示例#1
0
文件: main.py 项目: kksaw/PartIILabs
def Task11a(mode):
    '''time evolution'''
    if mode == 0:  #simple oscillation
        a = [0, 0, np.pi / 2, 0]
        figtitle = 'Simple oscillation time evolution'
    elif mode == 1:  #full rotation
        a = [0, 0, 0, 2]
        figtitle = 'Full rotation time evolution'

    cart.setState(a)
    cart.performAction()
    cart.sysvar[2] = [remap_angle(value) for value in cart.sysvar[2]]

    v = np.asarray(cart.sysvar)
    titles = ['Cart location', 'Cart velocity', 'Pole angle', 'Pole velocity']

    fig, axes = plt.subplots(2, 2)
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)
    for ax, var, title in zip(axes.flatten(), v, titles):
        ax.plot(var)
        ax.set_xlabel('Time (s)')
        ax.set_xticks(np.linspace(0, cart.sim_steps, 5))
        ax.set_xticklabels(np.linspace(0, cart.delta_time, 5))
        ax.set_ylabel(title)
    fig.tight_layout()
    fig.suptitle(figtitle)
    fig.subplots_adjust(top=0.9)
示例#2
0
文件: main.py 项目: kksaw/PartIILabs
def LFunc(p, v0, nsteps=10):
    l, n = 0, 0
    state, a = v0[:4], v0[4]
    while n < nsteps:
        a = np.dot(p, state.T)
        cart.setState(state)
        cart.performAction(action=a)
        cart.sysvar[2] = np.array([remap_angle(s) for s in cart.sysvar[2]])
        state = cart.sysvar[:, -1]
        l += np.mean([loss(s) for s in cart.sysvar.T])
        n += 1
    return l / nsteps
示例#3
0
文件: main.py 项目: kksaw/PartIILabs
def check_error(model, n=1, remap=False, force=False, nv=10):
    VL = np.array([getv0(force=force) for i in range(nv)])
    error = 0
    for v in VL:
        cart.setState(v[:4])
        cart.performAction(action=v[4])
        sysvar = np.asarray(cart.sysvar)[:, -1]
        if remap:
            sysvar[2] = remap_angle(sysvar[2])
        actual = sysvar
        pred = sim2(v, model, nsteps=n)[-1]
        error += np.mean((actual - pred)**2)
    return error
示例#4
0
文件: main.py 项目: kksaw/PartIILabs
def Task21a(n=2000,
            m=160,
            l=0.1,
            dt=0.2,
            specific=True,
            v=np.array([0, 0, np.pi, 0, 0]),
            remap=False,
            force=False):
    '''one step ok'''
    cm = plt.cm.tab20(np.arange(20))
    fig1, axes1 = plt.subplots(2, 2)
    ax1 = axes1.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)
    fig2, axes2 = plt.subplots(2, 2)
    ax2 = axes2.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)

    model = NLModel(n=n, m=m, l=l, force=force, dt=dt)
    var, xlabels = getvar(force=True)
    v0 = getv0(force) if specific == False else np.array(v)
    title = v0.copy()

    for i in range(4):
        actual, pred = [], []
        for w in var[i]:
            v0[i] = w
            cart.setState(v0[:4])
            cart.performAction(action=v0[4])
            sysvar = np.asarray(cart.sysvar)[:, -1]
            if remap:
                sysvar[2] = remap_angle(sysvar[2])
            actual.append(sysvar)
            pred.append(sim2(v0, model)[-1])
        actual = np.asarray(actual)
        pred = np.asarray(pred).reshape((41, 4))

        ax1[i].set_xlabel(titles[i] + ' input')
        ax1[i].set_xticks([i * 5 for i in np.arange(9)])
        ax1[i].set_xticklabels(xlabels[i])
        ax1[i].set_ylabel('Next step')
        for j in range(4):
            ax1[i].plot(actual[:, j], color=cm[j * 2])
            ax1[i].plot(pred[:, j], color=cm[1 + j * 2])

        ax2[i].plot(actual[:, i], pred[:, i], color=cm[i * 2])
        ax2[i].set_xlabel('Actual ' + titles[i])
        ax2[i].set_ylabel('Predicted ' + titles[i])

    custom_lines = [Line2D([0], [0], color=cm[c * 2]) for c in range(4)]
    fig1.legend(custom_lines, titles, loc='lower center', ncol=4)
    fig1.suptitle(["%.2f" % title[t] for t in range(5)])
示例#5
0
文件: main.py 项目: kksaw/PartIILabs
def sim(v0, model, nsteps=1, remap=True):
    state = np.asarray(v0[:4]).reshape((1, 4))
    force = np.asarray(v0[4])
    oldstate = state
    n = 0
    while n < nsteps:
        vector = np.append(oldstate, force)
        newstate = oldstate + np.matmul(vector, model)
        if remap:
            newstate[:, 2] = remap_angle(newstate[:, 2])
        state = np.append(state, newstate, axis=0)
        oldstate = newstate
        n += 1
    return state
示例#6
0
文件: main.py 项目: kksaw/PartIILabs
def sim2(v0, model, nsteps=1, remap=False):
    sigma, xprime, am = model['sigma'], model['xprime'], model['am']
    state = v0[:4]
    force = v0[4]
    pred = [state]
    n = 0
    while n < nsteps:
        curr = np.append(state, force)
        Knm = np.asarray([calc_K(curr, value, sigma) for value in xprime])
        y = np.matmul(Knm, am)
        state = state + y
        if remap:
            state[2] = remap_angle(state[2])
        pred.append(state)
        n += 1
    return np.asarray(pred)
示例#7
0
文件: main.py 项目: kksaw/PartIILabs
def Task21b(n=2000,
            m=160,
            delta_time=0.2,
            step_size=50,
            v=np.array([0, 0, 0.3, 0, 0]),
            l=0.1,
            nsteps=10,
            remap=True,
            specific=False,
            force=True):
    '''time evolution ok'''
    v0 = getv0(force) if not specific else v
    cart.sim_steps = step_size * nsteps
    cart.delta_time = delta_time * nsteps
    cart.setState(v0[:4])
    cart.performAction(action=v0[4])
    actual = np.asarray(cart.sysvar)

