示例#1
0
def inertial_period(lat):
    """Calculate the inertial period as:

    .. math::
        Ti = \\frac{2\\pi}{f} = \\frac{T_{sd}}{2\\sin\\phi}

    Parameters
    ----------
    lat : array_like
          latitude in decimal degrees north [-90..+90]

    Returns
    -------
    Ti : array_like
         period in seconds

    Examples
    --------
    >>> from oceans import sw_extras as swe
    >>> lat = 30.
    >>> swe.inertial_period(lat)/3600
    23.934849862785651
    """
    lat = np.asanyarray(lat)
    return 2 * np.pi / sw.f(lat)
示例#2
0
def inertial_period(lat):
    """
    Calculate the inertial period as:

    .. math::
        Ti = \\frac{2\\pi}{f} = \\frac{T_{sd}}{2\\sin\\phi}

    Parameters
    ----------
    lat : array_like
          latitude in decimal degrees north [-90..+90]

    Returns
    -------
    Ti : array_like
         period in seconds

    Examples
    --------
    >>> from oceans import sw_extras as swe
    >>> lat = 30.
    >>> swe.inertial_period(lat)/3600
    23.934849862785651

    """
    lat = np.asanyarray(lat)
    return 2 * np.pi / sw.f(lat)
示例#3
0
def qg_stability(N2, ubar, z, k=1., lat=50., structure=True):

    f0 = sw.f(lat)
    beta = 2 * 7.29e-5 * np.cos(lat * pi / 180.) / 6371.e3

    dz = np.abs(z[1] - z[0])

    S = (f0**2) / N2
    L = stretching_matrix(z.size, S, dz)

    k2 = k**2

    L2 = L - np.eye(ubar.size) * k2
    U = np.eye(ubar.size) * ubar
    Qy = np.eye(
        ubar.size) * (beta - np.array(np.matrix(L) * np.matrix(ubar).T))

    L3 = L2.copy()
    for i in range(ubar.size):
        L3[i, :] = L2[i, :] * ubar[i]

    A = L3 + Qy
    B = L2.copy()

    evals, evecs = sp.linalg.eig(A, B)

    imax = evals.imag.argmax()
    eval_max = evals[imax]
    evec_max = evecs[:, imax]

    if structure:
        PSI, X, Z = wave_structure(evec_max, z, k)
        return eval_max, evec_max, PSI, X, Z
    else:
        return eval_max, evec_max
示例#4
0
def qg_stability(N2,ubar,z,k=1.,lat=50.,structure=True):

    f0 = sw.f(lat)
    beta = 2*7.29e-5*np.cos(lat*pi/180.)/6371.e3 

    dz = np.abs(z[1]-z[0])

    S = (f0**2)/N2
    L= stretching_matrix(z.size,S,dz)

    k2 = k**2

    L2 = L - np.eye(ubar.size)*k2
    U =  np.eye(ubar.size)*ubar
    Qy = np.eye(ubar.size)*(beta  - np.array( np.matrix(L)*np.matrix(ubar).T ) ) 

    L3 = L2.copy()
    for i in range(ubar.size):
        L3[i,:] = L2[i,:]*ubar[i]

    A = L3 + Qy
    B = L2.copy()

    evals,evecs = sp.linalg.eig(A,B)

    imax = evals.imag.argmax()
    eval_max = evals[imax]
    evec_max = evecs[:,imax]

    if structure:
        PSI, X, Z = wave_structure(evec_max,z,k)
        return eval_max,evec_max,PSI,X,Z
    else:
        return eval_max,evec_max
示例#5
0
def set_params(lat, dt=3., dz=1., max_depth=100., mld_thresh=1e-4, dt_save=1., rb=0.65, rg=0.25, rkz=0., beta1=0.6, beta2=20.0, heat_ON=True, winds_ON=True, emp_ON=True, drag_ON=True):
    
    """
    This function sets the main paramaters/constants used in the model.
    These values are packaged into a dictionary, which is returned as output.
    Definitions are listed below.
    
