op.delete_study(storage=storage, study_name=name)
    except:
        pass
    output = op.create_study(storage=storage,
                             study_name=name,
                             load_if_exists=not (restart))
    return output


if __name__ == '__main__':
    t0 = sc.tic()
    make_study()
    run_workers()
    study = op.load_study(storage=storage, study_name=name)
    best_pars = study.best_params
    T = sc.toc(t0, output=True)
    print(f'Output: {best_pars}, time: {T}')

    sc.heading('Loading data...')
    best = cs.define_pars('best')
    bounds = cs.define_pars('bounds')

    sc.heading('Making results structure...')
    results = []
    n_trials = len(study.trials)
    failed_trials = []
    for trial in study.trials:
        data = {'index': trial.number, 'mismatch': trial.value}
        for key, val in trial.params.items():
            data[key] = val
        if data['mismatch'] is None:
示例#2
0
    def run(self,
            start=None,
            stop=None,
            initialize=None,
            finalize=None,
            do_plot=False,
            verbose=None,
            **kwargs):
        '''
        Run the simulation.

        Args:
            start (int): when to start the simulation relative to the time vector; default 0
            stop (int): when to stop; default -1
            initialize (bool): whether to initialize people and results objects
            finalize (bool): whether or not to calculate final results objects after the time loop
            do_plot (bool): whether to plot
            verbose (int): level of detail to print
            kwargs (dict): passed to self.plot()

        Returns:
            results: the results object (also modifies in-place)
        '''

        T = sc.tic()

        # Reset settings and results
        if start is None:
            start = 0
        if initialize is None:
            if start > 0:
                initialize = False
            else:
                initialize = True
        if finalize is None:
            finalize = True
        if verbose is None:
            verbose = self['verbose']
        if initialize:
            self.initialize()  # Create people, results, etc.

        # Main simulation loop
        self.stopped = False  # We've just been asked to run, so ensure we're unstopped
        tvec = self.tvec[start:stop]
        for t in tvec:
            self.t = t  # Store the current time

            # Check timing and stopping function
            elapsed = sc.toc(T, output=True)
            if elapsed > self['timelimit']:
                print(
                    f"Time limit ({self['timelimit']} s) exceeded; stopping..."
                )
                self.stopped = {
                    'why': 'timelimit',
                    'message': 'Time limit exceeded at step {t}',
                    't': t
                }

            if self['stop_func']:
                self.stopped = self['stop_func'](
                    self)  # Feed in the current simulation object and the time

            # If this gets set, stop running -- e.g. if the time limit is exceeded
            if self.stopped:
                break

            # Zero counts for this time step: stocks
            n_susceptible = 0
            n_exposed = 0
            n_infectious = 0
            n_symptomatic = 0
            n_severe = 0
            n_critical = 0

            # Zero counts for this time step: flows
            new_recoveries = 0
            new_deaths = 0
            new_infections = 0

            # Extract these for later use. The values do not change in the person loop and the dictionary lookup is expensive.
            rand_popdata = (self['usepopdata'] == 'random')
            beta = self['beta']
            asymp_factor = self['asymp_factor']
            diag_factor = self['diag_factor']
            cont_factor = self['cont_factor']
            beta_pop = self['beta_pop']
            n_beds = self['n_beds']
            bed_constraint = False

            # Print progress
            if verbose >= 1:
                string = f'  Running day {t:0.0f} of {self.pars["n_days"]} ({elapsed:0.2f} s elapsed)...'
                if verbose >= 2:
                    sc.heading(string)
                else:
                    print(string)

            # Update each person, skipping people who are susceptible
            not_susceptible = filter(lambda p: not p.susceptible,
                                     self.people.values())
            n_susceptible = len(self.people)

            for person in not_susceptible:
                n_susceptible -= 1

                # If exposed, check if the person becomes infectious or develops symptoms
                if person.exposed:
                    n_exposed += 1
                    if not person.infectious and t == person.date_infectious:  # It's the day they become infectious
                        person.infectious = True
                        sc.printv(
                            f'      Person {person.uid} became infectious!', 2,
                            verbose)

                # If infectious, check if anyone gets infected
                if person.infectious:

                    # Check whether the person died on this timestep
                    new_death = person.check_death(t)
                    new_deaths += new_death

                    # Check whether the person recovered on this timestep
                    new_recovery = person.check_recovery(t)
                    new_recoveries += new_recovery

                    # No recovery: check symptoms
                    if not new_recovery:
                        n_symptomatic += person.check_symptomatic(t)
                        n_severe += person.check_severe(t)
                        n_critical += person.check_critical(t)
                        if n_severe > n_beds: bed_constraint = True

                    # If the person didn't die or recover, check for onward transmission
                    if not new_death and not new_recovery:
                        n_infectious += 1  # Count this person as infectious

                        # Calculate transmission risk based on whether they're asymptomatic/diagnosed/have been isolated
                        thisbeta = beta * \
                                   (asymp_factor if person.symptomatic else 1.) * \
                                   (diag_factor if person.diagnosed else 1.) * \
                                   (cont_factor if person.known_contact else 1.)

                        # Determine who gets infected
                        if rand_popdata:  # Flat contacts
                            transmission_inds = cvu.bf(thisbeta,
                                                       person.contacts)
                        else:  # Dictionary of contacts -- extra loop over layers
                            transmission_inds = []
                            for ckey in self.contact_keys:
                                layer_beta = thisbeta * beta_pop[ckey]
                                transmission_inds.extend(
                                    cvu.bf(layer_beta, person.contacts[ckey]))

                        # Loop over people who do
                        for contact_ind in transmission_inds:
                            target_person = self.get_person(
                                contact_ind)  # Stored by integer

                            # This person was diagnosed last time step: time to flag their contacts
                            if person.date_diagnosed is not None and person.date_diagnosed == t - 1:
                                target_person.known_contact = True

                            # Skip people who are not susceptible
                            if target_person.susceptible:
                                new_infections += target_person.infect(
                                    t, bed_constraint,
                                    source=person)  # Actually infect them
                                sc.printv(
                                    f'        Person {person.uid} infected person {target_person.uid}!',
                                    2, verbose)

            sc.printv(
                f'Number of beds available: {n_beds-n_severe}, bed constraint: {bed_constraint}',
                2, verbose)
            # End of person loop; apply interventions
            for intervention in self['interventions']:
                intervention.apply(self)
            if self['interv_func'] is not None:  # Apply custom intervention function
                self = self['interv_func'](self)

