示例#1
0
def _get_corsi_timeline_title(season, game):
    """
    Returns the default chart title for corsi timelines.

    :param season: int, the season
    :param game: int, the game

    :return: str, the title
    """
    otso_str = schedules.get_game_result(season, game)
    if otso_str[:2] == 'OT' or otso_str[:2] == 'SO':
        otso_str = ' ({0:s})'.format(otso_str[:2])
    else:
        otso_str = ''
    # Add strings to a list then join them together with newlines
    titletext = (
        'Shot attempt timeline for {0:d}-{1:s} Game {2:d} ({3:s})'.format(
            int(season),
            str(int(season + 1))[2:], int(game),
            schedules.get_game_date(season, game)),
        '{0:s} {1:d} at {2:s} {3:d}{4:s} ({5:s})'.format(
            team_info.team_as_str(schedules.get_road_team(season, game),
                                  abbreviation=False),
            schedules.get_road_score(season, game),
            team_info.team_as_str(schedules.get_home_team(season, game),
                                  abbreviation=False),
            schedules.get_home_score(season, game), otso_str,
            schedules.get_game_status(season, game)))

    return '\n'.join(titletext)
示例#2
0
def _get_cf_for_timeline(season, game, homeroad, granularity='sec'):
    """
    Returns a dataframe with columns for time and cumulative CF

    :param season: int, the season
    :param game: int, the game
    :param homeroad: str, 'H' for home and 'R' for road
    :param granularity: can respond in minutes ('min'), or seconds ('sec'), elapsed in game

    :return: a dataframe with two columns
    """

    pbp = parse_pbp.get_parsed_pbp(season, game)
    pbp = manip.filter_for_corsi(pbp)

    if homeroad == 'H':
        teamid = schedules.get_home_team(season, game)
    elif homeroad == 'R':
        teamid = schedules.get_road_team(season, game)
    pbp = pbp[pbp.Team == teamid]

    maxtime = len(parse_toi.get_parsed_toi(season, game))
    df = pd.DataFrame({'Time': list(range(maxtime))})
    df = df.merge(pbp[['Time']].assign(CF=1), how='left', on='Time')
    # df.loc[:, 'Time'] = df.Time + 1
    df.loc[:, 'CF'] = df.CF.fillna(0)
    df.loc[:, 'CumCF'] = df.CF.cumsum()

    # Now let's shift things down. Right now a shot at 30 secs will mean Time = 0 has CumCF = 1.

    if granularity == 'min':
        df.loc[:, 'Time'] = df.Time // 60
        df = df.groupby('Time').max().reset_index()

    # I want it soccer style, so Time = 0 always has CumCF = 0, and that first shot at 30sec will register for Time=1
    df = pd.concat([pd.DataFrame({'Time': [-1], 'CumCF': [0], 'CF': [0]}), df])
    df.loc[:, 'Time'] = df.Time + 1
    # But because of this, in case of OT or other last-second goals, need to add 1 to the end
    df = pd.concat([df, pd.DataFrame({'Time': [df.Time.max() + 1]})])
    df = df.fillna(method='ffill')

    # For every shot, want to plot a point as if that shot hadn't happened, and then one where it did
    # So every segment of chart has either slope 0 or infinite
    #shot_mins = df.query('CF > 0')
    #shot_mins.loc[:, 'CumCF'] = shot_mins.CumCF - shot_mins.CF
    #df = pd.concat([df, shot_mins]).sort_values(['Time', 'CumCF'])

    df = df.drop('CF', axis=1)

    return df
示例#3
0
def _get_game_h2h_chart_title(season, game, homecf_diff=None, totaltoi=None):
    """
    Returns the title for the H2H chart

    :param season: int, the season
    :param game: int, the game
    :param homecf_diff: int. The home team corsi advantage
    :param totaltoi: int. The TOI played so far.

