def test_transform_model_enabled_reject_sampling_error(self): """Test that the ``Constraint.transform`` method raises an error appropriately. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. If it doesn't get any valid rows in 100 tries, a ``ValueError`` is raised. Setup: - The ``_columns_model`` is fixed to always return an empty ``DataFrame``. Input: - Table with some missing columns. Side Effect: - ``ValueError`` raised. """ # Setup instance = Constraint(handling_strategy='transform') instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = pd.DataFrame([[1]], columns=['b']) instance._columns_model.sample.return_value = pd.DataFrame() instance._hyper_transformer.transform.return_value = transformed_conditions instance._hyper_transformer.reverse_transform.return_value = pd.DataFrame( ) # Run / Assert data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']) with pytest.raises(ValueError): instance.transform(data)
def test__validate_data_meets_constraints_invalid_input(self): """Test the ``_validate_data_meets_constraint`` method. Expect that the method raises an error when the constraint columns are in the given data and the ``is_valid`` returns False for any row. Input: - Table data contains an invalid row Output: - None Side Effects: - A ``ConstraintsNotMetError`` is thrown """ # Setup data = pd.DataFrame( { 'a': [0, 1, 2, 3, 4, 5, 6, 7], 'b': [3, 4, 5, 6, 7, 8, 9, 10] }, index=[0, 1, 2, 3, 4, 5, 6, 7]) constraint = Constraint() constraint.constraint_columns = ['a', 'b'] is_valid_result = pd.Series( [True, False, True, False, False, False, False, False]) constraint.is_valid = Mock(return_value=is_valid_result) # Run / Assert error_message = re.escape( "Data is not valid for the 'Constraint' constraint:\n " 'a b\n1 1 4\n3 3 6\n4 4 7\n5 5 8\n6 6 9' '\n+1 more') with pytest.raises(ConstraintsNotMetError, match=error_message): constraint._validate_data_meets_constraint(data)
def test_fit_trains_column_model(self, ht_mock, gm_mock): """Test the ``Constraint.fit`` method trains the column model. When ``fit_columns_model`` is True and there are multiple ``constraint_columns``, the ``Constraint.fit`` method is expected to: - Call ``_fit`` method. - Create ``_hyper_transformer``. - Create ``_column_model`` and train it. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]}) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.return_value.fit.assert_called_once() calls = ht_mock.return_value.fit_transform.mock_calls args = calls[0][1] assert len(calls) == 1 pd.testing.assert_frame_equal(args[0], table_data)
def test__prepare_constraints_invalid_order_raises_exception( self, from_dict_mock): """Test the ``_prepare_constraints`` method validates the constraint order. If one constraint has ``rebuild_columns`` that are in a later constraint's ``constraint_columns``, an exception should be raised. Input: - List of constraints with some having ``rebuild_columns`` that are in a later constraint's ``constraint_columns``. Side Effect: - Exception should be raised. """ # Setup constraint1 = Constraint(handling_strategy='reject_sampling') constraint2 = Constraint(handling_strategy='reject_sampling') constraint3 = Constraint(handling_strategy='transform') constraint4 = Constraint(handling_strategy='transform') constraints = [constraint1, constraint2, constraint3, constraint4] constraint3.rebuild_columns = ['a', 'd'] constraint4.constraint_columns = ['a', 'b', 'c'] constraint4.rebuild_columns = ['a'] from_dict_mock.side_effect = [ constraint1, constraint2, constraint3, constraint4 ] # Run with pytest.raises(Exception): Table._prepare_constraints(constraints)
def test__prepare_constraints_validates_constraint_order( self, from_dict_mock): """Test the ``_prepare_constraints`` method validates the constraint order. If no constraint has ``rebuild_columns`` that are in a later constraint's ``constraint_columns``, no exception should be raised. Input: - List of constraints with none having ``rebuild_columns`` that are in a later constraint's ``constraint_columns``. Output: - Sorted list of constraints. """ # Setup constraint1 = Constraint(handling_strategy='reject_sampling') constraint2 = Constraint(handling_strategy='reject_sampling') constraint3 = Constraint(handling_strategy='transform') constraint4 = Constraint(handling_strategy='transform') constraints = [constraint1, constraint2, constraint3, constraint4] constraint3.rebuild_columns = ['e', 'd'] constraint4.constraint_columns = ['a', 'b', 'c'] constraint4.rebuild_columns = ['a'] from_dict_mock.side_effect = [ constraint1, constraint2, constraint3, constraint4 ] # Run sorted_constraints = Table._prepare_constraints(constraints) # Assert assert sorted_constraints == constraints
def test_transform_model_enabled_some_columns_missing(self): """Test that the ``Constraint.transform`` method uses column model. If ``table_data`` is missing some of the ``constraint_columns``, the ``_column_model`` should be used to sample the rest and the data should be transformed. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() conditions = [ pd.DataFrame([[5, 1, 2]], columns=['a', 'b', 'c']), pd.DataFrame([[6, 3, 4]], columns=['a', 'b', 'c']) ] transformed_conditions = [ pd.DataFrame([[1]], columns=['b']), pd.DataFrame([[3]], columns=['b']) ] instance._columns_model.sample.return_value = pd.DataFrame( [[1, 2, 3]], columns=['b', 'c', 'a']) instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform.side_effect = conditions # Run data = pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']) transformed_data = instance.transform(data) # Assert expected_tranformed_data = pd.DataFrame([[1, 2, 3]], columns=['b', 'c', 'a']) expected_result = pd.DataFrame([[5, 1, 2], [6, 3, 4]], columns=['a', 'b', 'c']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 1}) instance._columns_model.sample.assert_any_call(num_rows=1, conditions={'b': 3}) reverse_transform_calls = instance._hyper_transformer.reverse_transform.mock_calls pd.testing.assert_frame_equal(reverse_transform_calls[0][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(reverse_transform_calls[1][1][0], expected_tranformed_data) pd.testing.assert_frame_equal(transformed_data, expected_result)