            # Update counts for this time step: stocks
            self.results['n_susceptible'][t] = n_susceptible
            self.results['n_exposed'][t] = n_exposed
            self.results['n_infectious'][
                t] = n_infectious  # Tracks total number infectious at this timestep
            self.results['n_symptomatic'][
                t] = n_symptomatic  # Tracks total number symptomatic at this timestep
            self.results['n_severe'][
                t] = n_severe  # Tracks total number of severe cases at this timestep
            self.results['n_critical'][
                t] = n_critical  # Tracks total number of critical cases at this timestep
            self.results['bed_capacity'][
                t] = n_severe / n_beds if n_beds > 0 else None

            # Update counts for this time step: flows
            self.results['new_infections'][
                t] = new_infections  # New infections on this timestep
            self.results['new_recoveries'][
                t] = new_recoveries  # Tracks new recoveries on this timestep
            self.results['new_deaths'][t] = new_deaths

        # End of time loop; compute cumulative results outside of the time loop
        if finalize:
            self.finalize(verbose=verbose)  # Finalize the results
            sc.printv(f'\nRun finished after {elapsed:0.1f} s.\n', 1, verbose)
            self.summary = self.summary_stats(verbose=verbose)
            if do_plot:  # Optionally plot
                self.plot(**kwargs)

        return self.results
示例#3
0
    ns = (1 + np.arange(10)) * 100e3

    fig = pl.figure(figsize=(14, 22))

    count = 0
    for which in ['mult', 'cond']:
        for jit in [0]:  #[0,1]:
            print(which, jit)

            ts = []
            for n in ns:
                nt = NumbaTests(n=n)
                sc.tic()
                nt.run(which=which, jit=jit)
                t = sc.toc(output=True)
                ts.append(t)
                print(n, t)

            count += 1
            pl.subplot(4, 2, count)
            pl.scatter(ns / 1e6, ts)
            sc.setylim()
            pl.xlabel('Number of points (millions)')
            pl.ylabel('Calculation time')
            pl.title(f'Which = {which}, jit={jit}')

            count += 1
            pl.subplot(4, 2, count)
            pl.scatter(ns / 1e6, np.array(ts) / ns * 1e6)
            sc.setylim()
示例#4
0
import sciris as sc
import covasim as cv

sc.tic()

people = cv.People(pop_size=2000)

sc.toc(label='default')

plist = people.to_people()

sc.toc(label='to people')

ppl2 = cv.People()
ppl2.from_people(plist)

sc.toc(label='from people')

ppl3 = people + ppl2

sim = cv.Sim(pop_type='random', pop_size=20000)
cv.make_people(sim)
ppl4 = sim.people

sc.toc(label='as sim')

df = ppl4.to_df()
arr = ppl4.to_arr()

sc.toc(label='to df/arr')
示例#5
0
    if pn == 1:
        ax[pn] = sns.swarmplot(x="variable",
                               y="value",
                               data=df2,
                               color="grey",
                               alpha=0.5)
        ax[pn] = sns.violinplot(x="variable",
                                y="value",
                                data=df2,
                                color="lightblue",
                                alpha=0.5,
                                inner=None)
        ax[pn] = sns.pointplot(x="variable",
                               y="value",
                               data=df2,
                               ci=None,
                               color="steelblue",
                               markers='D',
                               scale=1.2)

        ax[pn].set_ylabel('Cumulative infections, 1 Dec 2020 - 1 Mar 2021')
        ax[pn].set_xlabel('Symptomatic testing rate')

cv.savefig(f'{figsfolder}/fig4_multiscens.pdf')

print([np.median(cuminf[tn]) for tn in range(len(thresholds))])
print([np.quantile(cuminf[tn], q=0.025) for tn in range(len(thresholds))])
print([np.quantile(cuminf[tn], q=0.975) for tn in range(len(thresholds))])
sc.toc(T)
示例#6
0
def test_generate_microstructures_with_non_teaching_staff():
    # # generate and write to file
    population1 = sp.make_population(datadir=datadir,
                                     location=location,
                                     state_location=state_location,
                                     country_location=country_location,
                                     n=n,
                                     use_two_group_reduction=use_two_group_reduction,
                                     average_LTCF_degree=average_LTCF_degree,
                                     ltcf_staff_age_min=ltcf_staff_age_min,
                                     ltcf_staff_age_max=ltcf_staff_age_max,
                                     with_school_types=with_school_types,
                                     school_mixing_type=school_mixing_type,
                                     average_class_size=average_class_size,
                                     inter_grade_mixing=inter_grade_mixing,
                                     average_student_teacher_ratio=average_student_teacher_ratio,
                                     average_teacher_teacher_degree=average_teacher_teacher_degree,
                                     teacher_age_min=teacher_age_min,
                                     teacher_age_max=teacher_age_max,
                                     average_student_all_staff_ratio=average_student_all_staff_ratio,
                                     average_additional_staff_degree=average_additional_staff_degree,
                                     staff_age_min=staff_age_min,
                                     staff_age_max=staff_age_max,
                                     write=write,
                                     plot=plot,
                                     return_popdict=return_popdict,
                                     use_default=use_default)

    # # # read in from file
    population2 = sp.make_population(datadir=datadir,
                                     location=location,
                                     state_location=state_location,
                                     country_location=country_location,
                                     n=n,
                                     use_two_group_reduction=use_two_group_reduction,
                                     average_LTCF_degree=average_LTCF_degree,
                                     with_school_types=with_school_types,
                                     school_mixing_type=school_mixing_type,
                                     average_class_size=average_class_size,
                                     inter_grade_mixing=inter_grade_mixing,
                                     average_student_teacher_ratio=average_student_teacher_ratio,
                                     average_teacher_teacher_degree=average_teacher_teacher_degree,
                                     average_student_all_staff_ratio=average_student_all_staff_ratio,
                                     average_additional_staff_degree=average_additional_staff_degree)

    # # generate on the fly
    sc.tic()
    population3 = sp.make_population(n=n,
                                     generate=True,
                                     with_facilities=True,
                                     use_two_group_reduction=use_two_group_reduction,
                                     average_LTCF_degree=average_LTCF_degree,
                                     ltcf_staff_age_min=ltcf_staff_age_min,
                                     ltcf_staff_age_max=ltcf_staff_age_max,
                                     with_school_types=with_school_types,
                                     school_mixing_type=school_mixing_type,
                                     average_class_size=average_class_size,
                                     inter_grade_mixing=inter_grade_mixing,
                                     average_student_teacher_ratio=average_student_teacher_ratio,
                                     average_teacher_teacher_degree=average_teacher_teacher_degree,
                                     teacher_age_min=teacher_age_min,
                                     teacher_age_max=teacher_age_max,
                                     with_non_teaching_staff=with_non_teaching_staff,
                                     average_student_all_staff_ratio=average_student_all_staff_ratio,
                                     average_additional_staff_degree=average_additional_staff_degree,
                                     staff_age_min=staff_age_min,
                                     staff_age_max=staff_age_max,
                                     rand_seed=rand_seed)
    sc.toc()

    check_all_residents_are_connected_to_staff(population3)

    return population1, population2, population3
示例#7
0
文件: model.py 项目: wpettine/covasim
    def run(self,
            seed_infections=1,
            verbose=None,
            calc_likelihood=False,
            do_plot=False,
            **kwargs):
        ''' Run the simulation '''