    model = NLModel(n=n, m=m, l=l, force=force, dt=delta_time)
    pred = np.asarray(sim2(v0, model, nsteps=nsteps, remap=remap))
    if remap:
        actual[2] = np.asarray([remap_angle(value) for value in actual[2]])
    aindex = len(actual[0])
    pindex = [
        index * step_size for index in range(int(np.ceil(aindex / step_size)))
    ]

    cm = plt.cm.tab20(np.arange(20))
    fig, axes = plt.subplots(2, 2)
    ax = axes.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)
    xspace = int(nsteps / 5)

    for i in range(4):
        ax[i].plot(actual[i])
        ax[i].plot(pindex, pred[:, i])
        ax[i].set_xticks(
            [n * step_size * xspace for n in np.arange(int(nsteps / xspace))])
        ax[i].set_xticklabels(
            [n * xspace for n in np.arange(int((nsteps + 1) / xspace))])
        ax[i].set_xlabel('Number of steps')
        ax[i].set_ylabel(titles[i])

    fig.legend(['Actual', 'Predicted'], loc='lower center', ncol=2)
    fig.suptitle('Actual vs predicted Time Evolution')
    print(v0)
    return model
示例#8
0
文件: main.py 项目: kksaw/PartIILabs
def Task14(model,
           delta_time=0.2,
           step_size=50,
           nsteps=10,
           remap=True,
           specific=None,
           force=False):
    '''time evolution'''
    cart.sim_steps = step_size * nsteps
    cart.delta_time = delta_time * nsteps

    fig, axes = plt.subplots(2, 2)
    ax = axes.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)

    xspace = int(nsteps / 5)

    if specific == None:
        v0 = getv0(force)
    else:
        v0 = specific

    cart.setState(v0[:4])
    cart.performAction(action=v0[4])
    actual = np.asarray(cart.sysvar)
    if remap:
        actual[2] = np.asarray([remap_angle(value) for value in actual[2]])
    pred = sim(v0, model, nsteps=nsteps, remap=remap)
    nindex = len(actual[0])
    rindex = [
        index * step_size for index in range(int(np.ceil(nindex / step_size)))
    ]

    for i in range(4):
        ax[i].plot(actual[i])
        ax[i].plot(rindex, pred[:, i])
        ax[i].set_xticks(
            [n * step_size * xspace for n in np.arange(int(nsteps / xspace))])
        ax[i].set_xticklabels(
            [n * xspace for n in np.arange(int((nsteps + 1) / xspace))])
        ax[i].set_xlabel('Number of steps')
        ax[i].set_ylabel(titles[i])

    fig.legend(['Actual', 'Predicted'], loc='lower center', ncol=2)
    fig.suptitle('Actual vs predicted Time Evolution')
    print(v0)
示例#9
0
文件: main.py 项目: kksaw/PartIILabs
def Task13(model, nsteps=1, remap=True, force=False):
    '''(one step) change in state var against var'''
    cm = plt.cm.tab20(np.arange(20))
    fig1, axes1 = plt.subplots(2, 2)
    ax1 = axes1.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)
    fig2, axes2 = plt.subplots(2, 2)
    ax2 = axes2.flatten()
    plt.subplots_adjust(hspace=0.3, wspace=0.4, bottom=0.15)

    var, xlabels = getvar()
    v0 = getv0(force)
    title = v0.copy()
    for i in range(4):
        actual, pred = [], []
        for w in var[i]:
            v0[i] = w
            cart.setState(v0[:4])
            cart.performAction(action=v0[4])
            if remap:
                cart.sysvar[2] = [
                    remap_angle(value) for value in cart.sysvar[2]
                ]
            actual.append(np.asarray(cart.sysvar)[:, -1])
            pred.append(sim(v0, model, nsteps=nsteps, remap=remap)[-1])

        actual = np.asarray(actual).reshape((41, 4))
        pred = np.asarray(pred).reshape((41, 4))

        ax1[i].set_xlabel(titles[i] + ' input')
        ax1[i].set_xticks([i * 5 for i in np.arange(9)])
        ax1[i].set_xticklabels(xlabels[i])
        ax1[i].set_ylabel('Next step')
        for v in range(4):
            ax1[i].plot(actual[:, v], color=cm[v * 2])
            ax1[i].plot(pred[:, v], color=cm[1 + v * 2])

        ax2[i].plot(actual[:, i], pred[:, i], color=cm[i * 2])
        ax2[i].set_xlabel('Actual ' + titles[i])
        ax2[i].set_ylabel('Predicted ' + titles[i])

    custom_lines = [Line2D([0], [0], color=cm[c * 2]) for c in range(4)]
    fig1.legend(custom_lines, titles, loc='lower center', ncol=4)
    fig1.suptitle(["%.2f" % title[t] for t in range(5)])