    :return:
    """
    titletext = []
    # Note if a game was OT or SO
    otso_str = schedules.get_game_result(season, game)
    if otso_str[:2] == 'OT' or otso_str[:2] == 'SO':
        otso_str = ' ({0:s})'.format(otso_str[:2])
    else:
        otso_str = ''
    # Add strings to a list then join them together with newlines
    titletext.append('H2H Corsi and TOI for {0:d}-{1:s} Game {2:d}'.format(
        season,
        str(season + 1)[2:], game))
    titletext.append('{0:s} {1:d} at {2:s} {3:d}{4:s} ({5:s})'.format(
        team_info.team_as_str(schedules.get_road_team(season, game),
                              abbreviation=False),
        schedules.get_road_score(season, game),
        team_info.team_as_str(schedules.get_home_team(season, game),
                              abbreviation=False),
        schedules.get_home_score(season, game), otso_str,
        schedules.get_game_status(season, game)))
    if homecf_diff is not None and totaltoi is not None:
        titletext.append('{0:s} {1:s} in 5v5 attempts in {2:s}'.format(
            team_info.team_as_str(schedules.get_home_team(season, game)),
            visualization_helper.format_number_with_plus(int(homecf_diff)),
            manip.time_to_mss(int(totaltoi))))
    return '\n'.join(titletext)
示例#4
0
def get_goals_for_timeline(season, game, homeroad, granularity='sec'):
    """
    Returns a list of goal times

    :param season: int, the season
    :param game: int, the game
    :param homeroad: str, 'H' for home and 'R' for road
    :param granularity: can respond in minutes ('min'), or seconds ('sec'), elapsed in game

    :return: a list of int, seconds elapsed
    """

    pbp = parse_pbp.get_parsed_pbp(season, game)
    if homeroad == 'H':
        teamid = schedules.get_home_team(season, game)
    elif homeroad == 'R':
        teamid = schedules.get_road_team(season, game)
    pbp = pbp[pbp.Team == teamid]

    if granularity == 'min':
        pbp.loc[:, 'Time'] = pbp.Time / 60

    goals = pbp[pbp.Event == 'Goal'].sort_values('Time')
    return list(goals.Time)
def add_onice_players_to_df(df,
                            focus_team,
                            season,
                            gamecol,
                            player_output='ids'):
    """
    Uses the _Secs column in df, the season, and the gamecol to join onto on-ice players.

    :param df: dataframe
    :param focus_team: str or int, team to focus on. Its players will be listed in first in sheet.
    :param season: int, the season
    :param gamecol: str, the column with game IDs
    :param player_output: str, use 'names' or 'nums' or 'ids'. Currently 'nums' is not supported.

    :return: dataframe with team and opponent players
    """

    toi = teams.get_team_toi(season, focus_team).rename(columns={
        'Time': '_Secs'
    }).drop_duplicates()
    toi = toi[[
        'Game', '_Secs', 'Team1', 'Team2', 'Team3', 'Team4', 'Team5', 'Team6',
        'Opp1', 'Opp2', 'Opp3', 'Opp4', 'Opp5', 'Opp6'
    ]].rename(columns={'Game': gamecol})

    # Rename columns
    toi = toi.rename(
        columns={
            col: '{0:s}{1:s}'.format(focus_team, col[-1])
            for col in toi.columns if len(col) >= 4 and col[:4] == 'Team'
        })

    joined = df.merge(toi, how='left', on=['_Secs', gamecol])

    # Print missing games by finding nulls in Opp1
    # If I actually do have the TOI (which may not have made it into the team log b/c of missing PBP), then use that
    missings = set(joined[pd.isnull(joined.Opp1)].Game.unique())
    hassome = set(joined[pd.notnull(joined.Opp1)].Game.unique())
    for game in missings:
        if game in hassome:
            print(
                'Missing some (not all) data to join on-ice players for {0:d}'.
                format(int(round(game))))
        else:
            # See if I have its TOI
            try:
                gametoi = parse_toi.get_parsed_toi(season, int(round(game))) \
                    .rename(columns={'Time': '_Secs'}).drop_duplicates() \
                    .drop({'HomeStrength', 'RoadStrength', 'HG', 'RG'}, axis=1)