        T = sc.tic()

        # Reset settings and results
        if verbose is None:
            verbose = self['verbose']
        self.init_results()
        self.init_people(
            seed_infections=seed_infections)  # Actually create the people
        daily_tests = self.data[
            'new_tests']  # Number of tests each day, from the data
        evacuated = self.data['evacuated']  # Number of people evacuated

        # Main simulation loop
        for t in range(self.npts):

            # Print progress
            if verbose >= 1:
                string = f'  Running day {t:0.0f} of {self["n_days"]}...'
                if verbose >= 2:
                    sc.heading(string)
                else:
                    print(string)

            test_probs = {
            }  # Store the probability of each person getting tested

            # Update each person
            for person in self.people.values():

                # Count susceptibles
                if person.susceptible:
                    self.results['n_susceptible'][t] += 1
                    continue  # Don't bother with the rest of the loop

                # Handle testing probability
                if person.infectious:
                    test_probs[person.uid] = self[
                        'symptomatic']  # They're infectious: high probability of testing
                else:
                    test_probs[person.uid] = 1.0

                # If exposed, check if the person becomes infectious
                if person.exposed:
                    self.results['n_exposed'][t] += 1
                    if not person.infectious and t >= person.date_infectious:  # It's the day they become infectious
                        person.infectious = True
                        if verbose >= 2:
                            print(
                                f'      Person {person.uid} became infectious!'
                            )

                # If infectious, check if anyone gets infected
                if person.infectious:
                    # First, check for recovery
                    if person.date_recovered and t >= person.date_recovered:  # It's the day they become infectious
                        person.exposed = False
                        person.infectious = False
                        person.recovered = True
                        self.results['recoveries'][t] += 1
                    else:
                        self.results['n_infectious'][
                            t] += 1  # Count this person as infectious
                        n_contacts = cv.pt(
                            person.contacts
                        )  # Draw the number of Poisson contacts for this person
                        contact_inds = cv.choose(
                            max_n=len(self.people),
                            n=n_contacts)  # Choose people at random
                        for contact_ind in contact_inds:
                            exposure = cv.bt(self['r_contact']
                                             )  # Check for exposure per person
                            if exposure:
                                target_person = self.people[contact_ind]
                                if target_person.susceptible:  # Skip people who are not susceptible
                                    self.results['infections'][t] += 1
                                    target_person.susceptible = False
                                    target_person.exposed = True
                                    target_person.date_exposed = t
                                    incub_pars = dict(dist='normal_int',
                                                      par1=self['incub'],
                                                      par2=self['incub_std'])
                                    dur_pars = dict(dist='normal_int',
                                                    par1=self['dur'],
                                                    par2=self['dur_std'])
                                    incub_dist = cv.sample(**incub_pars)
                                    dur_dist = cv.sample(**dur_pars)

                                    target_person.date_infectious = t + incub_dist
                                    target_person.date_recovered = target_person.date_infectious + dur_dist
                                    if verbose >= 2:
                                        print(
                                            f'        Person {person.uid} infected person {target_person.uid}!'
                                        )

                # Count people who recovered
                if person.recovered:
                    self.results['n_recovered'][t] += 1

            # Implement testing -- this is outside of the loop over people, but inside the loop over time
            if t < len(
                    daily_tests
            ):  # Don't know how long the data is, ensure we don't go past the end
                n_tests = daily_tests.iloc[t]  # Number of tests for this day
                if n_tests and not pl.isnan(
                        n_tests):  # There are tests this day
                    self.results['tests'][
                        t] = n_tests  # Store the number of tests
                    test_probs = pl.array(list(test_probs.values()))
                    test_probs /= test_probs.sum()
                    test_inds = cv.choose_weighted(probs=test_probs, n=n_tests)
                    uids_to_pop = []
                    for test_ind in test_inds:
                        tested_person = self.people[test_ind]
                        if tested_person.infectious and cv.bt(
                                self['sensitivity']
                        ):  # Person was tested and is true-positive
                            self.results['diagnoses'][t] += 1
                            tested_person.diagnosed = True
                            if self['evac_positives']:
                                uids_to_pop.append(tested_person.uid)
                            if verbose >= 2:
                                print(
                                    f'          Person {person.uid} was diagnosed!'
                                )
                    for uid in uids_to_pop:  # Remove people from the ship once they're diagnosed
                        self.off_ship[uid] = self.people.pop(uid)

            # Implement quarantine
            if t == self['quarantine']:
                if verbose >= 1:
                    print(f'Implementing quarantine on day {t}...')
                for person in self.people.values():
                    if 'quarantine_eff' in self.pars.keys():
                        quarantine_eff = self['quarantine_eff']  # Both
                    else:
                        if person.crew:
                            quarantine_eff = self['quarantine_eff_c']  # Crew
                        else:
                            quarantine_eff = self['quarantine_eff_g']  # Guests
                    person.contacts *= quarantine_eff

            # Implement testing change
            if t == self['testing_change']:
                if verbose >= 1:
                    print(f'Implementing testing change on day {t}...')
                self['symptomatic'] *= self[
                    'testing_symptoms']  # Reduce the proportion of symptomatic testing

            # Implement evacuations
            if t < len(evacuated):
                n_evacuated = evacuated.iloc[
                    t]  # Number of evacuees for this day
                if n_evacuated and not pl.isnan(
                        n_evacuated
                ):  # There are evacuees this day # TODO -- refactor with n_tests
                    if verbose >= 1:
                        print(f'Implementing evacuation on day {t}')
                    evac_inds = cv.choose(max_n=len(self.people),
                                          n=n_evacuated)
                    uids_to_pop = []
                    for evac_ind in evac_inds:
                        evac_person = self.people[evac_ind]
                        if evac_person.infectious and cv.bt(
                                self['sensitivity']):
                            self.results['evac_diagnoses'][t] += 1
                        uids_to_pop.append(evac_person.uid)
                    for uid in uids_to_pop:  # Remove people from the ship once they're diagnosed
                        self.off_ship[uid] = self.people.pop(uid)

