示例#1
0
 def apply(self, sim):
     ''' Introduce new infections with this strain '''
     for ind in cvi.find_day(self.days, sim.t, interv=self, sim=sim): # Time to introduce strain
         susceptible_inds = cvu.true(sim.people.susceptible)
         rescale_factor = sim.rescale_vec[sim.t] if self.rescale else 1.0
         n_imports = sc.randround(self.n_imports/rescale_factor) # Round stochastically to the nearest number of imports
         importation_inds = np.random.choice(susceptible_inds, n_imports)
         sim.people.infect(inds=importation_inds, layer='importation', strain=self.index)
     return
 def apply(self, sim):
     ''' Introduce new infections with this variant '''
     for ind in cvi.find_day(self.days, sim.t, interv=self,
                             sim=sim):  # Time to introduce variant
         susceptible_inds = cvu.true(sim.people.susceptible)
         rescale_factor = sim.rescale_vec[sim.t] if self.rescale else 1.0
         scaled_imports = self.n_imports / rescale_factor
         n_imports = sc.randround(
             scaled_imports
         )  # Round stochastically to the nearest number of imports
         if self.n_imports > 0 and n_imports == 0 and sim['verbose']:
             msg = f'Warning: {self.n_imports:n} imported infections of {self.label} were specified on day {sim.t}, but given the rescale factor of {rescale_factor:n}, no agents were infected. Increase the number of imports or use more agents.'
             print(msg)
         importation_inds = np.random.choice(
             susceptible_inds, n_imports, replace=False
         )  # Can't use cvu.choice() since sampling from indices
         sim.people.infect(inds=importation_inds,
                           layer='importation',
                           variant=self.index)
         sim.results['n_imports'][sim.t] += n_imports
     return
    def apply(self, sim):
        ''' Perform vaccination '''

        t = sim.t
        if t < self.start_day:
            return
        elif self.end_day is not None and t > self.end_day:
            return

        # Check that there are still vaccines
        rel_t = t - self.start_day
        if rel_t < len(self.daily_vaccines):
            n_vaccines = sc.randround(self.daily_vaccines[rel_t] /
                                      sim.rescale_vec[t])
        else:
            return

        vacc_probs = np.ones(
            sim.n
        )  # Begin by assigning equal vaccine weight (converted to a probability) to everyone
        if self.subtarget is not None:
            subtarget_inds, subtarget_vals = get_subtargets(
                self.subtarget, sim)
            vacc_probs[
                subtarget_inds] = subtarget_vals  # People being explicitly subtargeted

        # First dose
        # Don't give dose to people who have had at least one dose
        vacc_inds = cvu.true(self.vaccinations > 0)
        vacc_probs[vacc_inds] = 0.0

        # Now choose who gets vaccinated and vaccinate them
        n_vaccines = min(n_vaccines, (vacc_probs != 0).sum())
        all_vacc_inds = cvu.choose_w(probs=vacc_probs,
                                     n=n_vaccines,
                                     unique=True)  # Choose who actually tests
        sim.results['new_doses'][t] += len(all_vacc_inds)

        self.vaccinations[all_vacc_inds] = 1
        self.delay_days[all_vacc_inds] = self.delay
        self.first_dates[all_vacc_inds] = sim.t

        # Calculate the effect per person
        vacc_eff = self.cumulative[0]  # Pull out corresponding effect sizes
        rel_sus_eff = 0.5 + 0.5 * self.rel_sus
        rel_symp_eff = 0.5 + 0.5 * self.rel_symp
        # Apply the vaccine to people
        #sim.people.rel_sus[all_vacc_inds] *= rel_sus_eff
        #sim.people.symp_prob[all_vacc_inds] *= rel_symp_eff
        sim.people.rel_sus[
            all_vacc_inds] = self.orig_rel_sus[all_vacc_inds] * rel_sus_eff
        sim.people.symp_prob[
            all_vacc_inds] = self.orig_symp_prob[all_vacc_inds] * rel_symp_eff

        all_vacc_inds2 = cvu.true(
            (self.vaccinations == 1) * (self.delay_days > 0) *
            (self.first_dates > 0) *
            (self.first_dates + self.delay_days == sim.t))
        rel_sus_eff2 = self.rel_sus
        rel_symp_eff2 = self.rel_symp
        #sim.people.rel_sus[all_vacc_inds2] *= rel_sus_eff2
        #sim.people.symp_prob[all_vacc_inds2] *= rel_symp_eff2
        sim.people.rel_sus[
            all_vacc_inds2] = self.orig_rel_sus[all_vacc_inds2] * rel_sus_eff2
        sim.people.symp_prob[all_vacc_inds2] = self.orig_symp_prob[
            all_vacc_inds2] * rel_symp_eff2
        self.vaccinations[all_vacc_inds2] = 2
        sim.results['new_doses'][t] += len(all_vacc_inds2)
    def apply(self, sim):
        ''' Perform vaccination '''

        t = sim.t
        if t < self.start_day:
            return
        elif self.end_day is not None and t > self.end_day:
            return

