def nancorr2(x, y, w): '''nancorr2(x, y, w): input is master and slave complex images (tested for 1D only) w is the calculation window. ''' import scipy scipy.pkgload('signal') w = array(w) cor = zeros(x.shape) Ex = empty(x.shape) Ey = empty(y.shape) for k, l in ((k, l) for k in range(x.shape[0]) for l in range(x.shape[1])): idx = [(kk, ll) for kk in range(k - w[0], k + w[0]) for ll in range(l - w[1], l + w[1])] vidx = validIndex(x.shape, idx) Ex[k, l] = nonan(x[vidx[:, 0], vidx[:, 1]]).mean() Ey[k, l] = nonan(y[vidx[:, 0], vidx[:, 1]]).mean() corrFilter = ones(2 * w + 1) nfilt = corrFilter.size corrFilter = corrFilter / nfilt #Ex=scipy.signal.signaltools.correlate(x, corrFilter, mode='same') #Ey=scipy.signal.signaltools.correlate(y, corrFilter, mode='same') cor = scipy.signal.signaltools.correlate((x - Ex) * (y - Ey) / sqrt( (x - Ex)**2 * (y - Ey)**2), corrFilter, mode='same') return cor
def nancorr2(x,y,w): '''nancorr2(x, y, w): input is master and slave complex images (tested for 1D only) w is the calculation window. ''' import scipy scipy.pkgload('signal') w=array(w); cor=zeros(x.shape) Ex=empty(x.shape) Ey=empty(y.shape) for k,l in ( (k,l) for k in range(x.shape[0]) for l in range(x.shape[1]) ): idx=[ (kk,ll) for kk in range(k-w[0],k+w[0]) for ll in range(l-w[1], l+w[1]) ] vidx=validIndex(x.shape, idx); Ex[k,l]=nonan(x[vidx[:,0],vidx[:,1]]).mean() Ey[k,l]=nonan(y[vidx[:,0],vidx[:,1]]).mean() corrFilter= ones(2*w+1) nfilt=corrFilter.size corrFilter=corrFilter/nfilt #Ex=scipy.signal.signaltools.correlate(x, corrFilter, mode='same') #Ey=scipy.signal.signaltools.correlate(y, corrFilter, mode='same') cor=scipy.signal.signaltools.correlate((x-Ex)*(y-Ey)/sqrt((x-Ex)**2*(y-Ey)**2), corrFilter, mode='same') return cor
def r_squared(predictions, targets): """r_squared(predictions, targets) """ import scipy scipy.pkgload('stats') slope, intercept, r_value, p_value, std_err = scipy.stats.linregress( predictions, targets) return r_value**2.
def corr2(x,y,w): '''correlate(x, y, w): input is master and slave complex images (tested for 1D only) w is the calculation window. ''' import scipy scipy.pkgload('signal') cor=zeros(size(x)) corrFilter= ones(w) nfilt=corrFilter.size corrFilter=corrFilter/nfilt # Em=scipy.ndimage.filters.correlate(m*conj(m),corrFilter,mode='nearest') # Es=scipy.ndimage.filters.correlate(s*conj(s),corrFilter,mode='nearest') # Ems=scipy.ndimage.filters.correlate(m*conj(s),corrFilter,mode='nearest') Ex=scipy.signal.signaltools.correlate(x, corrFilter, mode='same') Ey=scipy.signal.signaltools.correlate(y, corrFilter, mode='same') cor=scipy.signal.signaltools.correlate((x-Ex)*(y-Ey)/sqrt((x-Ex)**2*(y-Ey)**2), corrFilter, mode='same') #Vy=scipy.signal.signaltools.correlate((y-Ey)**2, corrFilter, mode='same') #cor=abs( (x-Ex)*(y-Ey) / sqrt(Vx*Vy) ) return cor
def corr2(x, y, w): '''correlate(x, y, w): input is master and slave complex images (tested for 1D only) w is the calculation window. ''' import scipy scipy.pkgload('signal') cor = zeros(size(x)) corrFilter = ones(w) nfilt = corrFilter.size corrFilter = corrFilter / nfilt # Em=scipy.ndimage.filters.correlate(m*conj(m),corrFilter,mode='nearest') # Es=scipy.ndimage.filters.correlate(s*conj(s),corrFilter,mode='nearest') # Ems=scipy.ndimage.filters.correlate(m*conj(s),corrFilter,mode='nearest') Ex = scipy.signal.signaltools.correlate(x, corrFilter, mode='same') Ey = scipy.signal.signaltools.correlate(y, corrFilter, mode='same') cor = scipy.signal.signaltools.correlate((x - Ex) * (y - Ey) / sqrt( (x - Ex)**2 * (y - Ey)**2), corrFilter, mode='same') #Vy=scipy.signal.signaltools.correlate((y-Ey)**2, corrFilter, mode='same') #cor=abs( (x-Ex)*(y-Ey) / sqrt(Vx*Vy) ) return cor