        # Compute cumulative results
        self.results['cum_exposed'] = pl.cumsum(self.results['infections'])
        self.results['cum_tested'] = pl.cumsum(self.results['tests'])
        self.results['cum_diagnosed'] = pl.cumsum(self.results['diagnoses'])

        # Compute likelihood
        if calc_likelihood:
            self.likelihood()

        # Tidy up
        self.results['ready'] = True
        elapsed = sc.toc(T, output=True)
        if verbose >= 1:
            print(f'\nRun finished after {elapsed:0.1f} s.\n')
            summary = self.summary_stats()
            print(f"""Summary:
     {summary['n_susceptible']:5.0f} susceptible
     {summary['n_exposed']:5.0f} exposed
     {summary['n_infectious']:5.0f} infectious
               """)

        if do_plot:
            self.plot(**kwargs)

        return self.results
示例#8
0
        if animate_all:
            pl.pause(idelay)
        for f in flist:
            if f.e:
                pl.plot(f.x[1], f.y[1], '*', c=f.c, markersize=msize, **plargs)
        if tlist:
            for dq in tlist:
                pl.plot(dq.d,
                        dq.t,
                        'o',
                        c=dq.c,
                        markersize=msize * 2,
                        fillstyle='none',
                        **plargs)
        if dlist:
            for dq in dlist:
                pl.plot(dq.d,
                        dq.t,
                        's',
                        c=dq.c,
                        markersize=msize * 1.2,
                        **plargs)
        if qlist:
            for dq in qlist:
                pl.plot(dq.d, dq.t, 'x', c=dq.c, markersize=msize * 2.0)
        pl.plot([0, day], [0.5, 0.5], c='k', lw=5)
    if animate:
        pl.pause(daydelay)

sc.toc(tstart)
示例#9
0
    def run(self, do_plot=False, until=None, restore_pars=True, reset_seed=True, verbose=None, **kwargs):
        '''
        Run the simulation.

        Args:
            do_plot (bool): whether to plot
            until (int): day to run until
            restore_pars (bool): whether to make a copy of the parameters before the run and restore it after, so runs are repeatable
            reset_seed (bool): whether to reset the random number stream immediately before run
            verbose (float): level of detail to print, e.g. 0 = no output, 0.2 = print every 5th day, 1 = print every day
            kwargs (dict): passed to sim.plot()

        Returns:
            results (dict): the results object (also modifies in-place)
        '''

        # Initialization steps -- start the timer, initialize the sim and the seed, and check that the sim hasn't been run
        T = sc.tic()

        if verbose is None:
            verbose = self['verbose']

        if not self.initialized:
            self.initialize()
            self._orig_pars = sc.dcp(self.pars) # Create a copy of the parameters, to restore after the run, in case they are dynamically modified

        if reset_seed:
            # Reset the RNG. If the simulation is newly created, then the RNG will be reset by sim.initialize() so the use case
            # for resetting the seed here is if the simulation has been partially run, and changing the seed is required
            self.set_seed()

        until = self.npts if until is None else self.day(until)
        if until > self.npts:
            raise AlreadyRunError(f'Requested to run until t={until} but the simulation end is t={self.npts}')

        if self.complete:
            raise AlreadyRunError('Simulation is already complete (call sim.initialize() to re-run)')

        if self.t >= until:
            # NB. At the start, self.t is None so this check must occur after initialization
            raise AlreadyRunError(f'Simulation is currently at t={self.t}, requested to run until t={until} which has already been reached')

        # Main simulation loop
        while self.t < until:

            # Check if we were asked to stop
            elapsed = sc.toc(T, output=True)
            if self['timelimit'] and elapsed > self['timelimit']:
                sc.printv(f"Time limit ({self['timelimit']} s) exceeded; call sim.finalize() to compute results if desired", 1, verbose)
                return
            elif self['stopping_func'] and self['stopping_func'](self):
                sc.printv("Stopping function terminated the simulation; call sim.finalize() to compute results if desired", 1, verbose)
                return

            # Print progress
            if verbose:
                simlabel = f'"{self.label}": ' if self.label else ''
                string = f'  Running {simlabel}{self.datevec[self.t]} ({self.t:2.0f}/{self.pars["n_days"]}) ({elapsed:0.2f} s) '
                if verbose >= 2:
                    sc.heading(string)
                else:
                    if not (self.t % int(1.0/verbose)):
                        sc.progressbar(self.t+1, self.npts, label=string, length=20, newline=True)

            # Do the heavy lifting -- actually run the model!
            self.step()

        # If simulation reached the end, finalize the results
        if self.complete:
            self.finalize(verbose=verbose, restore_pars=restore_pars)
            sc.printv(f'Run finished after {elapsed:0.2f} s.\n', 1, verbose)
            if do_plot: # Optionally plot
                self.plot(**kwargs)
            return self.results
        else:
            return # If not complete, return nothing
示例#10
0
    popsize = popsizes[1]
    print(f'Working on {popsize} for {cv.defaults.default_int}...')
    sim = cv.Sim(pop_size=popsize, verbose=0)
    sim.run()

    popsize = popsizes[2]
    print(f'Working on {popsize} for {cv.defaults.default_int}...')
    sim = cv.Sim(pop_size=popsize, verbose=0)
    sim.run()

    return sim


sc.mprofile(mrun, mrun)

#%% Now check timings
timings = []
for popsize in popsizes:
    for r in range(repeats):
        print(
            f'Working on {popsize} for {cv.defaults.default_int}, iteration {r}...'
        )
        T = sc.tic()
        sim = cv.Sim(pop_size=popsize, verbose=0)
        sim.run()
        out = sc.toc(T, output=True)
        timings.append({'popsize': popsize, 'elapsed': out})

df = pd.DataFrame.from_dict(timings)
print(df)
示例#11
0
def test_estimates(doplot=False, verbose=False):
    
    # Set input data parameters
    ntrain = 200
    ntest  = 50
    npars  = 2
    noise  = 0.5
    seed   = 1
    
    # Set algorithm parameters
    k          = 3
    nbootstrap = 10
    weighted   = 1
    
    # Set up training and test arrays
    pl.seed(seed)
    train_arr = pl.rand(ntrain, npars)
    train_vals = pl.sqrt(((train_arr-0.5)**2).sum(axis=1)) + noise*pl.rand(ntrain) # Distance from center
    test_arr = pl.rand(ntest, npars)
    
