def __init__(self, organism, membership, ratios, meme_suite, seqtype, sequence_filters=[], scaling_func=None, num_motif_func=None, update_in_iteration=lambda iteration: True, motif_in_iteration=lambda iteration: True, config_params=None): """creates a ScoringFunction""" # run_in_iteration does not apply here, since we actually have # two schedules, motif_in_iteration and update_in_iteration here scoring.ScoringFunctionBase.__init__(self, organism, membership, ratios, scaling_func, schedule=None, config_params=config_params) # attributes accessible by subclasses self.meme_suite = meme_suite self.seqtype = seqtype self.update_in_iteration = update_in_iteration self.motif_in_iteration = motif_in_iteration self.num_motif_func = num_motif_func self.__sequence_filters = sequence_filters self.__last_motif_infos = None self.__last_iteration_result = {} self.all_pvalues = None self.last_result = None self.update_log = scoring.RunLog("motif-score-" + seqtype, config_params) self.motif_log = scoring.RunLog("motif-motif-" + seqtype, config_params) used_genes = sorted(ratios.row_names) self.used_seqs = organism.sequences_for_genes_scan( used_genes, seqtype=self.seqtype) logging.info("building reverse map...") start_time = util.current_millis() self.reverse_map = self.__build_reverse_map(ratios) logging.info("reverse map built in %d ms.", util.current_millis() - start_time)
def __init__(self, organism, membership, ratios, config_params=None): """Create scoring function instance""" scoring.ScoringFunctionBase.__init__(self, "SetEnrichment", organism, membership, ratios, config_params) self.__set_types = read_set_types(config_params, organism.thesaurus(), ratios.row_names) self.run_log = scoring.RunLog('set_enrichment', config_params)
def __init__(self, organism, membership, ratios, scaling_func, schedule, config_params): """Create scoring function instance""" scoring.ScoringFunctionBase.__init__(self, organism, membership, ratios, scaling_func, schedule, config_params) self.run_log = scoring.RunLog("row_scoring", config_params)
def __init__(self, id, organism, membership, ratios, seqtype, config_params=None): """creates a ScoringFunction""" scoring.ScoringFunctionBase.__init__(self, id, organism, membership, ratios, config_params=config_params) # attributes accessible by subclasses self.seqtype = seqtype self.__setup_meme_suite(config_params) self.num_motif_func = util.get_iter_fun( config_params['MEME'], "nmotifs", config_params['num_iterations']) self.__last_motif_infos = None self.__last_iteration_result = {} self.all_pvalues = None self.last_result = None self.update_log = scoring.RunLog("motif-score-" + seqtype, config_params) self.motif_log = scoring.RunLog("motif-motif-" + seqtype, config_params) used_genes = sorted(ratios.row_names) self.used_seqs = organism.sequences_for_genes_scan( used_genes, seqtype=self.seqtype) logging.debug("building reverse map...") start_time = util.current_millis() self.reverse_map = self.__build_reverse_map(ratios) logging.debug("reverse map built in %d ms.", util.current_millis() - start_time) self.__last_results = None # caches the results of the previous meme run
def __init__(self, organism, membership, matrix, set_types, scaling_func=None, schedule=lambda iteration: True, config_params=None): """Create scoring function instance""" scoring.ScoringFunctionBase.__init__(self, organism, membership, matrix, scaling_func, schedule, config_params) self.__set_types = set_types # stores (min_set, pvalue) pairs for each cluster and set type # for the last run of the function self.__last_min_enriched_set = {} for set_type in set_types: self.__last_min_enriched_set[set_type] = {} self.run_log = scoring.RunLog('set_enrichment', config_params)
def __init__(self, organism, membership, ratios, config_params): """Create scoring function instance""" scoring.ScoringFunctionBase.__init__(self, "Networks", organism, membership, ratios, config_params) self.__networks = None self.run_log = scoring.RunLog("network", config_params)