    CONTROLS (default values are in [ ]):
    lat: latitude of profile
    dt: time-step increment. Input value in units of hours, but this is immediately converted to seconds.[3 hours]
    dz: depth increment (meters). [1m]
    max_depth: Max depth of vertical coordinate (meters). [100]
    mld_thresh: Density criterion for MLD (kg/m3). [1e-4] 
    dt_save: time-step increment for saving to file (multiples of dt). [1]
    rb: critical bulk richardson number. [0.65]
    rg: critical gradient richardson number. [0.25]
    rkz: background vertical diffusion (m**2/s). [0.]
    beta1: longwave extinction coefficient (meters). [0.6] 
    beta2: shortwave extinction coefficient (meters). [20] 
    winds_ON: True/False flag to turn ON/OFF wind forcing. [True]
    emp_ON: True/False flag to turn ON/OFF freshwater forcing. [True]
    heat_ON: True/False flag to turn ON/OFF surface heat flux forcing. [True]
    drag_ON: True/False flag to turn ON/OFF current drag due to internal-inertial wave breaking. [True]
    
    OUTPUT is dict with fields containing the above variables plus the following:
    dt_d: time increment (dt) in units of days
    g: acceleration due to gravity [9.8 m/s^2]
    cpw: specific heat of water [4183.3 J/kgC]
    f: coriolis term (rad/s). [sw.f(lat)]
    ucon: coefficient of inertial-internal wave dissipation (s^-1) [0.1*np.abs(f)]
    """
    params = {}
    params['dt'] = 3600.0*dt
    params['dt_d'] = params['dt']/86400.
    params['dz'] = dz
    params['dt_save'] = dt_save
    params['lat'] = lat
    params['rb'] = rb
    params['rg'] = rg
    params['rkz'] = rkz
    params['beta1'] = beta1
    params['beta2'] = beta2
    params['max_depth'] = max_depth
  
    params['g'] = 9.81
    params['f'] = sw.f(lat)
    params['cpw'] = 4183.3
    params['ucon'] = (0.1*np.abs(params['f']))
    params['mld_thresh'] = mld_thresh
    
    params['winds_ON'] = winds_ON
    params['emp_ON'] = emp_ON
    params['heat_ON'] = heat_ON
    params['drag_ON'] = drag_ON
    
    return params
示例#6
0
def set_params(dt=3., dz=1., max_depth=100., mld_thresh=1e-4, lat=74., dt_save=1., rb=0.65, rg=0.25, rkz=0., beta1=0.6, beta2=0.2):
    
    """
    This function sets the main paramaters/constants used in the model.
    These values are packaged into a dictionary, which is returned as output.
    Definitions are listed below.
    
    CONTROLS (default values are in [ ]):
    dt: time-step increment. Input value in units of hours, but this is immediately converted to seconds.[3 hours]
    dz: depth increment (meters). [1m]
    max_depth: Max depth of vertical coordinate (meters). [100]
    mld_thresh: Density criterion for MLD (kg/m3). [1e-4] 
    dt_save: time-step increment for saving to file (multiples of dt). [1]
    lat: latitude of profile (degrees). [74.0]
    rb: critical bulk richardson number. [0.65]
    rg: critical gradient richardson number. [0.25]
    rkz: background vertical diffusion (m**2/s). [0.]
    beta1: longwave extinction coefficient (meters). [0.6] 
    beta2: shortwave extinction coefficient (meters). [20] 
    
    OUTPUT is dict with fields containing the above variables plus the following:
    dt_d: time increment (dt) in units of days
    g: acceleration due to gravity [9.8 m/s^2]
    cpw: specific heat of water [4183.3 J/kgC]
    f: coriolis term (rad/s). [sw.f(lat)]
    ucon: coefficient of inertial-internal wave dissipation (s^-1) [0.1*np.abs(f)]
    """
    params = {}
    params['dt'] = 3600.0*dt
    params['dt_d'] = params['dt']/86400.
    params['dz'] = dz
    params['dt_save'] = dt_save
    params['lat'] = lat
    params['rb'] = rb
    params['rg'] = rg
    params['rkz'] = rkz
    params['beta1'] = beta1
    params['beta2'] = beta2
    params['max_depth'] = max_depth
  
    params['g'] = 9.81
    params['f'] = sw.f(lat)
    params['cpw'] = 4183.3
    params['ucon'] = (0.1*np.abs(params['f']))
    params['mld_thresh'] = mld_thresh
    
    return params
	def __init__(self):
		# Beta = meridional rate of change of the Coriolis parameters (m^-1 s^-1)
		r = 6.371e+6 														# Earth's radius (m)
		omega = 7.292115e-5 												# Earth's rotation rate (s^-1)
		beta = 2.*omega*np.cos(np.pi*soest.LAT16_100/180.)/r 

