add colorbar

       shrink= colorbar argument: shrink the colorbar by the factor (optional)

       Contours:
       
       contours - if True, draw contours (10 by default)

       levels - contour-levels

       cntrmass - if True, the density is a probability and the levels 
                  are probability masses contained within the contour

       cntrcolors - colors for contours (single color or array)

       cntrlabel - label the contours

       cntrlw, cntrls - linewidths and linestyles for contour

       cntrlabelsize, cntrlabelcolors,cntrinline - contour arguments

       onedhists - if True, make one-d histograms on the sides

       onedhistcolor - histogram color

       retAxes= return all Axes instances

    OUTPUT:

    HISTORY:

       2010-03-09 - Written - Bovy (NYU)

    """
    if kwargs.has_key('overplot'):
        overplot = kwargs['overplot']
        kwargs.pop('overplot')
    else:
        overplot = False
    if not overplot:
        pyplot.figure()
    if kwargs.has_key('xlabel'):
        xlabel = kwargs['xlabel']
        kwargs.pop('xlabel')
    else:
        xlabel = None
    if kwargs.has_key('ylabel'):
        ylabel = kwargs['ylabel']
        kwargs.pop('ylabel')
    else:
        ylabel = None
    if kwargs.has_key('zlabel'):
        zlabel = kwargs['zlabel']
        kwargs.pop('zlabel')
    else:
        zlabel = None
    if kwargs.has_key('extent'):
        extent = kwargs['extent']
        kwargs.pop('extent')
    else:
        if kwargs.has_key('xrange'):
            xlimits = list(kwargs['xrange'])
            kwargs.pop('xrange')
        else:
            xlimits = [0, X.shape[0]]
        if kwargs.has_key('yrange'):
            ylimits = list(kwargs['yrange'])
            kwargs.pop('yrange')
        else:
            ylimits = [0, X.shape[1]]
        extent = xlimits + ylimits
    if not kwargs.has_key('aspect'):
        kwargs['aspect'] = (xlimits[1] - xlimits[0]) / float(ylimits[1] -
                                                             ylimits[0])
    if kwargs.has_key('noaxes'):
        noaxes = kwargs['noaxes']
        kwargs.pop('noaxes')
    else:
        noaxes = False
    if (kwargs.has_key('contours') and kwargs['contours']) or \
            kwargs.has_key('levels') or \
            (kwargs.has_key('cntrmass') and kwargs['cntrmass']):
        contours = True
    else:
        contours = False
    if kwargs.has_key('contours'): kwargs.pop('contours')
    if kwargs.has_key('levels'):
        levels = kwargs['levels']
        kwargs.pop('levels')
    elif contours:
        if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
            levels = sc.linspace(0., 1., _DEFAULTNCNTR)
        elif True in sc.isnan(sc.array(X)):
            levels = sc.linspace(sc.nanmin(X), sc.nanmax(X), _DEFAULTNCNTR)
        else:
            levels = sc.linspace(sc.amin(X), sc.amax(X), _DEFAULTNCNTR)
    if kwargs.has_key('cntrmass') and kwargs['cntrmass']:
        cntrmass = True
        kwargs.pop('cntrmass')
    else:
        cntrmass = False
        if kwargs.has_key('cntrmass'): kwargs.pop('cntrmass')
    if kwargs.has_key('cntrcolors'):
        cntrcolors = kwargs['cntrcolors']
        kwargs.pop('cntrcolors')
    elif contours:
        cntrcolors = 'k'
    if kwargs.has_key('cntrlabel') and kwargs['cntrlabel']:
        cntrlabel = True
        kwargs.pop('cntrlabel')
    else:
        cntrlabel = False
        if kwargs.has_key('cntrlabel'): kwargs.pop('cntrlabel')
    if kwargs.has_key('cntrlw'):
        cntrlw = kwargs['cntrlw']
        kwargs.pop('cntrlw')
    elif contours:
        cntrlw = None
    if kwargs.has_key('cntrls'):
        cntrls = kwargs['cntrls']
        kwargs.pop('cntrls')
    elif contours:
        cntrls = None
    if kwargs.has_key('cntrlabelsize'):
        cntrlabelsize = kwargs['cntrlabelsize']
        kwargs.pop('cntrlabelsize')
    elif contours:
        cntrlabelsize = None
    if kwargs.has_key('cntrlabelcolors'):
        cntrlabelcolors = kwargs['cntrlabelcolors']
        kwargs.pop('cntrlabelcolors')
    elif contours:
        cntrlabelcolors = None
    if kwargs.has_key('cntrinline'):
        cntrinline = kwargs['cntrinline']
        kwargs.pop('cntrinline')
    elif contours:
        cntrinline = None
    if kwargs.has_key('retCumImage'):
        retCumImage = kwargs['retCumImage']
        kwargs.pop('retCumImage')
    else:
        retCumImage = False
    if kwargs.has_key('colorbar'):
        cb = kwargs['colorbar']
        kwargs.pop('colorbar')
    else:
        cb = False
    if kwargs.has_key('shrink'):
