示例#1
0
    def _rebuild_covariance_matrix(self, covariance):
        """Rebuild the covariance matrix from its parameter values.

        This method follows the steps:

            * Rebuild a square matrix out of a triangular one.
            * Add the missing half of the matrix by adding its transposed and
              then removing the duplicated diagonal values.
            * ensure the matrix is positive definite

        Args:
            covariance (list):
                covariance values after unflattening model parameters.

        Result:
            list[list[float]]:
                Symmetric positive semi-definite matrix.
        """
        covariance = np.array(square_matrix(covariance))
        covariance = (covariance + covariance.T -
                      (np.identity(covariance.shape[0]) * covariance))

        if not check_matrix_symmetric_positive_definite(covariance):
            covariance = make_positive_definite(covariance)

        return covariance.tolist()
示例#2
0
文件: test_utils.py 项目: zyteka/SDV
def test_check_matrix_symmetric_positive_definite():
    """Test check matrix numpy."""
    # Run
    matrix = np.array([[0.5, 0.5], [0.5, 0.5]])
    result = check_matrix_symmetric_positive_definite(matrix)

    # Asserts
    assert result
示例#3
0
文件: test_utils.py 项目: zyteka/SDV
def test_check_matrix_symmetric_positive_definite_np_error():
    """Test check matrix numpy raise error."""
    # Run
    matrix = np.array([[-1, 0], [0, 0]])
    result = check_matrix_symmetric_positive_definite(matrix)

    # Asserts
    assert not result
示例#4
0
文件: test_utils.py 项目: zyteka/SDV
def test_check_matrix_symmetric_positive_definite_shape_error():
    """Test check matrix shape error."""
    # Run
    matrix = np.array([])
    result = check_matrix_symmetric_positive_definite(matrix)

    # Asserts
    assert not result
示例#5
0
    def _prepare_sampled_covariance(self, covariance):
        """Prepare a covariance matrix.

        Args:
            covariance (list):
                covariance after unflattening model parameters.

        Result:
            list[list]:
                symmetric Positive semi-definite matrix.
        """
        covariance = np.array(square_matrix(covariance))
        covariance = (covariance + covariance.T -
                      (np.identity(covariance.shape[0]) * covariance))

        if not check_matrix_symmetric_positive_definite(covariance):
            covariance = make_positive_definite(covariance)

        return covariance.tolist()