		# Coriolis parameter (s^-1)
		f = sw.f(soest.LAT16_100)

		# Rho = typical density of the sea water above the pycnocline (kg m^-3)
		# Since we are considering a incompressible ocean (i. e., Boussinesq approximation) it will be 
		# constant
		rho = 1025.0

		self.beta = beta 
		self.rho  = rho 
		self.f = f
示例#8
0
    def __init__(self):
        # Beta = meridional rate of change of the Coriolis parameters (m^-1 s^-1)
        r = 6.371e+6  # Earth's radius (m)
        omega = 7.292115e-5  # Earth's rotation rate (s^-1)
        beta = 2. * omega * np.cos(np.pi * scow.latitude / 180.) / r

        # Coriolis parameter (s^-1)
        f = sw.f(scow.latitude)

        # Rho = typical density of the sea water above the pycnocline (kg m^-3)
        # Since we are considering a incompressible ocean (i. e., Boussinesq approximation) it will be
        # constant
        rho = 1025.0

        self.beta = beta
        self.rho = rho
        self.f = f
示例#9
0
文件: oceans.py 项目: dcherian/dcpy
def GM(lat, N, N0, b=1000, oned=False):
    try:
        import GM81.gm as gm
    except ImportError:
        raise ImportError("Please install the GM81 package.")

    # Coriolis frequency
    f = sw.f(lat=12)

    # frequency
    omg = np.logspace(np.log10(1.01 * f), np.log10(N), 401)

    # horizontal wavenumber
    k = 2 * np.pi * np.logspace(-6, -2, 401)

    # mode number
    j = np.arange(1, 100)

    # reshape to allow multiplication into 2D array
    Omg = np.reshape(omg, (omg.size, 1))
    K = np.reshape(k, (k.size, 1))
    J = np.reshape(j, (1, j.size))

    # frequency spectra (KE and PE)
    K_omg_j = gm.K_omg_j(Omg, J, f, N, N0, b)
    P_omg_j = gm.P_omg_j(Omg, J, f, N, N0, b)

    # wavenumber spectra (KE and PE)
    K_k_j = gm.K_k_j(K, J, f, N, N0, b)
    P_k_j = gm.P_k_j(K, J, f, N, N0, b)

    # sum over modes
    K_omg = np.sum(K_omg_j, axis=1)
    P_omg = np.sum(P_omg_j, axis=1)
    K_k = np.sum(K_k_j, axis=1)
    P_k = np.sum(P_k_j, axis=1)

    # compute 1D spectra from 2D spectra
    K_k_1d = gm.calc_1d(k, K_k)
    P_k_1d = gm.calc_1d(k, P_k)

    return (omg, K_omg, P_omg, k, K_k_1d, P_k_1d)
示例#10
0
def qg_stability_2d(N2, ubar, vbar, z, k, l, lat, structure=False):

    f0 = sw.f(lat)
    beta = 2 * 7.29e-5 * np.cos(lat * pi / 180.) / 6371.e3

    dz = np.abs(z[1] - z[0])

    S = (f0**2) / N2
    L = stretching_matrix(z.size, S, dz)

    k2 = k**2 + l**2

    L2 = L - np.eye(ubar.size) * k2
    Qy = np.eye(
        ubar.size) * (beta - np.array(np.matrix(L) * np.matrix(ubar).T))
    Qx = np.eye(ubar.size) * np.array(np.matrix(L) * np.matrix(vbar).T)

    Q = k * Qy - l * Qx

    L3 = np.empty_like(L2)
    for i in range(ubar.size):
        L3[i, :] = L2[i, :] * (ubar[i] * k + vbar[i] * l)

