def interpolateBetweenBinaryObjects(obj1, obj2, slices):
    """
    Takes two binary objects and puts slices slices in-between them, each of which
    contains a smooth binary transition between the objects.
    """
    # constants
    temporal_dimension = 3
    # flip second returned binary objects along temporal axis
    slicer = [slice(None) for _ in range(obj1.ndim + 1)]
    slicer[temporal_dimension] = slice(None, None, -1)
    # logical-and combination
    ret = __interpolateBetweenBinaryObjects(
        obj1, obj2, slices) | __interpolateBetweenBinaryObjects(
            obj2, obj1, slices)[slicer]
    # control step: see if last volume corresponds to obj2
    slicer[temporal_dimension] = slice(-1, None)
    if not scipy.all(scipy.squeeze(ret[slicer]) == obj2.astype(scipy.bool_)):
        raise Exception(
            'Last created object does not correspond to obj2. Difference of {} voxels.'
            .format(
                len(
                    scipy.nonzero(
                        scipy.squeeze(ret[slicer])
                        & obj2.astype(scipy.bool_))[0])))

    return ret
示例#2
0
 def __init__(self, output='out', input='in', \
              mag=None, phase=None, coh=None, \
              freqlim=[], maglim=[], phaselim=[], \
              averaged='not specified', \
              seedfreq=-1, seedphase=0,
              labels=[], legloc=-1, compin=[]):
     self.output = output
     self.input = input
     if len(compin) > 0:
        if mag is None:
           self.mag = squeeze(colwise(abs(compin)))
        if phase is None:
           self.phase = squeeze(colwise(arctan2(imag(compin),real(compin))*180.0/pi))
     else:
         self.mag = squeeze(mag)
         self.phase = squeeze(phase)
     self.coh = coh
     self.averaged = averaged
     self.seedfreq = seedfreq
     self.seedphase = seedphase
     self.freqlim = freqlim
     self.maglim = maglim
     self.phaselim = phaselim
     self.labels = labels
     self.legloc = legloc
def interpolateBetweenBinaryObjects(obj1, obj2, slices):
    """
    Takes two binary objects and puts slices slices in-between them, each of which
    contains a smooth binary transition between the objects.
    """
    # constants
    temporal_dimension = 3
    # flip second returned binary objects along temporal axis
    slicer = [slice(None) for _ in range(obj1.ndim + 1)]
    slicer[temporal_dimension] = slice(None, None, -1)
    # logical-and combination
    ret = (
        __interpolateBetweenBinaryObjects(obj1, obj2, slices)
        | __interpolateBetweenBinaryObjects(obj2, obj1, slices)[slicer]
    )
    # control step: see if last volume corresponds to obj2
    slicer[temporal_dimension] = slice(-1, None)
    if not scipy.all(scipy.squeeze(ret[slicer]) == obj2.astype(scipy.bool_)):
        raise Exception(
            "Last created object does not correspond to obj2. Difference of {} voxels.".format(
                len(scipy.nonzero(scipy.squeeze(ret[slicer]) & obj2.astype(scipy.bool_))[0])
            )
        )

    return ret
示例#4
0
def CombinedBodes(bodelist):
    """This function seeks to make one combined rwkbode instance from
    a list of them.  This may be useful in the case of having several
    experimental Bode data sets with various targeted frequency ranges
    that need to be treated as one data set."""
    docoh=True
    for cb in bodelist:
        if cb.coh is None:
            docoh=False
            break
    first=1
#    pdb.set_trace()
    bigcoh=[]
    for cb in bodelist:
        if first:
            first=0
            bigmag=colwise(cb.mag)
            bigphase=colwise(cb.phase)
            if docoh:
                bigcoh=colwise(cb.coh)
        else:
            bigmag=r_[bigmag,colwise(cb.mag)]
            bigphase=r_[bigphase,colwise(cb.phase)]
            if docoh:
                bigcoh=r_[bigcoh,colwise(cb.coh)]
    myoutbode=copy.deepcopy(bodelist[0])
    myoutbode.mag=squeeze(bigmag)
    myoutbode.phase=squeeze(bigphase)
    myoutbode.coh=squeeze(bigcoh)
    myoutbode.freqlim=[]
    return myoutbode
示例#5
0
 def dB_Phase_Error_vect(self,other):
     """Subtract two bodes dBmag and phase and return a Bode with
     dBmag and phase."""
     outbode=rwkbode()
     outbode.phase=squeeze(self.phase)-squeeze(other.phase)
     outbode.dBmag=self.dBmag()-other.dBmag()
     return outbode
示例#6
0
def plotShotData(shot):
    temp = sqlite3.connect('SIFdata5.db')
    b = temp.cursor()
    
    c_W = scipy.squeeze((b.execute('SELECT c_W from shots2016 where shot='+str(shot))).fetchall())
    c_W_l = scipy.squeeze((b.execute('SELECT c_W_l from shots2016 where shot='+str(shot))).fetchall())
    val7 = scipy.squeeze((b.execute('SELECT val7 from shots2016 where shot='+str(shot))).fetchall())
    time = scipy.squeeze((b.execute('SELECT time from shots2016 where shot='+str(shot))).fetchall())

    plt.legend(loc=2,fontsize=20)
    ax1 = plt.gca()
    ax2 = ax1.twinx()
    ax1.semilogy(time,val7/1e3,color='#0E525A',lw=2,label='CSXR line')


    ax2.semilogy(time,c_W_l,color='#A02C2C',lw=2,label='$c_W$ high $T_e$')

    ax2.semilogy(time,c_W,color='#228B22',lw=2,label='$c_W$ low $T_e$')
    #ax1.set_ylim(1e-6,1e-2)

    
    plt.legend(loc=2)
    ax1.set_ylim(1e-2,1e2)

    ax1.set_xlabel('time [s]')
    ax2.set_ylabel('$c_W$')
    ax1.set_ylabel('line intensity [kCounts]')
    plt.subplots_adjust(bottom=.12,right=.88) 
    limy = plt.gca().get_ylim()
    limx = plt.gca().get_xlim()
    plt.gca().text(.9*(limx[1]-limx[0])+limx[0],1.01*(limy[1]-limy[0])+limy[0],str(shot),rotation=0,fontsize=14)
    plt.show()
示例#7
0
def addGIWdata(conn, shot, name='c_W', name2='c_W_l', table='shots2015'):
    """pulls all time points associated with shot and places in database"""
    c = conn.cursor()
    points = scipy.atleast_1d(
        scipy.squeeze((c.execute('SELECT id from ' + table + ' where shot=' +
                                 str(shot))).fetchall()))
    time = scipy.atleast_1d(
        scipy.squeeze((c.execute('SELECT time from ' + table + ' where shot=' +
                                 str(shot))).fetchall()))

    #if the shotfile doesn't exist, or if good data at specific timepoints dont exist, set to 0
    try:
        output = goodGIW(time, shot, name)
        output2 = goodGIW(time, shot, name2)

    except dd.PyddError:
        print(shot)
        output = scipy.zeros(time.shape)
        output2 = scipy.zeros(time.shape)

    for i in xrange(len(points)):
        c.execute('UPDATE ' + table + ' SET "c_W"=' + str(output[i]) +
                  ' WHERE id=' + str(points[i]))
        c.execute('UPDATE ' + table + ' SET "c_W_l"=' + str(output2[i]) +
                  ' WHERE id=' + str(points[i]))

    conn.commit()
示例#8
0
def Au(U, GF, EpsArr, NX, NY, NZ):
    """Returns the result of matrix-vector multiplication
       by the system matrix A=I-GX
    """
    # reshaping input vector into 4-D array
    Uarr = sci.reshape(U, (NX, NY, NZ, 3))
    # extended zero-padded arrays
    Uext = sci.zeros((2 * NX, 2 * NY, 2 * NZ, 3), complex)
    Vext = sci.zeros((2 * NX, 2 * NY, 2 * NZ, 3), complex)
    Jext = sci.zeros((2 * NX, 2 * NY, 2 * NZ, 3), complex)
    JFext = sci.zeros((2 * NX, 2 * NY, 2 * NZ, 3), complex)
    Uext[0:NX, 0:NY, 0:NZ, :] = Uarr

