parser.add_argument("-g", "--gui", help="set gui mode.", action="store_true") parser.add_argument("-t", "--testing", help="set testing mode", action="store_true", default=False) parser.add_argument("-cp", "--collect_perception", help="collect the data for perception training") parser.add_argument("-ca", "--collect_detector", help="collect the data for detector training") parser.add_argument("-p", "--perception", help="set the path of perception neural network") parser.add_argument("-e", "--episode", help="set the number of episode", type=int, default=1) args = parser.parse_args() try: os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="0" # specify which GPU(s) to be used collect = args_assertions(args) env = SetupWorld(mass=1300, wheel_radius=0.04, dt=0.05, collect=collect) agent = ddpgAgent(Testing=args.testing) input_preprocessor = InputPreprocessor() avf=AVF_search() stopdist=6.0 print('Number of episodes :',args.episode) for episode in range(args.episode): #while stopdist>5.0: agnt_number=2000; numberofsamples=2000 initial_distance = np.random.normal(100, 1) initial_speed = np.random.normal(38,11) #initial_speed = avf.avf_predictor(numberofsamples,agnt_number) if initial_speed <1 : initial_speed=1 friction=np.random.normal(0.7,0.15) if friction<=0 : friction=0 variance_fric= np.random.normal(0.2,0.06) # estimate varince between maximum and kinetic friction if variance_fric<0 : variance_fric=0
type=int, default=1) args = parser.parse_args() try: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ[ "CUDA_VISIBLE_DEVICES"] = "0" # specify which GPU(s) to be used collect = args_assertions(args) env = SetupWorld(mass=1300, wheel_radius=0.04, dt=0.05, collect=collect) agent = ddpgAgent(Testing=args.testing) input_preprocessor = InputPreprocessor() rcf = rcf(100) print('Number of episodes :', args.episode) plot = Liveplot() cnt = 0 coDisp = [] #rcf.trainer() for episode in range(args.episode): #stopdist=1.0; #Comment below 3 lines while training , its only for running set of testing #print('***********************************************************************************************************') #print('******** Launching failure search test ID:',episode+1) #np.random.seed() #while stopdist>0: ##select parameters--------------------------------------------------------------- emergency_brake = False