    A = (L3 + Q)
    B = L2.copy()

    try:
        evals, evecs = sp.linalg.eig(A, B)
        imax = evals.imag.argmax()
        eval_max = evals[imax]
        evec_max = evecs[:, imax]
    except:
        eval_max = np.nan + 1.j * np.nan
        evec_max = np.nan * z

    if structure:
        PSI, X, Z = wave_structure(evec_max, z, k)
        return eval_max, evec_max, PSI, X, Z
    else:
        return eval_max, evec_max
示例#11
0
def qg_stability_2d(N2,ubar,vbar,z,k,l,lat,structure=False):

    f0 = sw.f(lat)
    beta = 2*7.29e-5*np.cos(lat*pi/180.)/6371.e3 

    dz = np.abs(z[1]-z[0])

    S = (f0**2)/N2
    L= stretching_matrix(z.size,S,dz)

    k2 = k**2 + l**2

    L2 = L - np.eye(ubar.size)*k2
    Qy = np.eye(ubar.size)*(beta  - np.array( np.matrix(L)*np.matrix(ubar).T ))
    Qx = np.eye(ubar.size)*np.array( np.matrix(L)*np.matrix(vbar).T )

    Q = k*Qy - l*Qx

    L3 = np.empty_like(L2)
    for i in range(ubar.size):
        L3[i,:] = L2[i,:]*(ubar[i]*k + vbar[i]*l)

    A = (L3 + Q)
    B = L2.copy()
    
    try:
        evals,evecs = sp.linalg.eig(A,B)
        imax = evals.imag.argmax()
        eval_max = evals[imax]
        evec_max = evecs[:,imax]
    except:
        eval_max = np.nan + 1.j*np.nan
        evec_max = np.nan*z 
            
    if structure:
        PSI, X, Z = wave_structure(evec_max,z,k)
        return eval_max,evec_max,PSI,X,Z
    else:
        return eval_max,evec_max
def geostrophic_current(ix, lat):
    g = sw.g(lat.mean())
    f = sw.f(lat.mean())
    v = ix * g / f
    return v
示例#13
0
def eqmodes(N2, z, nm, pmodes=False):
    '''
    This function computes the equatorial velocity modes

    ========================================================

    Input:

        N2 - Brunt-Vaisala frequency data array

        z - Depth data array (equaly spaced)

        lat - Latitude scalar

        nm - Number of modes to be computed

        pmodes - If the return of pressure modes is required.
                 Default is False

    ========================================================

    Output:

        Si - Equatorial modes matrix with MxN dimension being:
                M = z array size
                N = nm

        Rdi - Deformation Radii array

        Fi - Pressure modes matrix with MxN dimension being:
                M = z array size
                N = nm

            Returned only if input pmodes=True

    made by Hélio Almeida, Iury Sousa and Wandrey Watanabe
    Laboratório de Dinâmica Oceânica - Universidade de São Paulo
                                2016
    '''

    #needed to the problem
    lat = 0
    #nm will be the number of baroclinic modes
    nm -= 1  #Barotropic mode will be added

    #defines the orthonormalization function
    onorm      = lambda f: f/np.sqrt(dz*((np.array(f[1:])**2+\
                                    np.array(f[:-1])**2)/(2*H)).sum())
    # defines function to keep consistency multiply by plus/minus
    # to make the leading term positive
    plus_minus = lambda f: -f if (np.sign(f[1]) < 0) else f

    dz = np.abs(z[1] - z[0])

    # assembling matrices
    # N2 matrix
    N2 = np.diag(N2[1:-1], 0)
    # 2nd order difference matrix
    A  = np.diag(np.ones(z.size-2)*-2.,0)+\
         np.diag(np.ones(z.size-3)*1.,-1)+\
         np.diag(np.ones(z.size-3)*1.,1)
    A = A / (dz**2)

    A = np.matrix(A)
    N2 = np.matrix(N2)

    #C  = A*N2
    N02 = -1 / N2
    N02[np.isinf(N02)] = 0
    C = N02 * A

    # solve the eigenvalue problem
    egval, egvec = np.linalg.eig(C)

    i = np.argsort(egval)
    egval = egval[i]
    egvec = egvec[:, i]