    # Calculate the estimates
    t1 = sc.tic()
    test_vals = pe.bootknn(test=test_arr, train=train_arr, values=train_vals, k=k, nbootstrap=nbootstrap, weighted=weighted) 
    t2 = sc.toc(t1, output=True)
    timestr = f'time = {t2*1e3:0.2f} ms'
    print(timestr)
    
    if doplot:
        # Setup
        xind = 0
        yind = 1
        offset = 0.015
        cmap = 'parula'
        x_off = offset*pl.array([0, -1, 0, 1, 0]) # Offsets in the x direction
        y_off = offset*pl.array([-1, 0, 0, 0, 1]) # Offsets in the y direction
        train_args = dict(marker='o', s=50)
        test_args  = dict(marker='s', s=80)
        minval = min(train_vals.min(), test_vals.array.min())
        maxval = min(train_vals.max(), test_vals.array.max())
        train_colors = sc.arraycolors(train_vals,      cmap=cmap, minval=minval, maxval=maxval)
        test_colors  = sc.arraycolors(test_vals.array, cmap=cmap, minval=minval, maxval=maxval)
        
        # Make the figure
        pl.figure(figsize=eqfigsize)
        pl.scatter(train_arr[:,xind], train_arr[:,yind], c=train_colors, **train_args, label='Training')
        
        # Plot the data
        for q in range(ntest):
            for i in range(5):
                label = 'Predicted' if i==0 and q==0 else None # To avoid appearing multiple times
                x = test_arr[q,xind]+x_off[i]
                y = test_arr[q,yind]+y_off[i]
                v = test_vals.array[i,q]
                c = test_colors[i,q]
                pl.scatter(x, y, c=[c], **test_args, label=label)
                if verbose:
                    print(f'i={i}, q={q}, x={x:0.3f}, y={y:0.3f}, v={v:0.3f}, c={c}')
                    pl.pause(0.3)
        
        pl.xlabel('Parameter 1')
        pl.ylabel('Parameter 2')
        pl.title(f'Parameter estimates; {timestr}')
        pl.legend()
        pl.set_cmap(cmap)
        pl.clim((minval, maxval))
        pl.axis('square')
        pl.colorbar()
    
    return test_vals
示例#12
0
def cache_populations(seed, pop_size, popfile, do_save=True):
    ''' Pre-generate the synthpops population '''

    use_two_group_reduction = True
    average_LTCF_degree = 20
    ltcf_staff_age_min = 20
    ltcf_staff_age_max = 60

    with_school_types = True
    average_class_size = 20
    inter_grade_mixing = 0.1
    average_student_teacher_ratio = 20
    average_teacher_teacher_degree = 3
    teacher_age_min = 25
    teacher_age_max = 75

    with_non_teaching_staff = True
    average_student_all_staff_ratio = 11
    average_additional_staff_degree = 20
    staff_age_min = 20
    staff_age_max = 75

    school_mixing_type = {
        'pk': 'age_clustered',
        'es': 'age_clustered',
        'ms': 'age_clustered',
        'hs': 'random',
        'uv': 'random'
    }

    T = sc.tic()
    print(f'Making "{popfile}"...')
    popdict = sp.make_population(
        n=pop_size,
        rand_seed=seed,
        generate=True,
        with_facilities=True,
        use_two_group_reduction=use_two_group_reduction,
        average_LTCF_degree=average_LTCF_degree,
        ltcf_staff_age_min=ltcf_staff_age_min,
        ltcf_staff_age_max=ltcf_staff_age_max,
        with_school_types=with_school_types,
        school_mixing_type=school_mixing_type,
        average_class_size=average_class_size,
        inter_grade_mixing=inter_grade_mixing,
        average_student_teacher_ratio=average_student_teacher_ratio,
        average_teacher_teacher_degree=average_teacher_teacher_degree,
        teacher_age_min=teacher_age_min,
        teacher_age_max=teacher_age_max,
        with_non_teaching_staff=with_non_teaching_staff,
        average_student_all_staff_ratio=average_student_all_staff_ratio,
        average_additional_staff_degree=average_additional_staff_degree,
        staff_age_min=staff_age_min,
        staff_age_max=staff_age_max,
    )

    if do_save:
        sc.saveobj(popfile, popdict)

    sc.toc(T)
    print(f'Done, saved to {popfile}')
    return popdict
示例#13
0
'''
Test different parallelization options
'''

import covasim as cv
import sciris as sc

# Set the parallelization to use -- 0 = none, 1 = safe, 2 = rand
parallel = 1

pars = dict(
    pop_size = 1e6,
    n_days = 200,
    verbose = 0.1,
)

cv.options.set(numba_cache=0, numba_parallel=parallel)

parstr = f'Parallel={cv.options.numba_parallel}'
print('Initializing (always single core)')
sim = cv.Sim(**pars, label=parstr)
sim.initialize()

print(f'Running ({parstr})')
sc.tic()
sim.run()
sc.toc(label=parstr)
示例#14
0
def make_population(seed=0, popfile=None):
    ''' Pre-generate the synthpops population '''

    pars = sc.objdict(
        pop_size = pop_size,
        pop_type = 'synthpops',
        rand_seed = seed,
    )

    use_two_group_reduction = True
    average_LTCF_degree = 20
    ltcf_staff_age_min = 20
    ltcf_staff_age_max = 60

    with_school_types = True
    average_class_size = 20
    inter_grade_mixing = 0.1
    average_student_teacher_ratio = 20
    average_teacher_teacher_degree = 3
    teacher_age_min = 25
    teacher_age_max = 75

    with_non_teaching_staff = True
    # if with_non_teaching_staff is False, but generate is True, then average_all_staff_ratio should be average_student_teacher_ratio or 0
    average_student_all_staff_ratio = 11
    average_additional_staff_degree = 20
    staff_age_min = 20
    staff_age_max = 75

    cohorting = True
    if cohorting:
        strategy = 'clustered'
        school_mixing_type = {'pk': 'clustered', 'es': 'clustered', 'ms': 'clustered', 'hs': 'random', 'uv': 'random'}
    else:
        strategy = 'normal'
        school_mixing_type = {'pk': 'age_and_class_clustered', 'es': 'age_and_class_clustered', 'ms': 'age_and_class_clustered',
                              'hs': 'random', 'uv': 'random'}

    if popfile is None:
        popfile = f'inputs/transtree_synthpops_{strategy}_withstaff_seed{pars.rand_seed}.ppl'