def test_transform_all_columns_missing(self): """Test the ``Constraint.transform`` method with all columns missing. If ``table_data`` is missing all of the ``constraint_columns`` a ``MissingConstraintColumnError`` is raised. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint() instance._transform = lambda x: x instance.constraint_columns = ('a', ) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame())
def test_transform_columns_missing(self): """Test the ``Constraint.transform`` method with invalid data. If ``table_data`` is missing any columns it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint() instance._transform = lambda x: x instance.constraint_columns = ('a', ) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform( pd.DataFrame([[1, 2], [3, 4]], columns=['b', 'c']))
def test_transform_model_enabled_all_columns_missing(self): """Test the ``Constraint.transform`` method with missing columns. If ``table_data`` is missing all of the ``constraint_columns`` and ``fit_columns_model`` is True, it should raise a ``MissingConstraintColumnError``. The ``Constraint.transform`` method is expected to: - Raise ``MissingConstraintColumnError``. """ # Run instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', ) # Assert with pytest.raises(MissingConstraintColumnError): instance.transform(pd.DataFrame())
def test_transform_model_enabled_reject_sampling_duplicates_valid_rows( self): """Test the ``Constraint.transform`` method's reject sampling fall back. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. If after 100 tries, some valid rows are created but not enough, then the valid rows are duplicated to meet the ``num_rows`` requirement. Setup: - The ``_columns_model`` returns some valid rows the first time, and then an empy ``DataFrame`` for every other call. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = [ pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) ] instance._columns_model.sample.side_effect = [ pd.DataFrame([[1, 2], [1, 3]], columns=['a', 'b']) ] + [pd.DataFrame()] * 100 instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform = lambda x: x # Run data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) transformed_data = instance.transform(data) # Assert expected_result = pd.DataFrame( [[1, 2], [1, 3], [1, 2], [1, 3], [1, 2]], columns=['a', 'b']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 101 instance._columns_model.sample.assert_any_call(num_rows=5, conditions={'b': 1}) pd.testing.assert_frame_equal(transformed_data, expected_result)
def test_transform_model_enabled_reject_sampling(self): """Test the ``Constraint.transform`` method's reject sampling. If the column model is used but doesn't return valid rows, reject sampling should be used to get the valid rows. Setup: - The ``_columns_model`` returns some valid_rows the first time, and then the rest with the next call. Input: - Table with some missing columns. Output: - Transformed data with all columns. """ # Setup instance = Constraint(handling_strategy='transform') instance._transform = lambda x: x instance.constraint_columns = ('a', 'b') instance._hyper_transformer = Mock() instance._columns_model = Mock() transformed_conditions = [ pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) ] instance._columns_model.sample.side_effect = [ pd.DataFrame([[1, 2], [1, 3]], columns=['a', 'b']), pd.DataFrame([[1, 4], [1, 5], [1, 6], [1, 7]], columns=['a', 'b']), ] instance._hyper_transformer.transform.side_effect = transformed_conditions instance._hyper_transformer.reverse_transform = lambda x: x # Run data = pd.DataFrame([[1], [1], [1], [1], [1]], columns=['b']) transformed_data = instance.transform(data) # Assert expected_result = pd.DataFrame( [[1, 2], [1, 3], [1, 4], [1, 5], [1, 6]], columns=['a', 'b']) model_calls = instance._columns_model.sample.mock_calls assert len(model_calls) == 2 instance._columns_model.sample.assert_any_call(num_rows=5, conditions={'b': 1}) assert model_calls[1][2]['num_rows'] > 3 pd.testing.assert_frame_equal(transformed_data, expected_result)
def test_fit_gaussian_multivariate_correct_distribution(self, gm_mock): """Test the ``GaussianMultivariate`` from the ``Constraint.fit`` method. The ``GaussianMultivariate`` is expected to be called with default distribution set as ``GaussianUnivariate``. Input: - Table data (pandas.DataFrame) """ # Setup table_data = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) instance = Constraint(handling_strategy='transform', fit_columns_model=True) instance.constraint_columns = ('a', 'b') # Run instance.fit(table_data) # Assert gm_mock.assert_called_once_with(distribution=GaussianUnivariate)
def test__validate_data_meets_constraints_missing_cols(self): """Test the ``_validate_data_meets_constraint`` method. Expect that the method doesn't do anything when the columns are not in the given data. Input: - Table data that is missing a constraint column Output: - None Side Effects: - No error """ # Setup data = pd.DataFrame({'a': [0, 1, 2], 'b': [3, 4, 5]}, index=[0, 1, 2]) constraint = Constraint() constraint.constraint_columns = ['a', 'b', 'c'] constraint.is_valid = Mock() # Run constraint._validate_data_meets_constraint(data) # Assert assert not constraint.is_valid.called
def test__validate_data_meets_constraints(self): """Test the ``_validate_data_meets_constraint`` method. Expect that the method calls ``is_valid`` when the constraint columns are in the given data. Input: - Table data Output: - None Side Effects: - No error """ # Setup data = pd.DataFrame({'a': [0, 1, 2], 'b': [3, 4, 5]}, index=[0, 1, 2]) constraint = Constraint() constraint.constraint_columns = ['a', 'b'] constraint.is_valid = Mock() # Run constraint._validate_data_meets_constraint(data) # Assert constraint.is_valid.assert_called_once_with(data)