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import time import numpy as np import scipy if scipy.__version__[2] == 7: # scipy.pkgload('signal') scipy.pkgload('ndimage') scipy.pkgload('fftpack') else: from scipy.fftpack import fftn, ifftn, fftshift, ifftshift from scipy import ndimage # from scipy import signal # import reikna.cluda as cl # from reikna.cluda import dtypes, any_api # from reikna.fft import FFT # from reikna.core import Annotation, Type, Transformation, Parameter from pyfft.cl import Plan import pyopencl as cl import pyopencl.array as cl_array
# Set your PYTHONSTARTUP environment variable to $HOME/.pythonrc.py # # inspired by: # http://opag.ca/wiki/OpagCode/OpagSnippets # Import Numpy and SciPy try: import numpy as np import scipy as sp sp.pkgload() except ImportError: pass # Import PyQt4.Qt and PyQt4.Qwt5; initialize an application. # Note: hides the builtins hex and oct. try: from qt import * from Qwt5 import * from Qwt5.qplt import * application = QApplication([]) except ImportError: application = None # Setup readline and history saving from atexit import register from os import path import readline import rlcompleter # Set up a tab for completion; use a single space to indent Python code. readline.parse_and_bind('tab: complete')
from numpy import * from helpers import virtualWarning import scipy scipy.pkgload('ndimage') import pdb from scipy.interpolate import interp1d def regularize2d(x, y, z, n, nCut=(-1, -1)): """ where x is has z.shape[0], y has z.shape[1] and form an an irregular mesh of z, resample z on a regular mesh having dimensions given in n """ assert z.ndim == 2, 'z must have only 2 dimensions!' xReg = linspace(x[0], x[nCut[0] - 1], n[0]) yReg = linspace(y[0], y[nCut[1] - 1], n[1]) zRegx = zeros((z[:nCut[0]].shape[0], n[1])) zReg = zeros(n) pol = lambda x_, z_, xi: interp1d(x_, z_, kind='cubic')(xi) for i in range(zRegx.shape[0]): zRegx[i] = pol(y, z[i], yReg) for j in range(zRegx.shape[1]): zReg[:, j] = pol(x[:nCut[0]], zRegx[:, j], xReg) return (xReg, yReg, zReg)
from __future__ import division # Import Numpy and SciPy try: import numpy as np import scipy as sp sp.pkgload(#'cluster', 'constants', 'fftpack', 'integrate', 'interpolate', #'io', 'linalg', 'misc', 'ndimage', 'odr', 'optimize', #'signal', #'sparse', #'spatial', 'special', #'stats', #'stsci', #'weave', ) except ImportError: pass # Import PyQt4.Qt and PyQt4.Qwt5; initialize an application. # Note: hides the builtins hex and oct. try:
import os import scipy scipy.pkgload('io') from numpy import * import numpy as np import cPickle as pkl import time from pylab import * from plotMacros import * import mlabMacros as mlm outputDir = "D:\\00PLASMA_DATA\\trellesTorch" tName = 'trellesTorch_' VAR = 'Th' N = 500 compute = False if compute: with open(os.path.join(outputDir,tName+VAR+'.pkl'),'rb') as f: D = pkl.load(f) y = D['y'][:N].copy() t = D['t'][:N].copy() del D yBar = np.mean(y,axis = 0) y-= yBar U,s,Vh = linalg.svd(y, full_matrices = False) with open(os.path.join(outputDir,tName+VAR+'_svd_%d.pkl'%N),'wb') as f: pkl.dump(dict(zip(['U','s','Vh'],[U,s,Vh])), f, -1) else:
#!/usr/bin/env python import tables, scipy, optparse, os, sys scipy.pkgload('io') __revision__ = "$Id: h5tomat.py 3152 2006-09-29 10:26:22Z pauli $" def main(): parser = optparse.OptionParser(usage="%prog infile.h5 [outdir]") (options, args) = parser.parse_args() if len(args) < 1 or len(args) > 2: parser.error("Wrong number of arguments") infile = args[0] if len(args) > 1: outdir = args[1] else: outdir = os.path.splitext(infile)[0] + '.mat' f = None try: # Open try: f = tables.openFile(infile, 'r') except IOError, err: print err raise SystemExit(1) # Convert