    T = sc.tic()
    print(f'Making "{popfile}"...')
    sim = cv.Sim(pars)
    cv.make_people(sim,
                   popfile=popfile,
                   save_pop=True,
                   generate=True,
                   with_facilities=True,
                   use_two_group_reduction=use_two_group_reduction,
                   average_LTCF_degree=average_LTCF_degree,
                   ltcf_staff_age_min=ltcf_staff_age_min,
                   ltcf_staff_age_max=ltcf_staff_age_max,
                   with_school_types=with_school_types,
                   school_mixing_type=school_mixing_type,
                   average_class_size=average_class_size,
                   inter_grade_mixing=inter_grade_mixing,
                   average_student_teacher_ratio=average_student_teacher_ratio,
                   average_teacher_teacher_degree=average_teacher_teacher_degree,
                   teacher_age_min=teacher_age_min,
                   teacher_age_max=teacher_age_max,
                   with_non_teaching_staff=with_non_teaching_staff,
                   average_student_all_staff_ratio=average_student_all_staff_ratio,
                   average_additional_staff_degree=average_additional_staff_degree,
                   staff_age_min=staff_age_min,
                   staff_age_max=staff_age_max
                   )
    sc.toc(T)

    print('Done')
    return
def make_pop(seed=0):
    ''' Pre-generate the synthpops population '''

    pars = sc.objdict(
        # pop_size = 2.25e6,
        pop_size=11e3,  #2.25e5,
        pop_type='synthpops',
        rand_seed=seed,
    )

    use_two_group_reduction = True
    average_LTCF_degree = 20
    ltcf_staff_age_min = 20
    ltcf_staff_age_max = 60

    with_school_types = True
    average_class_size = 20
    inter_grade_mixing = 0.1
    average_student_teacher_ratio = 20
    average_teacher_teacher_degree = 3
    teacher_age_min = 25
    teacher_age_max = 75

    with_non_teaching_staff = True
    # if with_non_teaching_staff is False, but generate is True, then average_all_staff_ratio should be average_student_teacher_ratio or 0
    average_student_all_staff_ratio = 11
    average_additional_staff_degree = 20
    staff_age_min = 20
    staff_age_max = 75

    # For reference re: school_types
    # school_mixing_type = 'random' means that students in the school have edges randomly chosen from other students, teachers, and non teaching staff across the school. Students, teachers, and non teaching staff are treated the same in terms of edge generation.
    # school_mixing_type = 'age_clustered' means that students in the school have edges mostly within their own age/grade, with teachers, and non teaching staff. Strict classrooms are not generated. Teachers have some additional edges with other teachers.
    # school_mixing_type = 'age_and_class_clustered' means that students are cohorted into classes of students of the same age/grade with at least 1 teacher, and then some have contact with non teaching staff. Teachers have some additional edges with other teachers.

    cohorting = True
    if cohorting:
        strategy = 'clustered'  # students in pre-k, elementary, and middle school are cohorted into strict classrooms
        school_mixing_type = {
            'pk': 'age_and_class_clustered',
            'es': 'age_and_class_clustered',
            'ms': 'age_and_class_clustered',
            'hs': 'random',
            'uv': 'random'
        }
    else:
        strategy = 'normal'
        school_mixing_type = {
            'pk': 'age_clustered',
            'es': 'age_clustered',
            'ms': 'age_clustered',
            'hs': 'random',
            'uv': 'random'
        }

    T = sc.tic()
    print(f'Making "{popfile}"...')
    sim = cv.Sim(pars)
    cv.make_people(
        sim,
        popfile=popfile,
        save_pop=True,
        generate=True,
        with_facilities=True,
        use_two_group_reduction=use_two_group_reduction,
        average_LTCF_degree=average_LTCF_degree,
        ltcf_staff_age_min=ltcf_staff_age_min,
        ltcf_staff_age_max=ltcf_staff_age_max,
        with_school_types=with_school_types,
        school_mixing_type=school_mixing_type,
        average_class_size=average_class_size,
        inter_grade_mixing=inter_grade_mixing,
        average_student_teacher_ratio=average_student_teacher_ratio,
        average_teacher_teacher_degree=average_teacher_teacher_degree,
        teacher_age_min=teacher_age_min,
        teacher_age_max=teacher_age_max,
        with_non_teaching_staff=with_non_teaching_staff,
        average_student_all_staff_ratio=average_student_all_staff_ratio,
        average_additional_staff_degree=average_additional_staff_degree,
        staff_age_min=staff_age_min,
        staff_age_max=staff_age_max,
        layer_mapping={'LTCF': 'l'},
    )
    sc.toc(T)

    print('Done')
    return
示例#16
0
    def run(self, do_plot=False, until=None, verbose=None, **kwargs):
        '''
        Run the simulation.

        Args:
            do_plot (bool): whether to plot
            until (int): day to run until
            verbose (int): level of detail to print
            kwargs (dict): passed to self.plot()

        Returns:
            results: the results object (also modifies in-place)
        '''

        # Initialize
        T = sc.tic()
        if not self.initialized:
            self.initialize()
        else:
            self.validate_pars() # We always want to validate the parameters before running
            self.init_interventions() # And interventions
        if verbose is None:
            verbose = self['verbose']
        if until:
            until = self.day(until)

        # Main simulation loop
        for t in self.tvec:

            # Print progress
            if verbose >= 1:
                elapsed = sc.toc(output=True)
                simlabel = f'"{self.label}": ' if self.label else ''
                string = f'  Running {simlabel}{self.datevec[t]} ({t:2.0f}/{self.pars["n_days"]}) ({elapsed:0.2f} s) '
                if verbose >= 2:
                    sc.heading(string)
                elif verbose == 1:
                    sc.progressbar(t+1, self.npts, label=string, length=20, newline=True)

            # Do the heavy lifting -- actually run the model!
            self.step()

            # Check if we were asked to stop
            elapsed = sc.toc(T, output=True)
            if elapsed > self['timelimit']:
                sc.printv(f"Time limit ({self['timelimit']} s) exceeded", 1, verbose)
                break
            elif self['stopping_func'] and self['stopping_func'](self):
                sc.printv("Stopping function terminated the simulation", 1, verbose)
                break
            if self.t == until: # If until is specified, just stop here
                return

        # End of time loop; compute cumulative results outside of the time loop
        self.finalize(verbose=verbose) # Finalize the results
        sc.printv(f'Run finished after {elapsed:0.2f} s.\n', 1, verbose)
        self.summary = self.summary_stats(verbose=verbose)
        if do_plot: # Optionally plot
            self.plot(**kwargs)

        return self.results
示例#17
0
    def run(self, do_plot=False, until=None, restore_pars=True, reset_seed=True, verbose=None, **kwargs):
        '''
        Run the simulation.