        # Check that there are still vaccines
        rel_t = t - self.start_day
        if rel_t < len(self.daily_vaccines):
            n_vaccines = sc.randround(self.daily_vaccines[rel_t]/sim.rescale_vec[t]) # Correct for scaling that may be applied by rounding to the nearest number of tests
            if not (n_vaccines and np.isfinite(n_vaccines)): # If there are no doses today, abort early
                return
            else:
                if sim.rescale_vec[t] != sim['pop_scale']:
                    raise RuntimeError('bad rescale time')
        else:
            return

        vacc_probs = np.ones(sim.n) # Begin by assigning equal vaccine weight (converted to a probability) to everyone

        # Remove minors
        ppl = sim.people
        inds0 = cv.true(ppl.age <= 18)
        vacc_probs[inds0] *= 0

        # add age priority
        inds1 = cv.true(ppl.age >= self.age_priority)
        vacc_probs[inds1] *= 10

        # Handle scheduling
        # first dose:
        vacc_probs[self.vaccinations == 0] *= self.dose_priority[0]
        # time between first and second dose:
        no_dose = [sim.t < (d[0] + self.delay) if len(d) > 0 else False for d in self.vaccination_dates]
        vacc_probs[no_dose] *= 0
        # time available for second dose:
        second_dose = [sim.t >= (d[0] + self.delay) if len(d) > 0 else False for d in self.vaccination_dates]
        vacc_probs[second_dose] *= self.dose_priority[1]

        # Don't give dose 2 people who have had more than 1
        vacc_inds = cvu.true(self.vaccinations > 1)
        vacc_probs[vacc_inds] = 0.0

        # Now choose who gets vaccinated and vaccinate them
        n_vaccines = min(n_vaccines, (vacc_probs!=0).sum()) # Don't try to vaccinate more people than have nonzero vaccination probability
        all_vacc_inds = cvu.choose_w(probs=vacc_probs, n=n_vaccines, unique=True) # Choose who actually tests
        sim.results['new_doses'][t] += len(all_vacc_inds)

        # Did the vaccine take?
        vacc_take_inds = all_vacc_inds[np.logical_or(cvu.n_binomial(self.take_prob, len(all_vacc_inds)) & (self.vaccinations[all_vacc_inds] == 0),
                                           self.vaccine_take[all_vacc_inds] & (self.vaccinations[all_vacc_inds] == 1))]
        self.vaccine_take[vacc_take_inds] = True

        # Calculate the effect per person
        vacc_doses = self.vaccinations[vacc_take_inds]  # Calculate current doses
        eff_doses = np.minimum(vacc_doses, len(self.cumulative) - 1)  # Convert to a valid index
        vacc_eff = self.cumulative[eff_doses]  # Pull out corresponding effect sizes
        rel_trans_eff = (1.0 - vacc_eff) + vacc_eff * self.rel_trans
        rel_symp_eff = (1.0 - vacc_eff) + vacc_eff * self.rel_symp

        # Apply the vaccine to people
        sim.people.rel_trans[vacc_take_inds] = self.orig_rel_trans[vacc_take_inds]*rel_trans_eff
        sim.people.symp_prob[vacc_take_inds] = self.orig_symp_prob[vacc_take_inds]*rel_symp_eff

        self.vaccinations[all_vacc_inds] += 1
        for v_ind in all_vacc_inds:
            self.vaccination_dates[v_ind].append(sim.t)

        return
示例#5
0
          legend_args={'loc': 'upper left'},
          axis_args={'hspace': 0.4},
          interval=50,
          n_cols=1)
pl.axhline(1, linestyle='--', c=[0.8, 0.4, 0.4], alpha=1, lw=4)
pl.axvline(sim.day('2021-05-01'), linestyle='--')
pl.text(sim.day('2021-05-01') + 2, 8, 'ii.')
pl.axvline(sim.day('2021-04-06'), linestyle='--')
pl.text(sim.day('2021-04-06') + 2, 8, 'i.')
pl.title('Scenario 6: Effective reproduction number')

#%%
total = []
for i in range(18):
    result = []
    result.append(sc.randround(sims[i].results['cum_infections'][-1]))
    result.append(sc.randround(sims[i].results['cum_symptomatic'][-1]))
    result.append(sc.randround(sims[i].results['cum_deaths'][-1]))

    total.append(result)

total
#%%
exposed = []
symptomatic = []
deaths = []
for i in range(18):
    exposed.append(sims[i].get_analyzer().hists[0][1].tolist())
    symptomatic.append(sims[i].get_analyzer().hists[0][2].tolist())
    deaths.append(sims[i].get_analyzer().hists[0][3].tolist())