        shrink = kwargs['shrink']
        kwargs.pop('shrink')
    else:
        shrink = None
    if kwargs.has_key('onedhists'):
        onedhists = kwargs['onedhists']
        kwargs.pop('onedhists')
    else:
        onedhists = False
    if kwargs.has_key('onedhistcolor'):
        onedhistcolor = kwargs['onedhistcolor']
        kwargs.pop('onedhistcolor')
    else:
        onedhistcolor = 'k'
    if kwargs.has_key('retAxes'):
        retAxes = kwargs['retAxes']
        kwargs.pop('retAxes')
    else:
        retAxes = False
    if onedhists:
        if overplot: fig = pyplot.gcf()
        else: fig = pyplot.figure()
        nullfmt = NullFormatter()  # no labels
        # definitions for the axes
        left, width = 0.1, 0.65
        bottom, height = 0.1, 0.65
        bottom_h = left_h = left + width
        rect_scatter = [left, bottom, width, height]
        rect_histx = [left, bottom_h, width, 0.2]
        rect_histy = [left_h, bottom, 0.2, height]
        axScatter = pyplot.axes(rect_scatter)
        axHistx = pyplot.axes(rect_histx)
        axHisty = pyplot.axes(rect_histy)
        # no labels
        axHistx.xaxis.set_major_formatter(nullfmt)
        axHistx.yaxis.set_major_formatter(nullfmt)
        axHisty.xaxis.set_major_formatter(nullfmt)
        axHisty.yaxis.set_major_formatter(nullfmt)
        fig.sca(axScatter)
    ax = pyplot.gca()
    ax.set_autoscale_on(False)
    out = pyplot.imshow(X, extent=extent, **kwargs)
    pyplot.axis(extent)
    _add_axislabels(xlabel, ylabel)
    _add_ticks()
    #Add colorbar
    if cb:
        if shrink is None:
            if kwargs.has_key('aspect'):
                shrink = sc.amin([float(kwargs['aspect']) * 0.87, 1.])
            else:
                shrink = 0.87
        CB1 = pyplot.colorbar(out, shrink=shrink)
        if not zlabel is None:
            if zlabel[0] != '$':
                thiszlabel = r'$' + zlabel + '$'
            else:
                thiszlabel = zlabel
            CB1.set_label(zlabel)
    if contours or retCumImage:
        if kwargs.has_key('aspect'):
            aspect = kwargs['aspect']
        else:
            aspect = None
        if kwargs.has_key('origin'):
            origin = kwargs['origin']
        else:
            origin = None
        if cntrmass:
            #Sum from the top down!
            X[sc.isnan(X)] = 0.
            sortindx = sc.argsort(X.flatten())[::-1]
            cumul = sc.cumsum(sc.sort(X.flatten())[::-1]) / sc.sum(X.flatten())
            cntrThis = sc.zeros(sc.prod(X.shape))
            cntrThis[sortindx] = cumul
            cntrThis = sc.reshape(cntrThis, X.shape)
        else:
            cntrThis = X
        if contours:
            cont = pyplot.contour(cntrThis,
                                  levels,
                                  colors=cntrcolors,
                                  linewidths=cntrlw,
                                  extent=extent,
                                  aspect=aspect,
                                  linestyles=cntrls,
                                  origin=origin)
            if cntrlabel:
                pyplot.clabel(cont,
                              fontsize=cntrlabelsize,
                              colors=cntrlabelcolors,
                              inline=cntrinline)
    if noaxes:
        ax.set_axis_off()
    #Add onedhists
    if not onedhists:
        if retCumImage:
            return cntrThis
        elif retAxes:
            return pyplot.gca()
        else:
            return out
    histx = sc.nansum(X.T, axis=1) * m.fabs(ylimits[1] - ylimits[0]) / X.shape[
        1]  #nansum bc nan is *no dens value*
    histy = sc.nansum(X.T,
                      axis=0) * m.fabs(xlimits[1] - xlimits[0]) / X.shape[0]
    histx[sc.isnan(histx)] = 0.
    histy[sc.isnan(histy)] = 0.
    dx = (extent[1] - extent[0]) / float(len(histx))
    axHistx.plot(sc.linspace(extent[0] + dx, extent[1] - dx, len(histx)),
                 histx,
                 drawstyle='steps-mid',
                 color=onedhistcolor)
    dy = (extent[3] - extent[2]) / float(len(histy))
    axHisty.plot(histy,
                 sc.linspace(extent[2] + dy, extent[3] - dy, len(histy)),
                 drawstyle='steps-mid',
                 color=onedhistcolor)
    axHistx.set_xlim(axScatter.get_xlim())
    axHisty.set_ylim(axScatter.get_ylim())
    axHistx.set_ylim(0, 1.2 * sc.amax(histx))
    axHisty.set_xlim(0, 1.2 * sc.amax(histy))
    if retCumImage:
        return cntrThis
    elif retAxes:
        return (axScatter, axHistx, axHisty)
    else:
        return out