        Args:
            do_plot (bool): whether to plot
            until (int): day to run until
            restore_pars (bool): whether to make a copy of the parameters before the run and restore it after, so runs are repeatable
            reset_seed (bool): whether to reset the random number stream immediately before run
            verbose (float): level of detail to print, e.g. 0 = no output, 0.2 = print every 5th day, 1 = print every day
            kwargs (dict): passed to sim.plot()

        Returns:
            results (dict): the results object (also modifies in-place)
        '''

        # Initialize
        T = sc.tic()
        if not self.initialized:
            self.initialize()
        else:
            self.validate_pars() # We always want to validate the parameters before running
            self.init_interventions() # And interventions
            if reset_seed:
                self.set_seed() # Ensure the random number generator is freshly initialized
        if restore_pars:
            orig_pars = sc.dcp(self.pars) # Create a copy of the parameters, to restore after the run, in case they are dynamically modified
        if verbose is None:
            verbose = self['verbose']
        if until:
            until = self.day(until)

        # Main simulation loop
        for t in self.tvec:

            # Print progress
            if verbose:
                elapsed = sc.toc(output=True)
                simlabel = f'"{self.label}": ' if self.label else ''
                string = f'  Running {simlabel}{self.datevec[t]} ({t:2.0f}/{self.pars["n_days"]}) ({elapsed:0.2f} s) '
                if verbose >= 2:
                    sc.heading(string)
                else:
                    if not (t % int(1.0/verbose)):
                        sc.progressbar(t+1, self.npts, label=string, length=20, newline=True)

            # Do the heavy lifting -- actually run the model!
            self.step()

            # Check if we were asked to stop
            elapsed = sc.toc(T, output=True)
            if self['timelimit'] and elapsed > self['timelimit']:
                sc.printv(f"Time limit ({self['timelimit']} s) exceeded", 1, verbose)
                break
            elif self['stopping_func'] and self['stopping_func'](self):
                sc.printv("Stopping function terminated the simulation", 1, verbose)
                break
            if self.t == until: # If until is specified, just stop here
                return

        # End of time loop; compute cumulative results outside of the time loop
        self.finalize(verbose=verbose) # Finalize the results
        sc.printv(f'Run finished after {elapsed:0.2f} s.\n', 1, verbose)
        if restore_pars:
            self.restore_pars(orig_pars)
        if do_plot: # Optionally plot
            self.plot(**kwargs)

        return self.results
示例#18
0
def test_benchmark(do_save=do_save):
    ''' Compare benchmark performance '''

    print('Running benchmark...')
    previous = sc.loadjson(benchmark_filename)

    repeats = 5
    t_inits = []
    t_runs  = []

    def normalize_performance():
        ''' Normalize performance across CPUs -- simple Numpy calculation '''
        t_bls = []
        bl_repeats = 5
        n_outer = 10
        n_inner = 1e6
        for r in range(bl_repeats):
            t0 = sc.tic()
            for i in range(n_outer):
                a = np.random.random(int(n_inner))
                b = np.random.random(int(n_inner))
                a*b
            t_bl = sc.toc(t0, output=True)
            t_bls.append(t_bl)
        t_bl = min(t_bls)
        reference = 0.112 # Benchmarked on an Intel i9-8950HK CPU @ 2.90GHz
        ratio = reference/t_bl
        return ratio


    # Test CPU performance before the run
    r1 = normalize_performance()

    # Do the actual benchmarking
    for r in range(repeats):

        # Create the sim
        sim = make_sim(verbose=0)

        # Time initialization
        t0 = sc.tic()
        sim.initialize()
        t_init = sc.toc(t0, output=True)

        # Time running
        t0 = sc.tic()
        sim.run()
        t_run = sc.toc(t0, output=True)

        # Store results
        t_inits.append(t_init)
        t_runs.append(t_run)

    # Test CPU performance after the run
    r2 = normalize_performance()
    ratio = (r1+r2)/2
    t_init = min(t_inits)*ratio
    t_run  = min(t_runs)*ratio

    # Construct json
    n_decimals = 3
    json = {'time': {
                'initialize': round(t_init, n_decimals),
                'run':        round(t_run,  n_decimals),
                },
            'parameters': {
                'pop_size': sim['pop_size'],
                'pop_type': sim['pop_type'],
                'n_days':   sim['n_days'],
                },
            'cpu_performance': ratio,
            }

    print('Previous benchmark:')
    sc.pp(previous)

    print('\nNew benchmark:')
    sc.pp(json)

    if do_save:
        sc.savejson(filename=benchmark_filename, obj=json, indent=2)

    print('Done.')

    return json
示例#19
0
文件: sim.py 项目: juangon/covasim
    def run(self, initialize=True, do_plot=False, verbose=None, **kwargs):
        ''' Run the simulation '''

        T = sc.tic()

        # Reset settings and results
        if verbose is None:
            verbose = self['verbose']
        if initialize:
            self.initialize()  # Create people, results, etc.

        # Main simulation loop
        self.stopped = False  # We've just been asked to run, so ensure we're unstopped
        for t in range(self.npts):

            # Check timing and stopping function
            elapsed = sc.toc(T, output=True)
            if elapsed > self['timelimit']:
                print(
                    f"Time limit ({self['timelimit']} s) exceeded; stopping..."
                )
                self.stopped = {
                    'why': 'timelimit',
                    'message': 'Time limit exceeded at step {t}',
                    't': t
                }

            if self['stop_func']:
                self.stopped = self['stop_func'](
                    self,
                    t)  # Feed in the current simulation object and the time

            # If this gets set, stop running -- e.g. if the time limit is exceeded
            if self.stopped:
                break

            # Zero counts for this time step.
            n_susceptible = 0
            n_exposed = 0
            n_deaths = 0
            n_recoveries = 0
            n_infectious = 0
            n_infections = 0
            n_symptomatic = 0
            n_severe = 0
            n_recovered = 0

            # Extract these for later use. The values do not change in the person loop and the dictionary lookup is expensive.
            rand_popdata = (self['usepopdata'] == 'random')
            beta = self['beta']
            asymp_factor = self['asymp_factor']
            diag_factor = self['diag_factor']
            cont_factor = self['cont_factor']
            beta_pop = self['beta_pop']
            n_beds = self['n_beds']
            bed_constraint = False

            # Print progress
            if verbose >= 1:
                string = f'  Running day {t:0.0f} of {self.pars["n_days"]} ({elapsed:0.2f} s elapsed)...'
                if verbose >= 2:
                    sc.heading(string)
                else:
                    print(string)