    # truncate the eigenvalues and eigenvectors for the number of modes needed
    ei = egval[:nm]
    Si = egvec[:, :nm]

    # Applying Dirichlet boundary condition at top and bottom
    # adding a row of zeros at bottom and top
    Si = np.append(np.matrix(np.zeros(nm)), Si, axis=0)
    Si = np.append(Si, np.matrix(np.zeros(nm)), axis=0)
    Si = np.array(Si)

    H = np.abs(z).max()
    # normalizing to get orthonormal modes
    Si = np.array(list(map(onorm, Si.T))).T
    # to keep consistency multiply by plus/minus
    # to make the leading term positive
    Si = np.array(list(map(plus_minus, Si.T))).T

    # compute the deformation radii [km]
    beta = (7.2921150e-5 * 2 * np.cos(np.deg2rad(lat * 1.))) / 6371000
    c = np.sqrt(1 / ei)
    radii = np.sqrt(c / beta)
    #append external deformation radius
    radii = np.hstack([(np.sqrt(9.81 * H) / np.abs(sw.f(lat))), radii])
    #converting to km
    radii *= 1e-3

    #BAROTROPIC MODE
    no = 1
    fb = np.ones((Si.shape[0], 1)) * no
    sb = np.expand_dims(np.linspace(0, no + 1, Si.shape[0]), axis=1)

    # trying to compute the pmodes based on the polarization
    # relation between velocity/pressure modes
    #
    # F_j(z)=-g.he_j d/dzS_j
    #
    ####
    if pmodes == True:
        Fi = np.zeros(Si.shape)
        for i in np.arange(nm):
            Fi[1:-1,i] =\
            (-1/ei[i])*((Si[1:-1,i]-Si[0:-2,i])/dz)

        #Aplying Neuman boundary condition d/dzFi=o @0,-H
        Fi[0], Fi[-1] = Fi[1], Fi[-2]

        # normalizing to get orthonormal modes
        Fi = np.array(list(map(onorm, Fi.T))).T
        # to keep consistency multiply by plus/minus
        # to make the leading term positive
        Fi = np.array(list(map(plus_minus, Fi.T))).T

        Si = np.hstack([sb, Si])
        Fi = np.hstack([fb, Fi])

        return Si, radii, Fi
    else:
        Si = np.hstack([sb, Si])
        return Si, radii
示例#14
0
def model_timestep(T,
                   S,
                   U,
                   V,
                   z,
                   I,
                   L,
                   E,
                   P,
                   tau_x,
                   tau_y,
                   dt,
                   nabla_b=None,
                   Ekman_Q_flux=None,
                   use_static_stability=True,
                   use_mixed_layer_stability=True,
                   use_shear_stability=True,
                   use_Ekman_flux=False,
                   use_MLI=False,
                   tracer=None,
                   vert_diffusivity=None,
                   verbose=False,
                   I1=0.62,
                   I2=None,
                   lambda1=.6,
                   lambda2=20,
                   T0=0,
                   S0=34,
                   rho0=None,
                   alpha=None,
                   beta=None,
                   f=sw.f(40),
                   return_MLD=False,
                   advection=False,
                   l_poly=1e4,
                   phi=5e-2,
                   T_cdw=1,
                   S_cdw=34.5,
                   shelf_thick=350,
                   debug=False,
                   T_out=-1,
                   S_out=33.8,
                   return_dTdS=False,
                   return_TSrelax=False,
                   return_vel=False):

    # define initial variables
    c = 4218  # heat capacity (J kg^-1 K^-1)
    if I2 is None:
        I2 = 1 - I1
    if I1 + I2 != 1:
        raise Exception('Shortwave insolation amplitudes need to sum to unity')
    if rho0 is None:
        rho0 = sw.dens(S0, T0, 0)
    if alpha is None:
        alpha = -sw.alpha(
            S0, T0, 0
        ) * rho0  # multiply by rho to fit into nice equation of state (see get_rho function)
    if beta is None:
        beta = sw.beta(
            S0, T0, 0
        ) * rho0  # # multiply by rho to fit into nice equation of state (see get_rho function)

    dz = z[1] - z[0]

    if use_Ekman_flux and Ekman_Q_flux is None:
        raise Exception(
            'Using Ekman-induced buoyacy flux but no buoyancy gradients were given.'
        )
    if use_MLI and MLI_flux is None:
        raise Exception('Using MLI but no horizontal buoyancy gradient given.')