                # Now that I do, need to switch column names, get players in right format, and join
                hname = team_info.team_as_str(
                    schedules.get_home_team(season, int(round(game))))
                if hname == focus_team:
                    gametoi = gametoi.rename(columns={
                        'H' + str(x): focus_team + str(x)
                        for x in range(1, 7)
                    })
                    gametoi = gametoi.rename(columns={
                        'R' + str(x): 'Opp' + str(x)
                        for x in range(1, 7)
                    })
                else:
                    gametoi = gametoi.rename(columns={
                        'R' + str(x): focus_team + str(x)
                        for x in range(1, 7)
                    })
                    gametoi = gametoi.rename(columns={
                        'H' + str(x): 'Opp' + str(x)
                        for x in range(1, 7)
                    })

                gametoi = gametoi.assign(Game=int(round(game)))

                joined = helpers.fill_join(joined,
                                           gametoi,
                                           on=['_Secs', gamecol])

                continue
            except OSError:
                pass
            print('Missing all data to join on-ice players for {0:d}'.format(
                int(round(game))))
        print('Check scrape / parse status and game number')

    # Now convert to names or numbers
    for col in joined.columns[-12:]:
        if player_output == 'ids':
            pass
        elif player_output == 'names':
            joined.loc[:, col] = players.playerlst_as_str(
                pd.to_numeric(joined[col]))
        elif player_output == 'nums':
            pass  # TODO

    return joined.drop('_Secs', axis=1)
示例#6
0
def _game_h2h_chart(season,
                    game,
                    corsi,
                    toi,
                    orderh,
                    orderr,
                    numf_h=None,
                    numf_r=None,
                    save_file=None):
    """
    This method actually does the plotting for game_h2h

    :param season: int, the season
    :param game: int, the game
    :param
    :param corsi: df of P1, P2, Corsi +/- for P1
    :param toi: df of P1, P2, H2H TOI
    :param orderh: list of float, player order on y-axis, top to bottom
    :param orderr: list of float, player order on x-axis, left to right
    :param numf_h: int. Number of forwards for home team. Used to add horizontal bold line between F and D
    :param numf_r: int. Number of forwards for road team. Used to add vertical bold line between F and D.
    :param save_file: str of file to save the figure to, or None to simply display

    :return: nothing
    """

    hname = team_info.team_as_str(schedules.get_home_team(season, game), True)
    homename = team_info.team_as_str(schedules.get_home_team(season, game),
                                     False)
    rname = team_info.team_as_str(schedules.get_road_team(season, game), True)
    roadname = team_info.team_as_str(schedules.get_road_team(season, game),
                                     False)

    fig, ax = plt.subplots(1, figsize=[11, 7])

    # Convert dataframes to coordinates
    horderdf = pd.DataFrame({
        'PlayerID1': orderh[::-1],
        'Y': list(range(len(orderh)))
    })
    rorderdf = pd.DataFrame({
        'PlayerID2': orderr,
        'X': list(range(len(orderr)))
    })
    plotdf = toi.merge(corsi, how='left', on=['PlayerID1', 'PlayerID2']) \
        .merge(horderdf, how='left', on='PlayerID1') \
        .merge(rorderdf, how='left', on='PlayerID2')

    # Hist2D of TOI
    # I make the bins a little weird so my coordinates are centered in them. Otherwise, they're all on the edges.
    _, _, _, image = ax.hist2d(x=plotdf.X,
                               y=plotdf.Y,
                               bins=(np.arange(-0.5,
                                               len(orderr) + 0.5, 1),
                                     np.arange(-0.5,
                                               len(orderh) + 0.5, 1)),
                               weights=plotdf.Min,
                               cmap=plt.cm.summer)