    # contrast current array
    for s in range(3):
        Jext[0:NX, 0:NY, 0:NZ,
             s] = Uext[0:NX, 0:NY, 0:NZ, s] * (EpsArr[0:NX, 0:NY, 0:NZ] - 1.0)
        JFext[:, :, :, s] = fft.fftn(sci.squeeze(Jext[:, :, :, s]))

    Vext[:,:,:,0]=Uext[:,:,:,0]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,0,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,0,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,0,2],JFext[:,:,:,2])))
    Vext[:,:,:,1]=Uext[:,:,:,1]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,1,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,1,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,1,2],JFext[:,:,:,2])))
    Vext[:,:,:,2]=Uext[:,:,:,2]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,2,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,2,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,2,2],JFext[:,:,:,2])))
    # reshaping output into column vector
    V = sci.reshape(Vext[0:NX, 0:NY, 0:NZ, :], (NX * NY * NZ * 3, 1))

    return V
示例#9
0
def __load_images(label_image_n, mask_image_n, boundary_image_n, fg_image_n = False, bg_image_n = False):
    """
    Load and return all image data in preprocessed ndarrays.
    The label image will be relabeled to start from 1.
    @return label, ground-truth-mask, boundary-result-mask[, fg-markers, bg-markers]
    """
    # load images
    label_image = load(label_image_n)
    mask_image = load(mask_image_n)
    boundary_image = load(boundary_image_n)
    if fg_image_n: fg_image = load(fg_image_n)
    if bg_image_n: bg_image = load(bg_image_n)
    
    # extract image data
    label_image_d = scipy.squeeze(label_image.get_data())
    mask_image_d = scipy.squeeze(mask_image.get_data()).astype(scipy.bool_)
    boundary_image_d = scipy.squeeze(boundary_image.get_data()).astype(scipy.bool_)
    if fg_image_n: fg_image_d = scipy.squeeze(fg_image.get_data()).astype(scipy.bool_)
    if bg_image_n: bg_image_d = scipy.squeeze(bg_image.get_data()).astype(scipy.bool_)
    
    # check if images are of same dimensionality
    if label_image_d.shape != mask_image_d.shape: raise argparse.ArgumentError('The mask image {} must be of the same dimensionality as the label image {}.'.format(mask_image_d.shape, label_image_d.shape))
    if label_image_d.shape != boundary_image_d.shape: raise argparse.ArgumentError('The boundary term image {} must be of the same dimensionality as the label image {}.'.format(boundary_image_d.shape, label_image_d.shape))
    if fg_image_n:
        if label_image_d.shape != fg_image_d.shape: raise argparse.ArgumentError('The foreground markers image {} must be of the same dimensionality as the label image {}.'.format(fg_image_d.shape, label_image_d.shape))
    if bg_image_n:
        if label_image_d.shape != bg_image_d.shape: raise argparse.ArgumentError('The background markers image {} must be of the same dimensionality as the label image {}.'.format(bg_image_d.shape, label_image_d.shape))
    
    # relabel the label image to start from 1
    label_image_d = medpy.filter.relabel(label_image_d, 1)
    
    if fg_image_n:
        return label_image_d, mask_image_d, boundary_image_d, fg_image_d, bg_image_d
    else:
        return label_image_d, mask_image_d, boundary_image_d
示例#10
0
 def __mul__(self,other):
     """Multiply two bodes."""
     if type(other)==float or type(other)==int:
         myoutput=copy.deepcopy(self)
         myoutput.mag=myoutput.mag*other
         return myoutput
     myin='in'
     myout='out'
     match=1
     if self.output==other.input:
         first=self
         second=other
     elif self.input==other.output:
         first=other
         second=self
     else:
         warnme=1
         if (self.input=='in' and self.output=='out') or (other.input=='in' and other.output=='out'):
             warnme=0
         if warnme:
             print('Warning: multiplying Bodes without a matching input/output pair:\n'+self.output+'/'+self.input+ ' * ' +other.output+'/'+other.input)
         match=0
         first=self
         second=other
     if match:
         myin=first.input
         myout=first.output
     myoutput=copy.deepcopy(self)
     myoutput.input=myin
     myoutput.output=myout
     myoutput.mag=squeeze(colwise(first.mag)*colwise(second.mag))
     myoutput.phase=squeeze(colwise(first.phase)+colwise(second.phase))
     return myoutput
示例#11
0
def modify(name='shots2016'):

    shots = scipy.array([34401,
                         34664,
                         34665,
                         34666,
                         34667,
                         34668,
                         34669,
                         34670,
                         34671,
                         34672,
                         34673,
                         34674])

    conn = sqlite3.connect(_tablename)
    oldC = conn.cursor()

    for i in shots:
    # extract necessary idx, time, shot c_w_qc and c_w_l
        idx = scipy.squeeze((oldC.execute('SELECT id from '+name+' where shot='+str(i))).fetchall())
        time = scipy.squeeze((oldC.execute('SELECT time from '+name+' where shot='+str(i))).fetchall())
        print(time.shape,idx.shape)

        reAnalyzeShot2(i, conn, idx, time, bounds=True, serial=False)

    conn.commit()
示例#12
0
def yank(name='shots2016'):
    conn1 = sqlite3.connect(_olddbname)
    c = conn1.cursor()
    temp = scipy.squeeze((c.execute('SELECT * FROM ' + name)).fetchall())
    data = temp[:, 1:]
    idx = temp[:, 0].astype(int)
    print('large dataset yanked')

    conn2 = sqlite3.connect(_olddbname2)
    c = conn2.cursor()
    shot = scipy.squeeze(
        (c.execute('SELECT shot FROM ' + name)).fetchall()).astype(int)
    time = scipy.squeeze((c.execute('SELECT time FROM ' + name)).fetchall())
    idx2 = scipy.squeeze(
        (c.execute('SELECT id FROM ' + name)).fetchall()).astype(int)
    print('shot and time params yanked')
    shotlist = scipy.zeros(idx.shape).astype(int)
    timelist = scipy.zeros(idx.shape)
    for i in xrange(len(idx)):
        idxtemp = idx2 == idx[i]
        shotlist[i] = shot[idxtemp][0]
        timelist[i] = time[idxtemp][0]

    conn1.close()
    conn2.close()

    return shotlist, timelist, data, idx
示例#13
0
def rerun(name='shots2016', startidx=0):
    conn = sqlite3.connect(_tablename)

    oldConn = sqlite3.connect(_olddb)
    oldC = oldConn.cursor()

    # extract necessary idx, time, shot c_w_qc and c_w_l
    idx = scipy.squeeze((oldC.execute('SELECT id from ' + name)).fetchall())

    newstart = scipy.searchsorted(idx, [startidx])[0]
    time = scipy.squeeze(
        (oldC.execute('SELECT time from ' + name)).fetchall())[newstart:]
    c_w_qc = scipy.squeeze(
        (oldC.execute('SELECT c_W from ' + name)).fetchall())[newstart:]
    c_w_l = scipy.squeeze(
        (oldC.execute('SELECT c_w_l from ' + name)).fetchall())[newstart:]
    shots = scipy.squeeze(
        (oldC.execute('SELECT shot from ' + name)).fetchall())[newstart:]
    idx = idx[newstart:]

    uniq = scipy.unique(shots)
    for i in uniq:
        idxin = shots == i
        # find index which matches current shot

        reAnalyzeShot(i,
                      conn,
                      name,
                      idx[idxin],
                      time[idxin],
                      c_w_qc[idxin],
                      c_w_l[idxin],
                      bounds=True,
                      serial=False)
def __load_images(label_image_n, mask_image_n, boundary_image_n, fg_image_n = False, bg_image_n = False):
    """
    Load and return all image data in preprocessed ndarrays.
    The label image will be relabeled to start from 1.
    @return label, ground-truth-mask, boundary-result-mask[, fg-markers, bg-markers]
    """
    # load images
    label_image = load(label_image_n)
    mask_image = load(mask_image_n)
    boundary_image = load(boundary_image_n)
    if fg_image_n: fg_image = load(fg_image_n)
    if bg_image_n: bg_image = load(bg_image_n)
    
