def base_case_test(self): """base_case_test: this test is used to check the function for searching the maximum value -- using artificial data""" ARRAY_TUPLED = namedtuple( 'ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT ANNOT') target_list_base = [[[1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0]], [[2, 2, 2, 2, 2, 2, 2, 2, 0], [2, 2, 2, 2, 2, 2, 2, 2, 2, 0]], [[3, 3, 3, 3, 3, 3, 3, 3, 2], [3, 3, 3, 3, 3, 3, 3, 3, 0]]] source_list = [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2], [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2]] data_pool_base = [] for temp_data in source_list: source_line = ARRAY_TUPLED(*temp_data) data_pool_base.append(source_line) result_list = searchmax.micAn(data_pool_base) for i in range(len(target_list_base)): for j in range(len(target_list_base[0])): temp = target_list_base[0] for k in range(len(temp)): self.assertAlmostEqual(target_list_base[i][j][k], result_list[i][j][k])
def micro_annotate_search(sourceFile): flag = False counter = 0 tempData = [] output = [] quemican = deque ARRAY_TUPLED = namedtuple('ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT DUMMY ANNOT') #change this for OJ's data, add one element before ANNOT print('start to re-annotate') print('Please waiting! ....') with open(sourceFile) as objectFile: for line in objectFile: dataread = line.split() ori_data = [float(x) for x in dataread[:len(dataread)]] data = ARRAY_TUPLED(*ori_data) if data.ANNOT in FALL_SET: #change this for OJ's data tempData.append(data) if flag == False: flag = True elif (flag is True) and (data.ANNOT not in FALL_SET) : micanDat = searchmax.micAn(tempData) #search for maximum value for x in range(len(micanDat)): output.append(micanDat[x]) flag = False tempData = [] output.append(reannotright.reanotright(data)) else: saveData = reannotright.reanotright(data) output.append(saveData) #write_csv(destFile, output) return output print('finish')
def micro_annotate_search(sourceFile): flag = False counter = 0 tempData = [] output = [] quemican = deque ARRAY_TUPLED = namedtuple( 'ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT ANNOT') print('start to re-annotate') with open(sourceFile) as objectFile: for line in objectFile: dataread = line.split() ori_data = [float(x) for x in dataread[:len(dataread)]] data = ARRAY_TUPLED(*ori_data) if data.ANNOT in FALL_SET: #change this for OJ's data tempData.append(data) if not flag: flag = True elif flag and (data.ANNOT not in FALL_SET): micanDat = searchmax.micAn(tempData) #search for maximum value for x in range(len(micanDat)): output.append(micanDat[x]) flag = False tempData = [] output.append(reannotright.reanotright(data)) else: saveData = reannotright.reanotright(data) output.append(saveData) #write_csv(destFile, output) return output
def micro_test(self): """micro_test: this test is used to check the function for searching the maximum value""" ARRAY_TUPLED = namedtuple('ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT ANNOT') data_pool =[] targetList = [[[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,2],[0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0]], [[0.9261432796,0.1331620968,-0.1741370968,2.9293299158, 2.9293299158,-1.8308311974,0.9517338109,4.5292262456,0],[0.9685012097,0.0307068548,0.2496505376,0.3661662395, -0.7323324789,0.7323324789,1.0006312483,1.0984987184,2]], [[0.9179352151,0.1305510753,-0.1926061828,1.0984987184, 5.1263273526,-1.0984987184,0.9469666224,5.3565502887,2],[0.9553600806,0.0146858871,0.2577473118,-0.7323324789, -1.4646649579,0.7323324789,0.9896273216,1.7938408955,0]]] rawsourceList = [[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571,3.2954961553, 0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395,0.9857819566,2.0055750916,2], [0.9261432796,0.1331620968,-0.1741370968,2.9293299158,2.9293299158,-1.8308311974,0.9517338109,4.5292262456, 0.9685012097,0.0307068548,0.2496505376,0.3661662395,-0.7323324789,0.7323324789,1.0006312483,1.0984987184,2], [0.9179352151,0.1305510753,-0.1926061828,1.0984987184,5.1263273526,-1.0984987184,0.9469666224,5.3565502887, 0.9553600806,0.0146858871,0.2577473118,-0.7323324789,-1.4646649579,0.7323324789,0.9896273216,1.7938408955,2]] for temp_data in rawsourceList: sourceList = ARRAY_TUPLED(*temp_data) data_pool.append(sourceList) resultList = searchmax.micAn(data_pool) #self.assertAlmostEqual(targetListnonFalls,sourceListnonFalls) for i in range(len(targetList)): for j in range(len(targetList[0])): temp = targetList[0] for k in range(len(temp)): self.assertAlmostEqual(targetList[i][j][k],resultList[i][j][k])
def micro_test(self): ARRAY_TUPLED = namedtuple('ARRAY_TUPLED', 'AXC AYC AZC GXC GYC GZC AVMC GVMC' ' AXT AYT AZT GXT GYT GZT AVMT GVMT ANNOT') data_pool =[] targetList = [[[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571, 3.2954961553,2],[0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395, 0.9857819566,2.0055750916,0]], [[0.9261432796,0.1331620968,-0.1741370968,2.9293299158, 2.9293299158,-1.8308311974,0.9517338109,4.5292262456,0],[0.9685012097,0.0307068548,0.2496505376,0.3661662395, -0.7323324789,0.7323324789,1.0006312483,1.0984987184,2]], [[0.9179352151,0.1305510753,-0.1926061828,1.0984987184, 5.1263273526,-1.0984987184,0.9469666224,5.3565502887,2],[0.9553600806,0.0146858871,0.2577473118,-0.7323324789, -1.4646649579,0.7323324789,0.9896273216,1.7938408955,0]]] rawsourceList = [[0.9398233871,0.1540502688,-0.1714986559,2.5631636763,1.4646649579,-1.4646649579,0.9676834571,3.2954961553, 0.9474754032,0.0440576613,0.2685430108,0.7323324789,-1.8308311974,0.3661662395,0.9857819566,2.0055750916,2], [0.9261432796,0.1331620968,-0.1741370968,2.9293299158,2.9293299158,-1.8308311974,0.9517338109,4.5292262456, 0.9685012097,0.0307068548,0.2496505376,0.3661662395,-0.7323324789,0.7323324789,1.0006312483,1.0984987184,2], [0.9179352151,0.1305510753,-0.1926061828,1.0984987184,5.1263273526,-1.0984987184,0.9469666224,5.3565502887, 0.9553600806,0.0146858871,0.2577473118,-0.7323324789,-1.4646649579,0.7323324789,0.9896273216,1.7938408955,2]] for temp_data in rawsourceList: sourceList = ARRAY_TUPLED(*temp_data) data_pool.append(sourceList) resultList = searchmax.micAn(data_pool) #self.assertAlmostEqual(targetListnonFalls,sourceListnonFalls) for i in range(len(targetList)): for j in range(len(targetList[0])): temp = targetList[0] for k in range(len(temp)): self.assertAlmostEqual(targetList[i][j][k],resultList[i][j][k])