    # Convert IDs to names and label axes and axes ticks
    ax.set_xlabel(roadname)
    ax.set_ylabel(homename)
    xorder = players.playerlst_as_str(orderr)
    yorder = players.playerlst_as_str(
        orderh)[::-1]  # need to go top to bottom, so reverse order
    ax.set_xticks(range(len(xorder)))
    ax.set_yticks(range(len(yorder)))
    ax.set_xticklabels(xorder, fontsize=10, rotation=45, ha='right')
    ax.set_yticklabels(yorder, fontsize=10)
    ax.set_xlim(-0.5, len(orderr) - 0.5)
    ax.set_ylim(-0.5, len(orderh) - 0.5)

    # Hide the little ticks on the axes by setting their length to 0
    ax.tick_params(axis='both', which='both', length=0)

    # Add dividing lines between rows
    for x in np.arange(0.5, len(orderr) - 0.5, 1):
        ax.plot([x, x], [-0.5, len(orderh) - 0.5], color='k')
    for y in np.arange(0.5, len(orderh) - 0.5, 1):
        ax.plot([-0.5, len(orderr) - 0.5], [y, y], color='k')

    # Add a bold line between F and D.
    if numf_r is not None:
        ax.plot([numf_r - 0.5, numf_r - 0.5], [-0.5, len(orderh) - 0.5],
                color='k',
                lw=3)
    if numf_h is not None:
        ax.plot([-0.5, len(orderr) - 0.5],
                [len(orderh) - numf_h - 0.5,
                 len(orderh) - numf_h - 0.5],
                color='k',
                lw=3)

    # Colorbar for TOI
    cbar = fig.colorbar(image, pad=0.1)
    cbar.ax.set_ylabel('TOI (min)')

    # Add trademark
    cbar.ax.set_xlabel('Muneeb Alam\n@muneebalamcu', labelpad=20)

    # Add labels for Corsi and circle negatives
    neg_x = []
    neg_y = []
    for y in range(len(orderh)):
        hpid = orderh[len(orderh) - y - 1]
        for x in range(len(orderr)):
            rpid = orderr[x]

            cf = corsi[(corsi.PlayerID1 == hpid) & (corsi.PlayerID2 == rpid)]
            if len(
                    cf
            ) == 0:  # In this case, player will not have been on ice for a corsi event
                cf = 0
            else:
                cf = int(cf.HomeCorsi.iloc[0])

            if cf == 0:
                cf = '0'
            elif cf > 0:
                cf = '+' + str(
                    cf)  # Easier to pick out positives with plus sign
            else:
                cf = str(cf)
                neg_x.append(x)
                neg_y.append(y)

            ax.annotate(cf, xy=(x, y), ha='center', va='center')

    # Circle negative numbers by making a scatterplot with black edges and transparent faces
    ax.scatter(neg_x,
               neg_y,
               marker='o',
               edgecolors='k',
               s=200,
               facecolors='none')

    # Add TOI and Corsi totals at end of rows/columns
    topax = ax.twiny()
    topax.set_xticks(range(len(xorder)))
    rtotals = pd.DataFrame({'PlayerID2': orderr}) \
        .merge(toi[['PlayerID2', 'Secs']].groupby('PlayerID2').sum().reset_index(),
               how='left', on='PlayerID2') \
        .merge(corsi[['PlayerID2', 'HomeCorsi']].groupby('PlayerID2').sum().reset_index(),
               how='left', on='PlayerID2')
    rtotals.loc[:, 'HomeCorsi'] = rtotals.HomeCorsi.fillna(0)
    rtotals.loc[:, 'CorsiLabel'] = rtotals.HomeCorsi.apply(
        lambda x: visualization_helper.format_number_with_plus(-1 * int(x / 5)
                                                               ))
    rtotals.loc[:, 'TOILabel'] = rtotals.Secs.apply(
        lambda x: manip.time_to_mss(x / 5))
    toplabels = [
        '{0:s} in {1:s}'.format(x, y)
        for x, y, in zip(list(rtotals.CorsiLabel), list(rtotals.TOILabel))
    ]

    ax.set_xticks(range(len(xorder)))
    topax.set_xticklabels(toplabels, fontsize=6, rotation=45, ha='left')
    topax.set_xlim(-0.5, len(orderr) - 0.5)
    topax.tick_params(axis='both', which='both', length=0)

