示例#1
0
def _box_series_data(dtype, data_typ, val, c):

    if isinstance(dtype, types.BaseTuple):
        np_dtype = np.dtype(','.join(str(t) for t in dtype.types), align=True)
        dtype = numba.numpy_support.from_dtype(np_dtype)

    if dtype == string_type:
        arr = box_str_arr(string_array_type, val, c)
    elif dtype == datetime_date_type:
        arr = box_datetime_date_array(data_typ, val, c)
    elif isinstance(dtype, PDCategoricalDtype):
        arr = box_categorical_array(data_typ, val, c)
    elif data_typ == string_array_split_view_type:
        arr = box_str_arr_split_view(data_typ, val, c)
    elif dtype == types.List(string_type):
        arr = box_list(list_string_array_type, val, c)
    else:
        arr = box_array(data_typ, val, c)

    if isinstance(dtype, types.Record):
        o_str = c.context.insert_const_string(c.builder.module, "O")
        o_str = c.pyapi.string_from_string(o_str)
        arr = c.pyapi.call_method(arr, "astype", (o_str, ))

    return arr
示例#2
0
def box_dataframe(typ, val, c):
    context = c.context
    builder = c.builder

    n_cols = len(typ.columns)
    col_names = typ.columns
    arr_typs = typ.data
    dtypes = [a.dtype for a in arr_typs]  # TODO: check Categorical

    dataframe = cgutils.create_struct_proxy(typ)(context, builder, value=val)
    col_arrs = [
        builder.extract_value(dataframe.data, i) for i in range(n_cols)
    ]
    # df unboxed from Python
    has_parent = cgutils.is_not_null(builder, dataframe.parent)

    pyapi = c.pyapi
    # gil_state = pyapi.gil_ensure()  # acquire GIL

    mod_name = context.insert_const_string(c.builder.module, "pandas")
    class_obj = pyapi.import_module_noblock(mod_name)
    df_obj = pyapi.call_method(class_obj, "DataFrame", ())

    for i, cname, arr, arr_typ, dtype in zip(range(n_cols), col_names,
                                             col_arrs, arr_typs, dtypes):
        # df['cname'] = boxed_arr
        # TODO: datetime.date, DatetimeIndex?
        name_str = context.insert_const_string(c.builder.module, cname)
        cname_obj = pyapi.string_from_string(name_str)

        if dtype == string_type:
            arr_obj = box_str_arr(arr_typ, arr, c)
        elif isinstance(dtype, PDCategoricalDtype):
            arr_obj = box_categorical_array(arr_typ, arr, c)
            # context.nrt.incref(builder, arr_typ, arr)
        elif arr_typ == string_array_split_view_type:
            arr_obj = box_str_arr_split_view(arr_typ, arr, c)
        elif dtype == types.List(string_type):
            arr_obj = box_list(list_string_array_type, arr, c)
            # context.nrt.incref(builder, arr_typ, arr)  # TODO required?
            # pyapi.print_object(arr_obj)
        else:
            arr_obj = box_array(arr_typ, arr, c)
            # TODO: is incref required?
            # context.nrt.incref(builder, arr_typ, arr)
        pyapi.object_setitem(df_obj, cname_obj, arr_obj)

        # pyapi.decref(arr_obj)
        pyapi.decref(cname_obj)

    # set df.index if necessary
    if typ.index != types.none:
        arr_obj = _box_series_data(typ.index.dtype, typ.index, dataframe.index,
                                   c)
        pyapi.object_setattr_string(df_obj, 'index', arr_obj)

    pyapi.decref(class_obj)
    # pyapi.gil_release(gil_state)    # release GIL
    return df_obj
示例#3
0
def _box_index_data(index_typ, val, c):
    """ Boxes native value used to represent Pandas index into appropriate Python object.
        Params:
            index_typ: Numba type of native value
            val: native value
            c: LLVM context object
        Returns: Python object native value is boxed into
    """
    assert isinstance(index_typ, (RangeIndexType, StringArrayType, types.Array, types.NoneType))

    if isinstance(index_typ, RangeIndexType):
        index = box_range_index(index_typ, val, c)
    elif isinstance(index_typ, types.Array):
        index = box_array(index_typ, val, c)
    elif isinstance(index_typ, StringArrayType):
        index = box_str_arr(string_array_type, val, c)
    else:  # index_typ is types.none
        index = c.pyapi.make_none()

    return index