    # extract image data
    label_image_d = scipy.squeeze(label_image.get_data())
    mask_image_d = scipy.squeeze(mask_image.get_data()).astype(scipy.bool_)
    boundary_image_d = scipy.squeeze(boundary_image.get_data()).astype(scipy.bool_)
    if fg_image_n: fg_image_d = scipy.squeeze(fg_image.get_data()).astype(scipy.bool_)
    if bg_image_n: bg_image_d = scipy.squeeze(bg_image.get_data()).astype(scipy.bool_)
    
    # check if images are of same dimensionality
    if label_image_d.shape != mask_image_d.shape: raise argparse.ArgumentError('The mask image {} must be of the same dimensionality as the label image {}.'.format(mask_image_d.shape, label_image_d.shape))
    if label_image_d.shape != boundary_image_d.shape: raise argparse.ArgumentError('The boundary term image {} must be of the same dimensionality as the label image {}.'.format(boundary_image_d.shape, label_image_d.shape))
    if fg_image_n:
        if label_image_d.shape != fg_image_d.shape: raise argparse.ArgumentError('The foreground markers image {} must be of the same dimensionality as the label image {}.'.format(fg_image_d.shape, label_image_d.shape))
    if bg_image_n:
        if label_image_d.shape != bg_image_d.shape: raise argparse.ArgumentError('The background markers image {} must be of the same dimensionality as the label image {}.'.format(bg_image_d.shape, label_image_d.shape))
    
    # relabel the label image to start from 1
    label_image_d = medpy.filter.relabel(label_image_d, 1)
    
    if fg_image_n:
        return label_image_d, mask_image_d, boundary_image_d, fg_image_d, bg_image_d
    else:
        return label_image_d, mask_image_d, boundary_image_d
示例#15
0
def Au(U,GF,EpsArr,NX,NY,NZ):
    """Returns the result of matrix-vector multiplication
       by the system matrix A=I-GX
    """
    # reshaping input vector into 4-D array
    Uarr=sci.reshape(U,(NX,NY,NZ,3))
    # extended zero-padded arrays
    Uext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Vext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Jext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    JFext=sci.zeros((2*NX,2*NY,2*NZ,3),complex)
    Uext[0:NX,0:NY,0:NZ,:]=Uarr
    # contrast current array
    s=0
    while s<=2:
        Jext[0:NX,0:NY,0:NZ,s]=Uext[0:NX,0:NY,0:NZ,s]*(EpsArr[0:NX,0:NY,0:NZ]-1.0)
        JFext[:,:,:,s]=fft.fftn(sci.squeeze(Jext[:,:,:,s]))
        s=s+1
    Vext[:,:,:,0]=Uext[:,:,:,0]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,0,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,0,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,0,2],JFext[:,:,:,2])))
    Vext[:,:,:,1]=Uext[:,:,:,1]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,1,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,1,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,1,2],JFext[:,:,:,2])))
    Vext[:,:,:,2]=Uext[:,:,:,2]-\
    fft.ifftn(sci.squeeze(sci.multiply(GF[:,:,:,2,0],JFext[:,:,:,0])+\
                          sci.multiply(GF[:,:,:,2,1],JFext[:,:,:,1])+\
                          sci.multiply(GF[:,:,:,2,2],JFext[:,:,:,2])))
    # reshaping output into column vector
    V=sci.reshape(Vext[0:NX,0:NY,0:NZ,:],(NX*NY*NZ*3,1))

    return V
示例#16
0
 def dB_Phase_Error_sum(self,other, phaseweight=0.1):
     """Subtract two bodes dBmag and phase and return the sum of
     the squared error."""
     phaseerror = squeeze(self.phase)-squeeze(other.phase)
     e_phase = (phaseerror**2).sum()
     dBmagerror = self.dBmag()-other.dBmag()
     e_dB = (dBmagerror**2).sum()
     return e_dB + e_phase*phaseweight
示例#17
0
 def ToComp(self,ind=None):
     if ind!=None:
         x=self.mag[ind]*cos(pi/180.0*self.phase[ind])
         y=self.mag[ind]*sin(pi/180.0*self.phase[ind])
         return x+y*1.0j
     else:
         x=squeeze(self.mag)*squeeze(cos(pi/180.0*self.phase))
         y=squeeze(self.mag)*squeeze(sin(pi/180.0*self.phase))
     return squeeze(x+y*1.0j)
示例#18
0
def CalcSpectra(x,y, input=None, output=None):
    """Calculate Gxx, Gyy, and Gxy.  Note that input and output are
    just labels.  x and y are time domain signals."""
    N = max(shape(x))
    x_fft = squeeze(fft(x, None, 0)*2/N)
    y_fft = squeeze(fft(y, None, 0)*2/N)
    Gxx = norm2(x_fft)
    Gyy = norm2(y_fft)
    Gxy = (scipy.conj(x_fft))*y_fft
    return Spectra(input, output, Gxx, Gyy, Gxy)
示例#19
0
def AveBodeFromSpectra(specin):
    Gxxave=squeeze(specin.Gxx.mean(1))
    Gxyave=squeeze(specin.Gxy.mean(1))
    Gyyave=squeeze(specin.Gyy.mean(1))
    Have=Gxyave/Gxxave
    cohnum=norm2(Gxyave)
    cohden=Gxxave*Gyyave
    mybode=rwkbode(input=specin.input, output=specin.output, \
                   compin=squeeze(Have), coh=squeeze(cohnum/cohden))
    return mybode
示例#20
0
    def __init__(self, config):

        Surface.__init__(self, config)

        # Models are stored as dictionaries in .mat format
        model_dict = loadmat(config['surface_file'])
        self.components = list(zip(model_dict['means'], model_dict['covs']))
        self.n_comp = len(self.components)
        self.wl = model_dict['wl'][0]
        self.n_wl = len(self.wl)

        # Set up normalization method
        self.normalize = model_dict['normalize']
        if self.normalize == 'Euclidean':
            self.norm = lambda r: norm(r)
        elif self.normalize == 'RMS':
            self.norm = lambda r: s.sqrt(s.mean(pow(r, 2)))
        elif self.normalize == 'None':
            self.norm = lambda r: 1.0
        else:
            raise ValueError('Unrecognized Normalization: %s\n' %
                             self.normalize)

        try:
            self.selection_metric = config['selection_metric']
        except KeyError:
            self.selection_metric = 'Mahalanobis'

        # Reference values are used for normalizing the reflectances.
        # in the VSWIR regime, reflectances are normalized so that the model
        # is agnostic to absolute magnitude.
        self.refwl = s.squeeze(model_dict['refwl'])
        self.idx_ref = [
            s.argmin(abs(self.wl - w)) for w in s.squeeze(self.refwl)
        ]
        self.idx_ref = s.array(self.idx_ref)

        # Cache some important computations
        self.Covs, self.Cinvs, self.mus = [], [], []
        for i in range(self.n_comp):
            Cov = self.components[i][1]
            self.Covs.append(
                s.array([Cov[j, self.idx_ref] for j in self.idx_ref]))
            self.Cinvs.append(svd_inv(self.Covs[-1]))
            self.mus.append(self.components[i][0][self.idx_ref])

