示例#1
0
def random_data(B_add=35,
                n_residues=585.0,
                d_min=3.5):
  unit_cell = uctbx.unit_cell( (81.0,  81.0,  61.0,  90.0,  90.0, 120.0) )
  xtal = crystal.symmetry(unit_cell, " P 3 ")
  ## In P3 I do not have to worry about centrics or reflections with different
  ## epsilons.
  miller_set = miller.build_set(
    crystal_symmetry = xtal,
    anomalous_flag = False,
    d_min = d_min)
  ## Now make an array with d_star_sq values
  d_star_sq = miller_set.d_spacings().data()
  d_star_sq = 1.0/(d_star_sq*d_star_sq)
  asu = {"H":8.0*n_residues*1.0,
         "C":5.0*n_residues*1.0,
         "N":1.5*n_residues*1.0,
         "O":1.2*n_residues*1.0}
  scat_info = absolute_scaling.scattering_information(
    asu_contents = asu,
    fraction_protein=1.0,
    fraction_nucleic=0.0)
  scat_info.scat_data(d_star_sq)
  gamma_prot = scat_info.gamma_tot
  sigma_prot = scat_info.sigma_tot_sq
  ## The number of residues is multriplied by the Z of the spacegroup
  protein_total = sigma_prot * (1.0+gamma_prot)
  ## add a B-value of 35 please
  protein_total = protein_total*flex.exp(-B_add*d_star_sq/2.0)
  ## Now that has been done,
  ## We can make random structure factors
  normalised_random_intensities = \
     random_transform.wilson_intensity_variate(protein_total.size())
  random_intensities = normalised_random_intensities*protein_total*math.exp(6)
  std_dev = random_intensities*5.0/100.0
  noise = random_transform.normal_variate(N=protein_total.size())
  noise = noise*std_dev
  random_intensities=noise+random_intensities
  ## STuff the arrays in the miller array
  miller_array = miller.array(miller_set,
                              data=random_intensities,
                              sigmas=std_dev)
  miller_array=miller_array.set_observation_type(
    xray.observation_types.intensity())
  miller_array = miller_array.f_sq_as_f()
  return (miller_array)
示例#2
0
def random_data(B_add=35, n_residues=585.0, d_min=3.5):
    unit_cell = uctbx.unit_cell((81.0, 81.0, 61.0, 90.0, 90.0, 120.0))
    xtal = crystal.symmetry(unit_cell, " P 3 ")
    ## In P3 I do not have to worry about centrics or reflections with different
    ## epsilons.
    miller_set = miller.build_set(crystal_symmetry=xtal,
                                  anomalous_flag=False,
                                  d_min=d_min)
    ## Now make an array with d_star_sq values
    d_star_sq = miller_set.d_spacings().data()
    d_star_sq = 1.0 / (d_star_sq * d_star_sq)
    asu = {
        "H": 8.0 * n_residues * 1.0,
        "C": 5.0 * n_residues * 1.0,
        "N": 1.5 * n_residues * 1.0,
        "O": 1.2 * n_residues * 1.0
    }
    scat_info = absolute_scaling.scattering_information(asu_contents=asu,
                                                        fraction_protein=1.0,
                                                        fraction_nucleic=0.0)
    scat_info.scat_data(d_star_sq)
    gamma_prot = scat_info.gamma_tot
    sigma_prot = scat_info.sigma_tot_sq
    ## The number of residues is multriplied by the Z of the spacegroup
    protein_total = sigma_prot * (1.0 + gamma_prot)
    ## add a B-value of 35 please
    protein_total = protein_total * flex.exp(-B_add * d_star_sq / 2.0)
    ## Now that has been done,
    ## We can make random structure factors
    normalised_random_intensities = \
       random_transform.wilson_intensity_variate(protein_total.size())
    random_intensities = normalised_random_intensities * protein_total * math.exp(
        6)
    std_dev = random_intensities * 5.0 / 100.0
    noise = random_transform.normal_variate(N=protein_total.size())
    noise = noise * std_dev
    random_intensities = noise + random_intensities
    ## STuff the arrays in the miller array
    miller_array = miller.array(miller_set,
                                data=random_intensities,
                                sigmas=std_dev)
    miller_array = miller_array.set_observation_type(
        xray.observation_types.intensity())
    miller_array = miller_array.f_sq_as_f()
    return (miller_array)
示例#3
0
def exercise_wilson_intensity_variate():
    data = rt.wilson_intensity_variate(N=1000000)
    mu1 = flex.mean(data)
    mu2 = flex.mean(data * data)
    assert approx_equal(mu1, 1.000, eps=0.02)
    assert approx_equal(mu2, 2.000, eps=0.04)
def exercise_wilson_intensity_variate():
  data = rt.wilson_intensity_variate(N=1000000)
  mu1 = flex.mean(data)
  mu2 = flex.mean(data*data)
  assert approx_equal(mu1,1.000,eps=0.02)
  assert approx_equal(mu2,2.000,eps=0.04)