# Sets up history saving on exit. def save_history(historyPath=historyPath, readline=readline): readline.write_history_file(historyPath) register(save_history) # Cleans up the global name del register, path, readline, rlcompleter, historyPath, save_history # Tries to import NumPy and SciPy try: import numpy as np import scipy as sp sp.pkgload() except ImportError: pass # Tries to import qt, Qwt4.iqt, Qwt4.Qwt and Qwt4.qplt try: import qt import Qwt4.iqt import Qwt4.Qwt as qwt import Qwt4.qplt as qplt except ImportError: pass # Local Variables: *** # mode: python *** # End: ***
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # import numpy import numpy as np import scipy if scipy.__version__[2] == 7: scipy.pkgload('signal') scipy.pkgload('ndimage') # scipy.pkgload('fftpack') else: # from scipy.fftpack import fftn, ifftn, fftshift, ifftshift from scipy.ndimage.filters import gaussian_filter, gaussian_laplace, median_filter, laplace from scipy.signal import wiener from scipy import ndimage # from scipy import signal def cplxgaussian_filter(real_input, imag_input, sigma=0.707, order_=0, mode_='nearest',
from __future__ import division # Import Numpy and SciPy try: import numpy as np import scipy as sp sp.pkgload( #'cluster', 'constants', 'fftpack', 'integrate', 'interpolate', #'io', 'linalg', 'misc', 'ndimage', 'odr', 'optimize', #'signal', #'sparse', #'spatial', 'special', #'stats', #'stsci', #'weave', ) except ImportError: pass # Import PyQt4.Qt and PyQt4.Qwt5; initialize an application. # Note: hides the builtins hex and oct. try:
If not 0, Delta is assumed to have the same temperature dependence as in bulk. omega_D Debye temperature [Kelvin] Needed only if Delta is T-dependent. n_E Number of energy discretization points [Default=500] The progam then prints the corresponding temperature-dependence of supercurrent. """ from __future__ import division import usadel1 as u import sys import re import scipy as S import traceback S.pkgload('integrate', 'optimize') __revision__ = "$Id: singlewire.py 3152 2006-09-29 10:26:22Z pauli $" ec = 1.60217733e-19 """Electron charge ec = 1.60217733e-19 [C]""" Rgas = 8.31451 """Ideal gas constant R = 8.31451 [J / K * mol]""" N_A = 6.0221367e23 """Avogadro's number N_A = 6.0221367e23 [1]""" k_B = Rgas / N_A """Boltzmann's constant k_B = Rgas/N_A = 1.380658e-23 [J / K]""" EulerGamma = 0.577215664901532860606512090083 """Euler's Gamma"""
Ben Herbst - U. Stellenbosch. Fernando Perez - U. Colorado, Boulder.""" # Required packages # Std lib import os # Third-party import pylab as P import numpy as N import scipy as S # Scipy has a special loading mechanism to import multiple subpackages into # its own namespace for convenience S.pkgload('linalg') # Classes and functions begin def imshow2(m1,m2,labels=(None,None)): """Display two images side by side. Returns the created figure instance.""" fig = P.figure() ax1 = [0.025,0.1,0.45,0.775] ax2 = [0.525,0.1,0.45,0.775] for m,ax_coord,label in [(m1,ax1,labels[0]),(m2,ax2,labels[1])]: ax = fig.add_axes(ax_coord) ax.imshow(m,cmap=P.cm.gray) if label: ax.set_xlabel(label)
#define some helpers for python import numpy as np from numpy import * rfft = fft.rfft irfft = fft.irfft fftshift = fft.fftshift import scipy scipy.pkgload() import pdb def ngrid(X): """ like meshgrid for n dimensions X is an n-tuple of e.g. (x,y,z) points to arrange in mesh """ G = ones((len(X),)+tuple([x.shape[0] for x in X])) for i in range(len(X)): sly = [] for j in range(len(X)): if j==i: sly+= [slice(None)] else: sly+=[newaxis] G[i] *= X[i][sly] return G def grid2idx(g): idx = zeros_like(g[0]) rg = array(g.shape)[1:] gPrime = array([g[i]-amin(g[i]) for i in range(g.shape[0])])
import numpy as np from numpy import * import scipy scipy.pkgload('weave') from scipy import weave import cPickle as pkl import time import pdb from pylab import * import particle as part import sensor as sens import particleModelEnsemble as pmEns from plotMacros import * import mlabMacros as mlm from interpolators import zerothOrderInterpolator def alignArrays(master, slave, tol): """ match each element of master to the nearest element of slave within a distance tol of the master element. elements of master that are not matched are discarded return the matched """ mIdx = [] sIdx = [] J = 0 for i in range(master.shape[0]): theMin = -1