        # Variables retrieved: each channel maps to a reflectance model parameter
        rmin, rmax = 0, 10.0
        self.statevec = ['RFL_%04i' % int(w) for w in self.wl]
        self.bounds = [[rmin, rmax] for w in self.wl]
        self.scale = [1.0 for w in self.wl]
        self.init = [0.15 * (rmax - rmin) + rmin for v in self.wl]
        self.idx_lamb = s.arange(self.n_wl)
        self.n_state = len(self.statevec)
示例#21
0
def CalcBiasEror(dsvect,fds,vect,f,zeroorder=True):
    dsf = len(f)/len(fds)
    if zeroorder:
       stepvect=AveSteps(dsvect,dsf)
       evect=squeeze(vect-stepvect)
       return f, evect
    else:
       n = int((dsf+0.5)/2.0)
       fb, intv = InterpVector(dsvect,fds,vect,f)
       evect=squeeze(vect[n:-n])-squeeze(intv)
       return fb, evect/squeeze(vect[n:-n])
示例#22
0
文件: vmc.py 项目: EPFL-LQM/gpvmc
def RenormalizeFactor(excfile,gsfile,channel=None,Nsamp=1,O=None,q=None):
    if not type(excfile)==list:
        excfile=[excfile]
    if not type(gsfile)==list:
        gsfile=[gsfile]
    exat=GetAttr(excfile[0])
    gsat=GetAttr(gsfile[0])
    L=exat['L']
    if q==None:
        q=sc.array([exat['qx'],exat['qy']])
    if 'phasex' in exat.keys():
        shift=sc.array([exat['phasex']/2.0,exat['phasey']/2.0])
    else:
        shift=sc.array([exat['phase_shift_x']/2.0,exat['phase_shift_y']/2.0])
    phi=exat['phi']
    neel=exat['neel']
    qx,qy,Sq=GetSq(gsfile)
    kx,ky=sf.fermisea(L,L,shift)
    qidx=ml.find((qx==q[0])*(qy==q[1]))
    if O==None:
        _,O,_,_=GetEigSys(excfile,Nsamp)
    pk=None
    sqq=None
    if channel==None:
        channel=exat['channel']
    if channel=='trans':
        pk=sc.squeeze(sf.phiktrans(kx,ky,q[0]/L,q[1]/L,[phi,neel]))
        sqq=sc.real(0.5*(Sq[0,1,qidx]+Sq[0,2,qidx]))
    elif channel=='long':
        pkup=sc.squeeze(sf.phiklong(kx,ky,q[0]/L,q[1]/L,1,[phi,neel]))
        pkdo=sc.squeeze(sf.phiklong(kx,ky,q[0]/L,q[1]/L,-1,[phi,neel]))
        if (q[0]/L==0.5 and q[1]/L==0.5) or (q[0]/L==0 and q[1]/L==0):
            pk=sc.zeros(2*sc.shape(pkup)[0]+1,complex)
        else:
            pk=sc.zeros(2*sc.shape(pkup)[0],complex)
        pk[0:2*sc.shape(pkup)[0]:2]=pkup
        pk[1:2*sc.shape(pkdo)[0]:2]=pkdo
        if (qx[0]/L==0.5 and q[1]/L==0.5) or (q[0]/L==0 and q[1]/L==0):
            if neel==0:
                pk[-1]=0
            else:
                pk[-1]=sum(neel/sf.omega(kx,ky,[phi,neel]))
        sqq=Sq[0,0,qidx]
    else:
        raise(InputFileError('In file \''+excfile+'\', channel=\''+str(channel)+'\'. Should be \'trans\' or \'long\''))
    sqe=sc.einsum('i,jik,k->j',sc.conj(pk),O,pk)
    out=sc.zeros(Nsamp)
    for n in range(Nsamp):
        if abs(sqq)<1e-6 or abs(sqe[n])<1e-6:
            warnings.warn('Probably ill-defined renormalization, returns 1 for sample {0} out of {1}'.format(n,Nsamp),UserWarning)
            out[n]=1
        else:
            out[n]=sc.real(sqq/sqe[n])
    return out
示例#23
0
文件: vmc.py 项目: EPFL-LQM/gpvmc
def GetEigSys(filename,gsfile=None,Nsamp=1,channel=None,wavefile=None,q=None):
    if type(filename)==str:
        filename=[filename]
    hfile=h5py.File(filename[0],'r')
    attr=GetAttr(filename[0])
    if channel==None:
        channel=attr['channel']
    dpath,args=GetStat(filename,Nsamp)
    dat=sc.array(hfile["/rank-1/data-0"])
    hfile.close()
    N=int(sc.shape(dat)[0]/2)
    L=attr['L']
    shift=None
    if 'phasex' in attr.keys():
        shift=[attr['phasex']/2.0,attr['phasey']/2.0]
    else:
        shift=[attr['phase_shift_x']/2.0,attr['phase_shift_y']/2.0]
    H=sc.zeros([Nsamp,N,N],complex)
    O=sc.zeros([Nsamp,N,N],complex)
    E=sc.zeros([Nsamp,N])
    V=sc.zeros([Nsamp,N,N],complex)
    for sample,b in enumerate(args):
        for d in b:
            hfile=h5py.File(dpath[d][0],'r')
            dat=hfile[dpath[d][1]]
            H[sample,:,:]+=dat[0:N,0:2*N:2]+1j*dat[0:N,1:2*N:2]
            O[sample,:,:]+=dat[N:2*N,0:2*N:2]+1j*dat[N:2*N,1:2*N:2]
            hfile.close()
        H[sample,:,:]=0.5*(H[sample,:,:]+sc.conj(H[sample,:,:].T))/len(b)
        O[sample,:,:]=0.5*(O[sample,:,:]+sc.conj(O[sample,:,:].T))/len(b)
    if channel=='groundstate':
        return H
    fs=None
    refstate=sc.zeros(2*L*L)
    refstate[0::2]=1
    if wavefile==None:
        fs=GetFermiSigns(filename[0],refstate,channel=channel)
    else:
        fs=GetFermiSigns(wavefile,refstate,channel=channel)
    for s in range(sc.shape(H)[0]):
        H[s,:,:]=sc.dot(sc.diag(fs),sc.dot(H[s,:,:],sc.diag(fs)))
        O[s,:,:]=sc.dot(sc.diag(fs),sc.dot(O[s,:,:],sc.diag(fs)))
    ren=sc.ones(Nsamp)
    if gsfile!=None:
        ren=RenormalizeFactor(filename,gsfile,Nsamp=1,channel=channel,O=O,q=q)
    print('{0} pair of (H,O) matrices loaded, now diagonalize'.format(sc.shape(H)[0]))
    H=sc.einsum('ijk,i->ijk',H,ren)
    O=sc.einsum('ijk,i->ijk',O,ren)
    for s in range(sc.shape(H)[0]):
        E[s,:],V[s,:,:]=vln.geneigh(sc.squeeze(H[s,:,:]),sc.squeeze(O[s,:,:]))
    print('diagonalization finished')
    return H,O,E,V
示例#24
0
    def kmeans(feat_mat,
               freqs,
               c1=-1,
               c2=-1,
               min_size=50,
               max_iter=20,
               spherical=True):
        if c1 == -1:
            c1, c2 = sp.random.randint(feat_mat.shape[0]), sp.random.randint(
                1, feat_mat.shape[0])
        c1, c2 = feat_mat[c1], feat_mat[(c1 + c2) % feat_mat.shape[0]]
        old_indexer = sp.ones(feat_mat.shape[0]) * -1

        for _ in range(max_iter):
            scores = sp.squeeze(sp.asarray(feat_mat.multiply(c1 - c2).sum(1)))

            if freqs is None:
                indexer = get_split_wo_freq(scores=scores, min_size=min_size)
            else:
                indexer = get_split_w_freq(scores=scores,
                                           min_size=min_size,
                                           freqs=freqs)

            if sp.array_equal(indexer, old_indexer):
                break
            old_indexer = indexer
            c1 = feat_mat[indexer].sum(0)
            c2 = feat_mat[~indexer].sum(0)
            if spherical:
                c1 = normalize(c1)
                c2 = normalize(c2)
        return indexer
示例#25
0
def coarsen_2d_ti(Dmat,di=2):
    '''
    Takes a 2D trainin image and makes it coarser, by constructing a 3D TI 
    based on all coarsened 2D images
    '''
    from scipy import squeeze

    nx, ny, nz = Dmat.shape
    ndim3 = di * di    
    x = np.arange(nx)
    y = np.arange(ny)
    ix = x[0:(nx - di):di]
    iy = y[0:(ny - di):di]
    nx2 = len(ix)
    ny2 = len(iy)
    TI = np.zeros( (nx2, ny2, nz, ndim3))
    l = -1;
    for j in range(di):
        for k in range(di):
            l = l + 1
            
            TI_small = Dmat[(0 + j)::di, (0 + k)::di, 0]
            TI[:, :, 0,l] = TI_small[0:nx2, 0:ny2]
            
    TI=squeeze(TI)
    return TI
示例#26
0
    def return_results(self, pores=None, throats=None, **kwargs):
        r"""
        Send results of simulation out the the appropriate locations.