    rightax = ax.twinx()
    rightax.set_yticks(range(len(yorder)))
    htotals = pd.DataFrame({'PlayerID1': orderh[::-1]}) \
        .merge(toi[['PlayerID1', 'Secs']].groupby('PlayerID1').sum().reset_index(),
               how='left', on='PlayerID1') \
        .merge(corsi[['PlayerID1', 'HomeCorsi']].groupby('PlayerID1').sum().reset_index(),
               how='left', on='PlayerID1')
    htotals.loc[:, 'HomeCorsi'] = htotals.HomeCorsi.fillna(0)
    htotals.loc[:, 'CorsiLabel'] = htotals.HomeCorsi.apply(
        lambda x: visualization_helper.format_number_with_plus(int(x / 5)))
    htotals.loc[:, 'TOILabel'] = htotals.Secs.apply(
        lambda x: manip.time_to_mss(x / 5))
    rightlabels = [
        '{0:s} in {1:s}'.format(x, y)
        for x, y, in zip(list(htotals.CorsiLabel), list(htotals.TOILabel))
    ]

    rightax.set_yticks(range(len(yorder)))
    rightax.set_yticklabels(rightlabels, fontsize=6)
    rightax.set_ylim(-0.5, len(orderh) - 0.5)
    rightax.tick_params(axis='both', which='both', length=0)

    # plt.subplots_adjust(top=0.80)
    # topax.set_ylim(-0.5, len(orderh) - 0.5)

    # Add brief explanation for the top left cell at the bottom
    explanation = []
    row1name = yorder.iloc[-1]
    col1name = xorder.iloc[0]
    timeh2h = int(toi[(toi.PlayerID1 == orderh[0])
                      & (toi.PlayerID2 == orderr[0])].Secs.iloc[0])
    shoth2h = int(corsi[(corsi.PlayerID1 == orderh[0])
                        & (corsi.PlayerID2 == orderr[0])].HomeCorsi.iloc[0])

    explanation.append(
        'The top left cell indicates {0:s} (row 1) faced {1:s} (column 1) for {2:s}.'
        .format(row1name, col1name, manip.time_to_mss(timeh2h)))
    if shoth2h == 0:
        explanation.append(
            'During that time, {0:s} and {1:s} were even in attempts.'.format(
                hname, rname))
    elif shoth2h > 0:
        explanation.append(
            'During that time, {0:s} out-attempted {1:s} by {2:d}.'.format(
                hname, rname, shoth2h))
    else:
        explanation.append(
            'During that time, {1:s} out-attempted {0:s} by {2:d}.'.format(
                hname, rname, -1 * shoth2h))
    explanation = '\n'.join(explanation)

    # Hacky way to annotate: add this to x-axis label
    ax.set_xlabel(ax.get_xlabel() + '\n\n' + explanation)

    plt.subplots_adjust(bottom=0.27)
    plt.subplots_adjust(left=0.17)
    plt.subplots_adjust(top=0.82)
    plt.subplots_adjust(right=1.0)

    # Add title
    plt.title(_get_game_h2h_chart_title(season, game,
                                        corsi.HomeCorsi.sum() / 25,
                                        toi.Secs.sum() / 25),
              y=1.1,
              va='bottom')

    plt.gcf().canvas.set_window_title('{0:d} {1:d} H2H.png'.format(
        season, game))

    # fig.tight_layout()
    if save_file is None:
        plt.show()
    elif save_file == 'fig':
        return plt.gcf()
    else:
        plt.savefig(save_file)
    return None
示例#7
0
def game_timeline(season, game, save_file=None):
    """
    Creates a shot attempt timeline as seen on @muneebalamcu

    :param season: int, the season
    :param game: int, the game
    :param save_file: str, specify a valid filepath to save to file. If None, merely shows on screen.
        Specify 'fig' to return the figure