    T = T.copy()
    S = S.copy()
    U = U.copy()
    V = V.copy()
    # so don't overwrite data
    if tracer is not None:
        tracer = tracer.copy()

    # make initial heat profile
    I_profile = -I / dz * (
        I1 * np.exp(-z / lambda1) *
        (np.exp(-dz / 2 / lambda1) - np.exp(dz / 2 / lambda1)) +
        I2 * np.exp(-z / lambda2) *
        (np.exp(-dz / 2 / lambda2) - np.exp(dz / 2 / lambda2)))
    L_profile = np.zeros(len(z))
    L_profile[0] = L / dz
    Q_profile = I_profile + L_profile

    if use_Ekman_flux:
        A = 0.1  # eddy viscosity m^2 s^-1
        z_Ek = np.sqrt(A / np.abs(f))
        if verbose:
            print('Using Ekman depth of %d m' % z_Ek)
        z_Ek_ind = np.where(z > z_Ek)[0][0]
        Q_Ek_profile = np.zeros(len(z))
        Q_Ek_profile[0:z_Ek_ind] = Ekman_Q_flux / z_Ek * dz
        Q_profile += Q_Ek_profile

    if advection == True:

        Tf = sw.fp(S, z)
        #freezing temperature for the column using salinity and pressure
        Tf_mean = np.mean(T[51::] - Tf[51::])
        #find temperature of no motion
        v_profile = ((T - Tf) - Tf_mean) * phi
        #create the velocity profile
        v_profile[0:50] = 0
        #there is no mean advection in the top 25 m
        h_interface = (np.abs(v_profile[51::] - 0)).argmin() + 50
        #find the depth of the point of no motion

        inv_time_length = np.zeros(shape=len(z))
        inv_time_length = np.absolute(v_profile) / l_poly
        #create 1/tau

        #Create the relaxation profiles for S and T
        T_relax = np.zeros(shape=len(z))
        T_relax = np.tanh((z - z[h_interface]) /
                          100) * (T_cdw - T_out) / 2 + (T_cdw + T_out) / 2
        T_relax[h_interface:len(z)] = T_relax[h_interface:len(z)] + 0.6 * (
            (z[h_interface:len(z)] - z[h_interface]) / 1000)

        S_relax = np.zeros(shape=len(z))
        S_relax = np.tanh((z - z[h_interface]) /
                          100) * (S_cdw - S_out) / 2 + (S_cdw + S_out) / 2
        S_relax[h_interface:len(z)] = S_relax[h_interface:len(z)] + 0.25 * (
            (z[h_interface:len(z)] - z[h_interface]) / 1000)

    # update temperature
    if advection == False:
        dTdt = Q_profile / (c * rho0)
    else:
        dTdt = Q_profile / (c * rho0) + inv_time_length * (T_relax - T)

        if debug == True:
            print('inv_time_length*(T_relax-T): ',
                  inv_time_length[0:100] * (T_relax[0:100] - T[0:100]))

    if use_MLI:
        mld_ind = get_mld_ind(T, S, U, V, z)
        mld = z[mld_ind]
        C_e = 0.06
        g = 9.81
        # gravitational acceleration (m s^-2)
        c = 4218
        # heat capacity (J kg^-1 degC^-1
        MLI_dTdt = -C_e * nabla_b**2 * mld**2 * rho0 / (np.abs(f) * alpha * g)
        vert_profile = 4 / mld * (1 - 2 * z / mld) * (
            16 + 10 *
            (1 - 2 * z / mld)**2) / 21  # this is vertical derivative of mu(z)
        vert_profile[mld_ind::] = 0
        vert_profile[0:mld_ind] -= np.mean(
            vert_profile[0:mld_ind]
        )  # just to ensure that no heat added to system
        dTdt += MLI_dTdt * vert_profile