        This is a basic version of the update that simply sends out the main
        result (quantity). More elaborate updates should be subclassed.
        """
        if pores is None:
            pores = self.Ps
        if throats is None:
            throats = self.Ts

        phase_quantity = self._quantity.replace(self._phase.name + '_', '')
        if phase_quantity not in self._phase.props():
            self._phase[phase_quantity] = sp.nan
        self._phase[phase_quantity][pores] = self[self._quantity][pores]
        conn_arr = self._net.find_connected_pores(self.Ts)
        dx = sp.squeeze(sp.diff(self[self._quantity][conn_arr], n=1, axis=1))
        g = self['throat.conductance']
        rate = sp.absolute(g * dx)
        if 'throat.rate' not in self._phase.props():
            self._phase['throat.rate'] = sp.nan
        self._phase['throat.rate'][throats] = rate[throats]
        logger.debug('Results of ' + self.name +
                     ' algorithm have been added to ' + self._phase.name)
示例#27
0
def InterpVector(dsvect,fds,vect,f):
    dsf = len(f)/len(fds)
    myint = interpolate.interp1d(fds,squeeze(dsvect))
    n = int((dsf+0.5)/2.0)
    fb = f[n:-n]
    intv = myint(fb)
    return fb, intv
def preprocessTrainsFromMatFiles(fileNameList):
    """
    preprocessTrainsFromFiles extracts spike trains from a list of .mat files containing spike times, one train of time-stamps per file.
    The spike trains are preprocessed by calculating interspike intervals and instantaneous firing rates. 
    The output is a dictionary containing the preprocessed data. 
    Example of use:
    ctrFiles=getFileList(dataDir, prefix="CntSt", suffix=".mat")
    ctrData= preprocessTrainsFromMatFiles(ctrFiles)
    """
    dataDir = './trenesBursts/aleSpikeTimes/'
    spikes = list()
    isis = list()
    ifrs = list()
    n = 0
    for f in fileNameList:
        ff = dataDir + f
        s = sc.squeeze(io.loadmat(ff)["savevar"][0][0])
        spikes.append(s)
        print("Found %d spikes in %s" % (len(s), ff))
        isi = sc.zeros(len(s))
        ifr = sc.zeros(len(s))  #Note time stamps are in milliseconds
        isi[1:] = s[1:] - s[:-1]
        ifr[1:] = 1 / isi[1:]
        isis.append(isi)
        ifrs.append(ifr)
        n = n + 1
    return {"spikeTrains": spikes, "ISIs": isis, "IFRs": ifrs}
示例#29
0
def crossover_freq(db, freq):
    #find where the current db value is greater than 0 and the next one is not
    t1 = squeeze(db > 0.0)  #vector of True and False elements for db > 0.0
    t2 = r_[t1[1:], t1[0]]  #vector t1 shifted by 1 index
    t3 = (t1 & ~t2)  #current value is > 0.0 and the next is not
    ind = t3.argmax()
    return freq[ind], ind
示例#30
0
def coarsen_2d_ti(Dmat,di=2):
    '''
    Takes a 2D trainin image and makes it coarser, by constructing a 3D TI 
    based on all coarsened 2D images
    '''
    from scipy import squeeze

    nx, ny, nz = Dmat.shape
    ndim3 = di * di    
    x = np.arange(nx)
    y = np.arange(ny)
    ix = x[0:(nx - di):di]
    iy = y[0:(ny - di):di]
    nx2 = len(ix)
    ny2 = len(iy)
    TI = np.zeros( (nx2, ny2, nz, ndim3))
    l = -1;
    for j in range(di):
        for k in range(di):
            l = l + 1
            
            TI_small = Dmat[(0 + j)::di, (0 + k)::di, 0]
            TI[:, :, 0,l] = TI_small[0:nx2, 0:ny2]
            
    TI=squeeze(TI)
    return TI
示例#31
0
文件: itku.py 项目: kleinfeld/medpy
def getArrayFromImage(image):
    """
    Returns a scipy array created from the supplied itk image.
    
    @note always use this instead of directly the itk.PyBuffer, as that object transposes
          the image axes.
    
    @param image an instance of itk.Image holding the array's data
    @type itk.Image (instance)
    
    @return an array
    @rtype scipy.ndarray
    """
    #convert
    itk_py_converter = itk.PyBuffer[getImageType(image)]
    arr = itk_py_converter.GetArrayFromImage(image)
    
    ############
    # !BUG: WarpITK is a very critical itk wrapper. Everything returned / created by it
    # seems to exist only inside the scope of the current function (at least for 
    # ImageFileReader's image and PyBuffers's scipy array. The returned objects have
    # therefore to be copied once, to survive outside the current scope.
    ############
    arr = arr.copy()
    
    # The itk_py_converter transposes the image dimensions. This has to be countered.
    return scipy.squeeze(scipy.transpose(arr))
示例#32
0
def xd_iterator_pool(arr, view, fun, processes=None):
    """
    Same as xd_iterator, but distributes the execution over 'processes' subprocesses.
    """
    # check parameters
    for dim in view:
        if dim >= arr.ndim or 0 > dim or not type(dim) == int:
            raise AttributeError(
                'Invalid dimension {} in view. Must be int between 0 and {}.'.
                format(dim, arr.ndim - 1))
    if len(view) >= arr.ndim:
        raise AttributeError(
            'The view should contain less entries than the array dimensionality.'
        )

    # prepare worker pool
    worker_pool = multiprocessing.Pool(processes)

    # create list of iterations
    iterations = [[None] if dim in view else range(arr.shape[dim])
                  for dim in range(arr.ndim)]

    # prepare views on array (subvolumes)
    slicers = [[
        slice(None) if idx is None else slice(idx, idx + 1) for idx in indices
    ] for indices in itertools.product(*iterations)]
    reference_shape = arr[slicers[0]].shape
    subvolumes = [scipy.squeeze(arr[slicer]) for slicer in slicers]

    # excecute subprocesses
    result_subvolumes = worker_pool.map(fun, subvolumes)

    for slicer, result_subvolume in itertools.izip(slicers, result_subvolumes):
        arr[slicer] = result_subvolume.reshape(reference_shape)
示例#33
0
    def x(self):
        """return cartesian coordinate values

        Returns:
            numpy array of cartesian coordinates in meters
        """
        return scipy.squeeze([self.x0(), self.x1(), self.x2()])
示例#34
0
    def fake_dataset(self,
                     nvel,
                     vdisp,
                     fbin,
                     sigvel,
                     mass=1.,
                     dates=(0., ),
                     vmean=0.):
        """Creates a fake single-epoch radial velocity data for Monte Carlo simulations.

        Note that multiple calls will use the same binary properties. Redraw the binary properties to get a new set.

        Arguments:
        - `nvel`: number of velocities to draw.
        - `vdisp`: velocity dispersion of the cluster in km/s.
        - `fbin`: binary fraction among observed stars.
        - `sigvel`: array-like of size `nvel` or single number; measurement uncertainty in km/s (undistinguishable from velocity dispersion for single epoch case).
        - `mass`: array-like of size `nvel` or single number; mass of observed stars in solar masses.
        - `dates`: iterable with relative dates of observations in years. Creates a one-dimensional single-epoch dataset if the iterable has a length of one.
        - `vmean`: mean velocity in km/s.
        """
        v_systematic = sp.randn(nvel) * vdisp
        v_bin_offset = sp.array(
            [self[:nvel].velocity(mass, time)[0, :] for time in dates])
        v_bin_offset[:, sp.rand(nvel) > fbin] = 0.
        v_meas_offset = sp.randn(v_bin_offset.size).reshape(
            v_bin_offset.shape) * sp.atleast_1d(sigvel)[:, sp.newaxis]
        return sp.squeeze(v_systematic[sp.newaxis, :] + v_bin_offset +
                          v_meas_offset)
示例#35
0
   def Truncate(self, f, fcut, below=True):
      """Truncate self.Gxx, self.Gyy, and self.Gxy at the index
      corresponding to f[ind]=fcut.  return the truncated frequency
      vector.