    :return: nothing, or the figure
    """

    hname = team_info.team_as_str(schedules.get_home_team(season, game))
    rname = team_info.team_as_str(schedules.get_road_team(season, game))

    cf = {
        hname: _get_home_cf_for_timeline(season, game),
        rname: _get_road_cf_for_timeline(season, game)
    }
    pps = {
        hname: _get_home_adv_for_timeline(season, game),
        rname: _get_road_adv_for_timeline(season, game)
    }
    gs = {
        hname: _get_home_goals_for_timeline(season, game),
        rname: _get_road_goals_for_timeline(season, game)
    }
    colors = {
        hname: plt.rcParams['axes.prop_cycle'].by_key()['color'][0],
        rname: plt.rcParams['axes.prop_cycle'].by_key()['color'][1]
    }
    darkercolors = {
        team: visualization_helper.make_color_darker(hex=col)
        for team, col in colors.items()
    }

    # Create two axes. Use bottom (mins) for labeling but top (secs) for plotting
    ax = plt.gca()
    ax2 = ax.twiny()

    # Corsi lines
    for team in cf:
        ax2.plot(cf[team].Time, cf[team].CumCF, label=team, color=colors[team])

    # Label goal counts when scored with diamonds
    for team in gs:
        xs, ys = _goal_times_to_scatter_for_timeline(gs[team], cf[team])
        ax2.scatter(xs,
                    ys,
                    edgecolors='k',
                    marker='D',
                    label='{0:s} goal'.format(team),
                    zorder=3,
                    color=colors[team])

    # Bold lines to separate periods
    _, ymax = ax2.get_ylim()
    for x in range(0, cf[hname].Time.max(), 1200):
        ax2.plot([x, x], [0, ymax], color='k', lw=2)

    # PP highlighting
    # Note that axvspan works in relative coords (0 to 1), so need to divide by ymax
    for team in pps:
        for pptype in pps[team]:
            if pptype[-2:] == '+1':
                colors_to_use = colors
            else:
                colors_to_use = darkercolors
            for i, (start, end) in enumerate(pps[team][pptype]):
                cf_at_time_min = cf[team].loc[
                    cf[team].Time ==
                    start].CumCF.max()  # in case there are multiple
                cf_at_time_max = cf[team][cf[team].Time == end].CumCF.max()
                if i == 0:
                    ax2.axvspan(start,
                                end,
                                ymin=cf_at_time_min / ymax,
                                ymax=cf_at_time_max / ymax,
                                alpha=0.5,
                                facecolor=colors_to_use[team],
                                label='{0:s} {1:s}'.format(team, pptype))
                else:
                    ax2.axvspan(start,
                                end,
                                ymin=cf_at_time_min / ymax,
                                ymax=cf_at_time_max / ymax,
                                alpha=0.5,
                                facecolor=colors[team])
                ax2.axvspan(start,
                            end,
                            ymin=0,
                            ymax=0.05,
                            alpha=0.5,
                            facecolor=colors_to_use[team])

    # Set limits
    ax2.set_xlim(0, cf[hname].Time.max())
    ax2.set_ylim(0, ymax)
    ax.set_ylabel('Cumulative CF')
    plt.legend(loc=2, framealpha=0.5, fontsize=8)

    # Ticks every 10 min on bottom axis; none on top axis
    ax.set_xlim(0, cf[hname].Time.max() / 60)
    ax.set_xticks(range(0, cf[hname].Time.max() // 60 + 1, 10))
    ax.set_xlabel('Time elapsed in game (min)')
    ax2.set_xticks([])

    # Set title
    plt.title(_get_corsi_timeline_title(season, game))

    plt.gcf().canvas.set_window_title('{0:d} {1:d} TL.png'.format(
        season, game))

    if save_file is None:
        plt.show()
    elif save_file == 'fig':
        return plt.gcf()
    else:
        plt.savefig(save_file)
    plt.close()
    return None
示例#8
0
    def on_success(self, data):
        if 'text' in data:
            print(data['text'])

            if r'https://t.co/' in data['text']:
                print('This looks like an image')
                return
            if data['text'][:3] == 'RT ':
                print('This looks like a retweet')
                return

            global LAST_UPDATE, SCRAPED_NEW
            try:
                if player_cf_graphs(data):
                    return

                try:
                    season, gameid = games.find_playoff_game(data['text'])
                except ValueError:
                    season = None
                    gameid = None