            # Update each person, skipping people who are susceptible
            not_susceptible = filter(lambda p: not p.susceptible,
                                     self.people.values())
            n_susceptible = len(self.people)

            for person in not_susceptible:
                n_susceptible -= 1

                # If exposed, check if the person becomes infectious or develops symptoms
                if person.exposed:
                    n_exposed += 1
                    if not person.infectious and t >= person.date_infectious:  # It's the day they become infectious
                        person.infectious = True
                        sc.printv(
                            f'      Person {person.uid} became infectious!', 2,
                            verbose)

                # If infectious, check if anyone gets infected
                if person.infectious:

                    # Check for death
                    died = person.check_death(t)
                    n_deaths += died

                    # Check for recovery
                    recovered = person.check_recovery(t)
                    n_recoveries += recovered

                    # No recovery: check symptoms
                    if not recovered:
                        n_symptomatic += person.check_symptomatic(t)
                        n_severe += person.check_severe(t)
                        if n_severe > n_beds: bed_constraint = True

                    # If the person didn't die or recover, check for onward transmission
                    if not died and not recovered:
                        n_infectious += 1  # Count this person as infectious

                        # Calculate transmission risk based on whether they're asymptomatic/diagnosed/have been isolated
                        thisbeta = beta * \
                                   (asymp_factor if person.symptomatic else 1.) * \
                                   (diag_factor if person.diagnosed else 1.) * \
                                   (cont_factor if person.known_contact else 1.)

                        # Determine who gets infected
                        if rand_popdata:  # Flat contacts
                            transmission_inds = cvu.bf(thisbeta,
                                                       person.contacts)
                        else:  # Dictionary of contacts -- extra loop over layers
                            transmission_inds = []
                            for ckey in self.contact_keys:
                                layer_beta = thisbeta * beta_pop[ckey]
                                transmission_inds.extend(
                                    cvu.bf(layer_beta, person.contacts[ckey]))

                        # Loop over people who do
                        for contact_ind in transmission_inds:
                            target_person = self.get_person(
                                contact_ind)  # Stored by integer

                            # This person was diagnosed last time step: time to flag their contacts
                            if person.date_diagnosed is not None and person.date_diagnosed == t - 1:
                                target_person.known_contact = True

                            # Skip people who are not susceptible
                            if target_person.susceptible:
                                n_infections += target_person.infect(
                                    t, bed_constraint,
                                    source=person)  # Actually infect them
                                sc.printv(
                                    f'        Person {person.uid} infected person {target_person.uid}!',
                                    2, verbose)

                # Count people who recovered
                if person.recovered:
                    n_recovered += 1

            sc.printv(
                f'Number of beds available: {n_beds-n_severe}, bed constraint: {bed_constraint}',
                2, verbose)
            # End of person loop; apply interventions
            for intervention in self['interventions']:
                intervention.apply(self, t)
            if self['interv_func'] is not None:  # Apply custom intervention function
                self = self['interv_func'](self, t)

            # Update counts for this time step
            self.results['n_susceptible'][t] = n_susceptible
            self.results['n_exposed'][t] = n_exposed
            self.results['deaths'][t] = n_deaths
            self.results['recoveries'][t] = n_recoveries
            self.results['n_infectious'][t] = n_infectious
            self.results['infections'][t] = n_infections
            self.results['n_symptomatic'][t] = n_symptomatic
            self.results['n_severe'][t] = n_severe
            self.results['n_recovered'][t] = n_recovered
            self.results['bed_capacity'][
                t] = n_severe / n_beds if n_beds > 0 else None

        # End of time loop; compute cumulative results outside of the time loop
        self.results['cum_exposed'].values = pl.cumsum(
            self.results['infections'].values) + self[
                'n_infected']  # Include initially infected people
        self.results['cum_tested'].values = pl.cumsum(
            self.results['tests'].values)
        self.results['cum_diagnosed'].values = pl.cumsum(
            self.results['diagnoses'].values)
        self.results['cum_deaths'].values = pl.cumsum(
            self.results['deaths'].values)
        self.results['cum_recoveries'].values = pl.cumsum(
            self.results['recoveries'].values)

        # Add in the results from the interventions
        for intervention in self['interventions']:
            intervention.finalize(self)  # Execute any post-processing

        # Scale the results
        for reskey in self.reskeys:
            if self.results[reskey].scale:
                self.results[reskey].values *= self['scale']

        # Perform calculations on results
        self.compute_doubling()
        self.compute_r_eff()
        self.likelihood()

        # Tidy up
        self.results_ready = True
        sc.printv(f'\nRun finished after {elapsed:0.1f} s.\n', 1, verbose)
        self.results['summary'] = self.summary_stats()

        if do_plot:
            self.plot(**kwargs)

        # Convert to an odict to allow e.g. sim.people[25] later, and results to an objdict to allow e.g. sim.results.diagnoses
        self.people = sc.odict(self.people)
        self.results = sc.objdict(self.results)

        return self.results
示例#20
0
    }

    scens = cv.Scenarios(sim=sim,
                         basepars=basepars,
                         metapars=metapars,
                         scenarios=scenarios)
    scens.run(verbose=verbose, debug=debug)

    if do_plot:
        scens.plot(do_save=do_save, do_show=do_show, fig_path=fig_path)

    return scens


#%% Run as a script
if __name__ == '__main__':
    sc.tic()

    bed_scens = test_beds(do_plot=do_plot,
                          do_save=do_save,
                          do_show=do_show,
                          fig_path=fig_path)
    border_scens = test_borderclosure(do_plot=do_plot,
                                      do_save=do_save,
                                      do_show=do_show,
                                      fig_path=fig_path)

    sc.toc()

print('Done.')
示例#21
0
    inter_grade_mixing=0.1,
    teacher_age_min=25,
    teacher_age_max=75,
    staff_age_min=20,
    staff_age_max=75,
    average_student_teacher_ratio=20,
    average_teacher_teacher_degree=3,
    average_student_all_staff_ratio=15,
    average_additional_staff_degree=20,
)

if __name__ == '__main__':

    T = sc.tic()
    pop = sp.make_population(**pars)
    elapsed = sc.toc(T, output=True)

    for person in [6, 66, 666]:
        print(f'\n\nPerson {person}')
        sc.pp(pop[person])
    print('\n\n')
    print(sc.gitinfo(sp.__file__))
    print(sp.version.__version__)

    popkeys = list(pop.keys())
    stridekeys = [popkeys[i] for i in range(0, len(pop), stride)]
    subpop = {k: pop[k] for k in stridekeys}

    if do_save:
        sc.savejson(f'pop_v{sp.version.__version__}.json', subpop, indent=2)