      This function makes only one cut and keeps all data either above
      or below fcut.  As of June 10, 2015, I am adding the option to
      keep above by setting below=False."""
      fout = copy.copy(f)
      ind = thresh(f,fcut)
      if below:
          fout = fout[0:ind]
      else:
          fout = fout[ind:]
          
      keys=['Gxx','Gyy','Gxy']

      for curkey in keys:
         curitem = colwise(getattr(self,curkey))

         if below:
             curitem = curitem[0:ind,:]
         else:
             curitem = curitem[ind:,:]
             
         setattr(self,curkey,squeeze(curitem))
      return fout
示例#36
0
def plotVol(volume, pts=15, **kwargs):
    fluxGrid = scipy.squeeze(volume.getFluxGrid()).T

    datain = scipy.zeros((fluxGrid.shape[0], pts, fluxGrid.shape[1]))

    for idx in range(pts):
        datain[:, idx, :] = fluxGrid

        temp = genCylGrid(plasma.eq.getRGrid(),
                          scipy.linspace(0, 2 * scipy.pi, pts),
                          plasma.eq.getZGrid())
    verticies = genVertsFromPixel(temp)

    hex_type = tvtk.api.tvtk.Hexahedron().cell_type
    temp = temp.reshape((temp.size / 3, 3))
    verticies = verticies.reshape((verticies.size / 8, 8))

    sg = tvtk.api.tvtk.UnstructuredGrid(points=temp)

    sg.set_cells(hex_type, verticies)
    sg.point_data.scalars = datain.flatten()
    sg.point_data.scalars.name = 'temp'

    psi_0 = plasma.eq.getFluxAxis()
    psi_LCFS = plasma.eq.getFluxLCFS()
    psi_min = fluxGrid.min()
    psi_max = fluxGrid.max()
    v1 = (psi_0 - psi_min) / (psi_max - psi_min)
    v2 = (psi_LCFS - psi_min) / (psi_max - psi_min)
    mlab.pipeline.volume(sg)
示例#37
0
def gradients(theta, X, Y):
    theta = sp.matrix(theta).T
    m = Y.shape[0]

    grad = ((1 / m) * X.T * (sigmoid(X * theta) - Y)).T
    grad = sp.squeeze(sp.asarray(grad))
    return grad
    def return_results(self, pores=None, throats=None, **kwargs):
        r"""
        Send results of simulation out the the appropriate locations.

        This is a basic version of the update that simply sends out the main
        result (quantity). More elaborate updates should be subclassed.
        """
        if pores is None:
            pores = self.Ps
        if throats is None:
            throats = self.Ts

        phase_quantity = self._quantity.replace(self._phase.name + '_', '')
        if phase_quantity not in self._phase.props():
            self._phase[phase_quantity] = sp.nan
        self._phase[phase_quantity][pores] = self[self._quantity][pores]
        conn_arr = self._net.find_connected_pores(self.Ts)
        dx = sp.squeeze(sp.diff(self[self._quantity][conn_arr], n=1, axis=1))
        g = self['throat.conductance']
        rate = sp.absolute(g * dx)
        if 'throat.rate' not in self._phase.props():
            self._phase['throat.rate'] = sp.nan
        self._phase['throat.rate'][throats] = rate[throats]
        logger.debug('Results of ' + self.name +
                     ' algorithm have been added to ' + self._phase.name)
示例#39
0
def  __load(picklefile, label):
    """
    Load a pickled testbed as well as the original and label image for further processing.
    The label image will be relabeled to start with region id 1.
    @param picklefile the testbed pickle file name
    @param label the label image file name
    @return a tuple containing:
        label: the label image data as ndarray
        bounding_boxes: the bounding boxes around the label image regions (Note that the the bounding box of a region with id rid is accessed using bounding_boxes[rid - 1])
        model_fg_ids: the region ids of all regions to create the foreground model from
        model_bg_ids: the region ids of all regions to create the background model from
        eval_ids: the regions to evaluate the regions term on, represented by their ids
        truth_fg: subset of regions from the eval_ids that are foreground according to the ground-truth
        truth_bg:  subset of regions from the eval_ids that are background according to the ground-truth
    """
    # load and preprocess images
    label_image = load(label)
    
    label_image_d = scipy.squeeze(label_image.get_data())
    
    # relabel the label image to start from 1
    label_image_d = medpy.filter.relabel(label_image_d, 1)
    
    # extracting bounding boxes
    bounding_boxes = find_objects(label_image_d)
    
    # load testbed
    with open(picklefile, 'r') as f:
        model_fg_ids = cPickle.load(f)
        model_bg_ids = cPickle.load(f)
        cPickle.load(f) # eval ids
        truth_fg = cPickle.load(f)
        truth_bg = cPickle.load(f)
            
    return label_image_d, label_image, bounding_boxes, model_fg_ids, model_bg_ids, truth_fg, truth_bg
示例#40
0
def xd_iterator_pool(arr, view, fun, processes = None):
    """
    Same as xd_iterator, but distributes the execution over 'processes' subprocesses.
    """
    # check parameters
    for dim in view:
        if dim >= arr.ndim or 0 > dim or not type(dim) == int: raise AttributeError('Invalid dimension {} in view. Must be int between 0 and {}.'.format(dim, arr.ndim - 1))
    if len(view) >= arr.ndim:
        raise AttributeError('The view should contain less entries than the array dimensionality.')
    
    # prepare worker pool    
    worker_pool = multiprocessing.Pool(processes)
    
    # create list of iterations
    iterations = [[None] if dim in view else range(arr.shape[dim]) for dim in range(arr.ndim)]
    
    # prepare views on array (subvolumes)
    slicers = [[slice(None) if idx is None else slice(idx, idx + 1) for idx in indices] for indices in itertools.product(*iterations)]
    reference_shape = arr[slicers[0]].shape
    subvolumes = [scipy.squeeze(arr[slicer]) for slicer in slicers]
        
    # excecute subprocesses
    result_subvolumes = worker_pool.map(fun, subvolumes)
    
    for slicer, result_subvolume in itertools.izip(slicers, result_subvolumes):
        arr[slicer] = result_subvolume.reshape(reference_shape)
示例#41
0
def plotVol(volume,pts=15,**kwargs):
    fluxGrid = scipy.squeeze(volume.getFluxGrid()).T

    datain = scipy.zeros((fluxGrid.shape[0],
                          pts,
                          fluxGrid.shape[1]))

    for idx in range(pts):
        datain[:,idx,:] = fluxGrid

        temp = genCylGrid(plasma.eq.getRGrid(),
                      scipy.linspace(0,2*scipy.pi,pts),
                      plasma.eq.getZGrid())
    verticies = genVertsFromPixel(temp)

    hex_type = tvtk.api.tvtk.Hexahedron().cell_type
    temp = temp.reshape((temp.size/3,3))
    verticies = verticies.reshape((verticies.size/8,8))

    sg = tvtk.api.tvtk.UnstructuredGrid(points=temp)
    
    sg.set_cells(hex_type,verticies)
    sg.point_data.scalars = datain.flatten()
    sg.point_data.scalars.name = 'temp'
    
    psi_0 = plasma.eq.getFluxAxis()
    psi_LCFS = plasma.eq.getFluxLCFS()
    psi_min = fluxGrid.min()
    psi_max = fluxGrid.max()
    v1 = (psi_0 - psi_min)/(psi_max - psi_min)
    v2 = (psi_LCFS - psi_min)/(psi_max - psi_min)
    mlab.pipeline.volume(sg)
示例#42
0
def xd_iterator(arr, view, fun):
    """
    Iterates over arr, slicing it into views over the dimensions provided in view and
    passes the extracted subvolumes to fun.
    Fun has to return an array of the same shape as it receives. This return array is
    then used to update the original array arr in-place.
    
    Example:
        Assuming an array of shape arr.shape = (100, 200, 300), we want to iterate over
        all 2D slices of the first two dimensions, i.e. iterate over the 3rd dimension
        and getting 300 slices of shape (100, 200) passed to the function fun. So we
        have to provide in view the dimensions over which we do not want to iterate, i.e.
        in this case view = [0,1].
    """
    # check parameters
    for dim in view:
        if dim >= arr.ndim or 0 > dim or not type(dim) == int: raise AttributeError('Invalid dimension {} in view. Must be int between 0 and {}.'.format(dim, arr.ndim - 1))
    if len(view) >= arr.ndim:
        raise AttributeError('The view should contain less entries than the array dimensionality.')
    