                # Get season with a 4-digit regex
                if season is None:
                    text = data['text'] + ' '
                    if re.search(r'\s\d{4}\s', text) is not None:
                        season = int(re.search(r'\s\d{4}\s', text).group(0))
                        if season < 2015 or season > schedules.get_current_season():
                            tweet_error("Sorry, I don't have data for this season yet", data)
                            print('Invalid season')
                            return
                    else:
                        season = schedules.get_current_season()

                # Get game with a 5-digit regex
                if gameid is None:
                    if re.search(r'\s\d{5}\s', text) is not None:
                        gameid = int(re.search(r'\s\d{5}\s', text).group(0))
                        if not schedules.check_valid_game(season, gameid):
                            tweet_error("Sorry, this game ID doesn't look right", data)
                            print('Game ID not right')
                            return
                    else:
                        pass

                if gameid is None:
                    # Get team names
                    parts = data['text'].replace('@h2hbot', '').strip().split(' ')
                    teams = []
                    for part in parts:
                        if re.match(r'[A-z]{3}', part.strip()):
                            part = part.upper()
                            if team_info.team_as_id(part) is not None:
                                teams.append(part)
                    if len(teams) == 0:
                        print('Think this was a tagged discussion')
                        return
                    elif len(teams) != 2:
                        tweet_error("Sorry, I need 2 teams. Found {0:d}. Make sure abbreviations are correct"
                                    .format(len(teams)), data)
                        return

                    team1, team2 = teams[:2]
                    gameid = games.most_recent_game_id(team1, team2)

                h2hfile = 'bot/{0:d}0{1:d}h2h.png'.format(season, gameid)
                tlfile = 'bot/{0:d}0{1:d}tl.png'.format(season, gameid)

                oldstatus = schedules.get_game_status(season, gameid)

                # Scrape only if:
                # Game is in current season AND
                # Game is today, and my schedule says it's "scheduled", OR
                # Game is today, and my schedule doesn't say it's final yet, and it's been at least
                #   5 min since last scrape, OR
                # Game was before today and my schedule doesn't say "final"
                # Update in these cases
                scrapeagain = False
                if season == schedules.get_current_season():
                    today = datetime.datetime.now().strftime('%Y-%m-%d')
                    gdata = schedules.get_game_data_from_schedule(season, gameid)
                    if gdata['Date'] == today:
                        if gdata['Status'] == 'Scheduled':
                            scrapeagain = True
                        elif gdata['Status'] != 'Final' and \
                                (LAST_UPDATE is None or time.time() - LAST_UPDATE >= 60 * 5):
                            scrapeagain = True
                    elif gdata['Date'] < today and gdata['Status'] != 'Final':
                        scrapeagain = True
                if scrapeagain:
                    autoupdate.autoupdate(season, update_team_logs=False)
                    LAST_UPDATE = time.time()
                    SCRAPED_NEW = True

                hname = schedules.get_home_team(season, gameid)
                rname = schedules.get_road_team(season, gameid)
                status = schedules.get_game_status(season, gameid)

                if 'In Progress' in oldstatus or status != oldstatus or not os.path.exists(tlfile):
                    try:
                        game_timeline.game_timeline(season, gameid, save_file=tlfile)
                        game_h2h.game_h2h(season, gameid, save_file=h2hfile)
                        tweet_game_images(h2hfile, tlfile, hname, rname, status, data)
                        print('Success!')
                    except Exception as e:
                        print(data['text'], time.time(), e, e.args)
                        tweet_error("Sorry, there was an unknown error while making the charts (cc @muneebalamcu)",
                                    data)

            except Exception as e:
                print('Unexpected error')
                print(time.time(), data['text'], e, e.args)