示例#1
0
文件: test_csp.py 项目: tntroger/scot
    def testComponentSeparation(self):
        A = generate_covsig([[10, 5, 2], [5, 10, 2], [2, 2, 10]], 500)
        B = generate_covsig([[10, 2, 2], [2, 10, 5], [2, 5, 10]], 500)

        X = np.concatenate([A[np.newaxis], B[np.newaxis]], axis=0)
        W, V = csp(X, [1, 2])
        C1a = np.cov(np.dot(W.T, X[0, :, :]))
        C2a = np.cov(np.dot(W.T, X[1, :, :]))

        Y = np.concatenate([B[np.newaxis], A[np.newaxis]], axis=0)
        W, V = csp(Y, [1, 2])
        C1b = np.cov(np.dot(W.T, Y[0, :, :]))
        C2b = np.cov(np.dot(W.T, Y[1, :, :]))

        # check symmetric case
        assert_allclose(C1a.diagonal(), C2a.diagonal()[::-1])
        assert_allclose(C1b.diagonal(), C2b.diagonal()[::-1])

        # swapping class labels (or in this case, trials) should not change the result
        assert_allclose(C1a, C1b, rtol=1e-9, atol=1e-9)
        assert_allclose(C2a, C2b, rtol=1e-9, atol=1e-9)

        # variance of first component should be greatest for class 1
        self.assertGreater(C1a[0, 0], C2a[0, 0])

        # variance of last component should be greatest for class 1
        self.assertLess(C1a[2, 2], C2a[2, 2])

        # variance of central component should be equal for both classes
        assert_allclose(C1a[1, 1], C2a[1, 1])
示例#2
0
 def testComponentSeparation(self):
     A = generate_covsig([[10,5,2],[5,10,2],[2,2,10]], 500)
     B = generate_covsig([[10,2,2],[2,10,5],[2,5,10]], 500)
         
     X = np.dstack([A,B])
     W, V = csp(X,[1,2])        
     C1a = np.cov(X[:,:,0].dot(W).T)
     C2a = np.cov(X[:,:,1].dot(W).T)
     
     Y = np.dstack([B,A])
     W, V = csp(Y,[1,2])
     C1b = np.cov(Y[:,:,0].dot(W).T)
     C2b = np.cov(Y[:,:,1].dot(W).T)
     
     # check symmetric case
     self.assertTrue(np.allclose(C1a.diagonal(), C2a.diagonal()[::-1]))
     self.assertTrue(np.allclose(C1b.diagonal(), C2b.diagonal()[::-1]))
     
     # swapping class labels (or in this case, trials) should not change the result
     self.assertTrue(np.allclose(C1a, C1b))
     self.assertTrue(np.allclose(C2a, C2b))
     
     # variance of first component should be greatest for class 1
     self.assertTrue(C1a[0,0] > C2a[0,0])
     
     # variance of last component should be greatest for class 1
     self.assertTrue(C1a[2,2] < C2a[2,2])
     
     # variance of central component should be equal for both classes
     self.assertTrue(np.allclose(C1a[1,1], C2a[1,1]))
示例#3
0
文件: test_csp.py 项目: cbrnr/scot
    def testComponentSeparation(self):
        A = generate_covsig([[10, 5, 2], [5, 10, 2], [2, 2, 10]], 500)
        B = generate_covsig([[10, 2, 2], [2, 10, 5], [2, 5, 10]], 500)

        X = np.concatenate([A[np.newaxis], B[np.newaxis]], axis=0)
        W, V = csp(X, [1, 2])
        C1a = np.cov(np.dot(W.T, X[0, :, :]))
        C2a = np.cov(np.dot(W.T, X[1, :, :]))

        Y = np.concatenate([B[np.newaxis], A[np.newaxis]], axis=0)
        W, V = csp(Y, [1, 2])
        C1b = np.cov(np.dot(W.T, Y[0, :, :]))
        C2b = np.cov(np.dot(W.T, Y[1, :, :]))

        # check symmetric case
        assert_allclose(C1a.diagonal(), C2a.diagonal()[::-1])
        assert_allclose(C1b.diagonal(), C2b.diagonal()[::-1])

        # swapping class labels (or in this case, trials) should not change the result
        assert_allclose(C1a, C1b, rtol=1e-9, atol=1e-9)
        assert_allclose(C2a, C2b, rtol=1e-9, atol=1e-9)

        # variance of first component should be greatest for class 1
        self.assertGreater(C1a[0, 0], C2a[0, 0])

        # variance of last component should be greatest for class 1
        self.assertLess(C1a[2, 2], C2a[2, 2])

        # variance of central component should be equal for both classes
        assert_allclose(C1a[1, 1], C2a[1, 1])
示例#4
0
 def setUp(self):
     self.X = np.random.rand(100,15,10)
     self.C = [0,0,0,0,0,1,1,1,1,1]
     self.Y = self.X.copy()
     self.D = list(self.C)
     self.N, self.M, self.T = self.X.shape
     self.W, self.V = csp(self.X, self.C, numcomp=5)
示例#5
0
文件: test_csp.py 项目: tntroger/scot
 def setUp(self):
     self.X = np.random.randn(10, 5, 100)
     self.C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
     self.Y = self.X.copy()
     self.D = list(self.C)
     self.T, self.M, self.N = self.X.shape
     self.W, self.V = csp(self.X, self.C)
示例#6
0
文件: test_csp.py 项目: cbrnr/scot
 def setUp(self):
     self.X = np.random.randn(10, 5, 100)
     self.C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
     self.Y = self.X.copy()
     self.D = list(self.C)
     self.T, self.M, self.N = self.X.shape
     self.W, self.V = csp(self.X, self.C)
示例#7
0
文件: test_csp.py 项目: tntroger/scot
 def setUp(self):
     self.n_comps = 5
     self.X = np.random.rand(10, 6, 100)
     self.C = np.asarray([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
     self.X[self.C == 0, 0, :] *= 10
     self.X[self.C == 0, 2, :] *= 5
     self.X[self.C == 1, 1, :] *= 10
     self.X[self.C == 1, 3, :] *= 2
     self.Y = self.X.copy()
     self.D = list(self.C)
     self.T, self.M, self.N = self.X.shape
     self.W, self.V = csp(self.X, self.C, numcomp=self.n_comps)
示例#8
0
文件: test_csp.py 项目: cbrnr/scot
 def setUp(self):
     self.n_comps = 5
     self.X = np.random.rand(10, 6, 100)
     self.C = np.asarray([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
     self.X[self.C == 0, 0, :] *= 10
     self.X[self.C == 0, 2, :] *= 5
     self.X[self.C == 1, 1, :] *= 10
     self.X[self.C == 1, 3, :] *= 2
     self.Y = self.X.copy()
     self.D = list(self.C)
     self.T, self.M, self.N = self.X.shape
     self.W, self.V = csp(self.X, self.C, numcomp=self.n_comps)