    # create list of iterations
    iterations = [[None] if dim in view else range(arr.shape[dim]) for dim in range(arr.ndim)]
     
    # iterate, create slicer, execute function and collect results
    for indices in itertools.product(*iterations):
        slicer = [slice(None) if idx is None else slice(idx, idx + 1) for idx in indices]
        arr[slicer] = fun(scipy.squeeze(arr[slicer])).reshape(arr[slicer].shape)
示例#43
0
def symm(A):
    """
    symmetric decomposition of n square (m, m) ndarrays.  Result
    is a (squeezed) (n, m, m) ndarray.
    """
    if not isinstance(A, ndarray):
        raise RuntimeError(
            "input argument is of incorrect type; should be numpy ndarray.")

    if A.ndim == 2:
        m = A.shape[0]
        n = A.shape[1]
        if m != n:
            raise RuntimeError(
                "this function only works for square arrays; yours is (%d, %d)"
                % (m, n))
        A.resize(1, m, n)
    elif A.ndim == 3:
        m = A.shape[1]
        n = A.shape[2]
        if m != n:
            raise RuntimeError("this function only works for square arrays")
    else:
        raise RuntimeError("this function only works for square arrays")

    return squeeze(0.5 * (A + A.transpose(0, 2, 1)))
示例#44
0
    def func(self, params):
        G0_w = 0.0624
        G1_w = 0.0524
        G0_p = 0.0434
        G1_p = 0.1406
        y = 1.0
        s = 0.014

        phi = params[0]
        m = params[1]
        #d = params[2]
        g = params[2]

        b_bp = m * (400.0 / self.bio_optical_parameters.wavelengths)**y
        a_cdom = g * scipy.exp(
            -s * (self.bio_optical_parameters.wavelengths - 440.0))

        #Bb = (phi * self.b_bphi + m * self.b_bm + d * self.b_bd + self.b_bw)
        Bb = (b_bp + self.b_bw)
        A = (phi * self.a_phi + a_cdom + self.aw)

        k = A + Bb

        Rrs = (G0_w + G1_w * (self.b_bw / k)) * self.b_bw / k + (
            G0_p + G1_p * (self.b_bm / k)) * (self.b_bm / k)

        return scipy.squeeze(Rrs)
示例#45
0
def BodeFromSpectra(specin,calccoh=False):
    H=specin.Gxy/specin.Gxx
    if calccoh:
       cohnum=squeeze(norm2(specin.Gxy))
       cohden=squeeze(specin.Gxx*specin.Gyy)
       coh=cohnum/cohden
       ave=True
    else:
       coh=[]
       ave=False
    mybode=rwkbode(input=specin.input, output=specin.output, \
                   compin=squeeze(H), coh=coh, averaged=ave)
    mybode.Gxx=specin.Gxx
    mybode.Gyy=specin.Gyy
    mybode.Gxy=specin.Gxy
    return mybode
示例#46
0
    def func(self, params):
        g0 = 0.084
        g1 = 0.17
        #g0 = 0.0949
        #g1 = 0.0794
        y = 1.0
        s = 0.014

        phi = params[0]
        m = params[1]
        #d = params[2]
        g = params[2]

        b_bp = m * (400.0 / self.bio_optical_parameters.wavelengths)**y
        a_cdom = g * scipy.exp(
            -s * (self.bio_optical_parameters.wavelengths - 440.0))

        b_b = (b_bp + self.b_bw)
        a = (phi * self.a_phi + a_cdom + self.aw)

        u = b_b / (a + b_b)
        r_rs_dp = (g0 + g1 * u) * u

        Rrs = 0.5 * r_rs_dp / (1.0 - 1.5 * r_rs_dp)
        #Rrs = 0.5 * r_rs_dp / (0.52 + 1.7 * r_rs_dp)

        return scipy.squeeze(Rrs)
示例#47
0
def crossover_freq(db, freq):
    #find where the current db value is greater than 0 and the next one is not
    t1=squeeze(db > 0.0)#vector of True and False elements for db > 0.0
    t2=r_[t1[1:],t1[0]]#vector t1 shifted by 1 index
    t3=(t1 & ~t2)#current value is > 0.0 and the next is not
    ind = t3.argmax()
    return freq[ind], ind
示例#48
0
    def plot_reals(self, nr=25, hardcopy=0, hardcopy_filename='reals', nanval=-997799, filternan=1):
        import matplotlib.pyplot as plt
        import matplotlib.gridspec as gridspec
        import numpy as np
        from scipy import squeeze
        
        
        nx, ny, nz = self.par['simulation_grid_size']
        
        nr = np.min((self.par['n_real'], nr))
        nsp = int(np.ceil(np.sqrt(nr)))

        fig = plt.figure(1)
        sp = gridspec.GridSpec(nsp, nsp, wspace=0.1, hspace=0.1)
        plt.set_cmap('hot')
        for i in range(0, nr):
            ax1 = plt.Subplot(fig, sp[i])
            fig.add_subplot(ax1)
            if filternan==1:
                self.sim[i][self.sim[i]==nanval] = np.nan
                
            D=squeeze(np.transpose(self.sim[i]))
            plt.imshow(D, extent=[self.x[0], self.x[-1], self.y[0], self.y[-1]], interpolation='none')
            plt.title("Real %d" % (i + 1))

        fig.suptitle(self.method + ' - ' + self.parameter_filename, fontsize=16)
        if (hardcopy):
            plt.savefig(hardcopy_filename)

        plt.show(block=False)
示例#49
0
def poly_features(X, p):
    X_poly = sp.zeros((X.size, p))

    for i in range(0, p):
        X_poly[:, i] = sp.squeeze(sp.array(X))**(i + 1)

    return sp.matrix(X_poly)
示例#50
0
def xd_iterator_add(arr, view, fun, add):
    """
    Same as xd_iterator, but expects an additional argument which is passed to each call
    of fun and expected to be returned as second return value.
    """
    # check parameters
    for dim in view:
        if dim >= arr.ndim or 0 > dim or not type(dim) == int:
            raise AttributeError(
                'Invalid dimension {} in view. Must be int between 0 and {}.'.
                format(dim, arr.ndim - 1))
    if len(view) >= arr.ndim:
        raise AttributeError(
            'The view should contain less entries than the array dimensionality.'
        )

    # create list of iterations
    iterations = [[None] if dim in view else range(arr.shape[dim])
                  for dim in range(arr.ndim)]

    # iterate, create slicer, execute function and collect results
    for indices in itertools.product(*iterations):
        slicer = [
            slice(None) if idx is None else slice(idx, idx + 1)
            for idx in indices
        ]
        _tmp, add = fun(scipy.squeeze(arr[slicer]), add)
        arr[slicer] = _tmp.reshape(arr[slicer].shape)
示例#51
0
def read_data(filename_, flag=True):
    """Reads the odometry and sensor readings from a file.
    
    Args:
        filename_: string containing file location
    
    Returns:
        output: A FburgData class which contains the odometry
        and/or sensor data
        
    Raises:
        NameError: incorrect filepath

    """
    output = {'sensor':[],'odometry':[]}
        
    data = scipy.genfromtxt(filename_, dtype='object')
    idx = scipy.squeeze(data[:,0] == 'ODOMETRY')
    for inp in data[idx,1:].astype(float):
        output['odometry'] += [{'r1':inp[0],
                                    't':inp[1],
                                    'r2':inp[2]}]

    idxarray = scipy.where(idx)
    idxarray = scipy.append(idxarray,[len(idx)])
    for i in xrange(len(idxarray) - 1):
        temp = []
        
        for j in scipy.arange(idxarray[i] + 1, idxarray[i + 1]):
            temp += [{'id':int(data[j,1]) - 1,
                      'range':float(data[j,2]),
                      'bearing':float(data[j,3])}]
                
        output['sensor'] += [temp]
    return output
示例#52
0
def main():
    # prepare logger
    a = [[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]],
         [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]],
         [[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]

    b = [[[1, 2, 3, 4, 3], [3, 1, 2, 1, 4], [3, 1, 4, 2, 2], [2, 2, 1, 3, 3],
          [4, 3, 1, 2, 1]]]

    c = [[[1, 2, 3, 4], [5, 6, 7, 8], [9, 1, 2, 3]],
         [[4, 5, 6, 7], [8, 9, 1, 2], [3, 4, 5, 6]]]

    a = scipy.asarray(a)
    b = scipy.asarray(b)
    c = scipy.asarray(c)

    original_image_n = '/home/omaier/Experiments/Regionsegmentation/Evaluation_Viscous/00originalvolumes/o09.nii'
    original_image = load(original_image_n)
    original_image_d = scipy.squeeze(original_image.get_data())

    original_image_d = original_image_d[0:50, 0:50, 0:50]

    dir = scipy.zeros(original_image_d.shape).ravel()
    oir = original_image_d.ravel()
    for i in range(len(dir)):
        dir[i] = oir[i]
    dir = dir.reshape(original_image_d.shape)

    coa, con, dir = tamura(dir, 5)

    for i in range(5):
        print "k=", i + 1, " with ", len((coa == i).nonzero()[0])
示例#53
0
def getArrayFromImage(image):
    """
    Returns a numpy ndarray created from the supplied itk image.
    
    Parameters
    ----------
    image : itk.Image (instance)
        An instance of itk.Image holding the array's data.
        
    Returns
    -------
    arr : ndarray
        The image as numpy array.
    
    Notes
    -----
    Always use this instead of directly the itk.PyBuffer, as that object transposes the image axes.
    """
    #convert
    itk_py_converter = itk.PyBuffer[getImageType(image)]
    arr = itk_py_converter.GetArrayFromImage(image)

    ############
    # !BUG: WarpITK is a very critical itk wrapper. Everything returned / created by it
    # seems to exist only inside the scope of the current function (at least for
    # ImageFileReader's image and PyBuffers's scipy array. The returned objects have
    # therefore to be copied once, to survive outside the current scope.
    ############
    arr = arr.copy()

    # The itk_py_converter transposes the image dimensions. This has to be countered.
    return scipy.squeeze(scipy.transpose(arr))
示例#54
0
    def func(self, params):
        """
        For doing the forward model
        """
        aphi440 = params[0]
        ag440 = params[1]
        bbp555 = params[2]
        y = params[3]

        G0_w = 0.0624
        G1_w = 0.0524
        G0_p = 0.0434
        G1_p = 0.1406

        self.read_aw_from_file()
        self.read_bw_from_file()

        aphi = self.a_phi * aphi440
        ag = self.bio_optical_parameters.build_a_cdom(ag440, self.s, wave_const=440)
        bbp = self.bio_optical_parameters.build_bbp(bbp555, y, wave_const=555)

        a = self.aw + aphi + ag
        bb = self.bw + bbp
        u = bb / (a + bb)
        rrs = self.g0 * u + self.g1 * u ** 2
        rrs = 0.5 * rrs / (1 - 1.5 * rrs)

        # k = a + bb

        #Rrs = (G0_w + G1_w * (self.bw / k)) * self.bw / k + (G0_p + G1_p * (self.bb_m / k)) * (self.bb_m / k)
        return scipy.squeeze(rrs)
示例#55
0
    def Sy(self, meas, geom):
        """Calculate measurement error covariance.

        Input: meas, the instrument measurement
        Returns: Sy, the measurement error covariance due to instrument noise
        """

        if self.model_type == 'SNR':
            bad = meas < 1e-5
            meas[bad] = 1e-5
            nedl = (1.0 / self.snr) * meas
            return pow(s.diagflat(nedl), 2)

        elif self.model_type == 'parametric':
            nedl = abs(self.noise[:, 0] * s.sqrt(self.noise[:, 1] + meas) +
                       self.noise[:, 2])
            nedl = nedl / s.sqrt(self.integrations)
            return pow(s.diagflat(nedl), 2)

        elif self.model_type == 'pushbroom':
            if geom.pushbroom_column is None:
                C = s.squeeze(self.covs.mean(axis=0))
            else:
                C = self.covs[geom.pushbroom_column, :, :]
            return C / s.sqrt(self.integrations)
示例#56
0
def skewMatrixOfVector(w):
    """
    skewMatrixOfVector(w)

    given a (3, n) ndarray, w,  of n hstacked axial vectors, computes
    the associated skew matrices and stores them in an (n, 3, 3)
    ndarray.  Result is (3, 3) for w.shape = (3, 1) or (3, ).

    See also: vectorOfSkewMatrix
    """
    dims = w.ndim
    stackdim = 0
    if dims == 1:
        if len(w) != 3:
            raise RuntimeError, 'input is not a 3-d vector'
        else:
            w = vstack(w)
            stackdim = 1
    elif dims == 2:
        if w.shape[0] != 3:
            raise RuntimeError, 'input is of incorrect shape; expecting shape[0] = 3'
        else:
            stackdim = w.shape[1]
    else:
        raise RuntimeError, 'input is incorrect shape; expecting ndim = 1 or 2'

    zs = zeros((1, stackdim), dtype='float64')
    W = vstack(
        [zs, -w[2, :], w[1, :], w[2, :], zs, -w[0, :], -w[1, :], w[0, :], zs])

    return squeeze(reshape(W.T, (stackdim, 3, 3)))
示例#57
0
    def __init__(self, x_hat, s, flag=False):
        """ 
        """

        s = scipy.array(s)
        self.unit = unit(x_hat)
        self.s = scipy.squeeze(s)
        self.flag = flag
示例#58
0
def BodeFromComp(compin, expbode, freq, PhaseMassage=True):
    """Create an rwkbode instance from a complex vector and an example
    bode.  This would typically be used in conjunction with a symbolic
    bode function that outputs complex values, where an expbode is
    known to have the same input and output and desired seedfreq and
    seedphase.  The freq input is used to run PhaseMassage on the
    created rwkbode instance."""
    tbode=rwkbode(expbode.output,expbode.input,compin=compin)
    tbode.seedfreq=expbode.seedfreq
    tbode.seedphase=expbode.seedphase
    tbode.freqlim=expbode.freqlim
    if (tbode.seedfreq>0) & PhaseMassage:
#        Pdb().set_trace()
        tbode.PhaseMassage(freq)
    tbode.phase=squeeze(tbode.phase)
    tbode.mag=squeeze(tbode.mag)
    return tbode
示例#59
0
def plot_eas(Deas):
    '''
    Plot data directly form EAS
    '''
    import matplotlib.pyplot as plt
    import numpy as np
    from scipy import squeeze
    
    # check for matrix/cube
    if 'Dmat' in Deas:
        if (Deas['dim']['nz']==1):
            if (Deas['dim']['ny']==1):
                plt.plot(np.arange(Deas['dim']['nx']),Deas['Dmat'])
            elif (Deas['dim']['nx']==1): 
                plt.plot(np.arange(Deas['dim']['ny']),Deas['Dmat'])
            else:
                # X-Y
                plt.imshow(np.transpose(Deas['Dmat'][:,:,0]))                
                plt.xlabel('X')
                plt.ylabel('Y')
        elif (Deas['dim']['ny']==1):
            if (Deas['dim']['nz']==1):
                plt.plot(np.arange(Deas['dim']['nx']),Deas['Dmat'])
            elif (Deas['dim']['nx']==1): 
                plt.plot(np.arange(Deas['dim']['nz']),Deas['Dmat'])
            else:
                # X-Z
                plt.imshow(squeeze(Deas['Dmat'][:,0,:]))
                plt.xlabel('X')
                plt.xlabel('Z')
        elif (Deas['dim']['nx']==1):
            if (Deas['dim']['ny']==1):
                plt.plot(np.arange(Deas['dim']['nz']),Deas['Dmat'])
            elif (Deas['dim']['nz']==1): 
                plt.plot(np.arange(Deas['dim']['ny']),Deas['Dmat'])
            else:
                # Y-Z
                plt.imshow(squeeze(Deas['Dmat'][0,:,:]))
                plt.xlabel('Y')
                plt.xlabel('Z')
        else:
            plot_3d_vtk(Deas['Dmat'])
    else:
        # scatter plot
        print('EAS scatter plot not yet implemented')