    T += dTdt * dt

    # update salinity
    dSdt_0 = S[0] * (E - P) / dz / 1000
    S[0] += dSdt_0 * dt
    if advection == True:
        dSdt = inv_time_length * (S_relax - S)
        S += dSdt * dt

    if use_MLI:

        rho = get_rho(T, S, T0, S0, rho0, alpha, beta)
        half_mld_ind = int(mld_ind / 2)
        if np.any(np.diff(rho[half_mld_ind::]) < 0):
            if verbose:
                print(
                    'Need to homogenize discontinuity at base of previous mixed layer'
                )
            # get rid of discontinuity at base of previous mixed layer
            # homogenize the region of water from mld/2 to z*
            # z* is the shallowest value (> mld/2) such that the homogenized rho <= rho(z*)
            zstar_ind = mld_ind.copy()
            while np.mean(rho[half_mld_ind:zstar_ind]) >= rho[zstar_ind]:
                if verbose:
                    print('Deepening z*...')
                zstar_ind += 1
            T[half_mld_ind:zstar_ind] = np.mean(T[half_mld_ind:zstar_ind])
            S[half_mld_ind:zstar_ind] = np.mean(S[half_mld_ind:zstar_ind])
            if tracer is not None:
                tracer[:, half_mld_ind:zstar_ind] = np.atleast_2d(
                    np.mean(tracer[:, half_mld_ind:zstar_ind], axis=1)).T
        elif verbose:
            print('No need to homogenize base of previous mixed layer')

    # update momentum
    # first rotate momentum halfway
    angle = -f * dt / 2  # currently assuming this is in rad
    U, V = rotate(angle, U, V)
    # then add wind stress
    mld_ind = get_mld_ind(T, S, U, V, z)
    mld = z[mld_ind]
    U[0:mld_ind] += tau_x / mld / rho0 * dz * dt
    V[0:mld_ind] += tau_y / mld / rho0 * dz * dt
    # then rotate second half
    U, V = rotate(angle, U, V)

    if use_static_stability:
        T, S, U, V = static_stability(T, S, U, V, z, T0, S0, rho0, alpha, beta)
        if get_mld_ind(T, S, U, V, z) == (T.size - 1):

            use_mixed_layer_stability = False
            use_shear_stability = False
    if use_mixed_layer_stability:
        T, S, U, V = mixed_layer_stability(T,
                                           S,
                                           U,
                                           V,
                                           z,
                                           T0,
                                           S0,
                                           rho0,
                                           alpha,
                                           beta,
                                           verbose=verbose)
    if use_shear_stability:
        T, S, U, V = shear_stability(T,
                                     S,
                                     U,
                                     V,
                                     z,
                                     T0,
                                     S0,
                                     rho0,
                                     alpha,
                                     beta,
                                     verbose=verbose)

    if vert_diffusivity is not None:
        dTdt_vd = np.zeros(len(T))
        dTdt_vd[1:-1] = np.diff(np.diff(T)) / dz**2
        T += vert_diffusivity * dTdt_vd * dt

        dSdt_vd = np.zeros(len(S))
        dSdt_vd[1:-1] = np.diff(np.diff(S)) / dz**2
        S += vert_diffusivity * dSdt_vd * dt

        dUdt = np.zeros(len(U))
        dUdt[1:-1] = np.diff(np.diff(U)) / dz**2
        U += vert_diffusivity * dUdt * dt

        dVdt = np.zeros(len(V))
        dVdt[1:-1] = np.diff(np.diff(V)) / dz**2
        V += vert_diffusivity * dVdt * dt

        if tracer is not None:
            dtdt = np.zeros(shape=tracer.shape)
            dtdt[:, 1:-1] = np.diff(np.diff(tracer, axis=1), axis=1) / dz**2
            tracer += vert_diffusivity * dtdt * dt

    return_variables = (T, S, U, V)
    if tracer is not None:
        return_variables += (tracer, )
    if return_MLD:
        return_variables += (get_mld(T, S, U, V, z), )
    if return_dTdS:
        return_variables += (
            dTdt,
            dSdt,
        )
    if return_TSrelax:
        return_variables += (
            T_relax,
            S_relax,
        )
    if return_vel:
        return_variables += (v_profile, )
    return return_variables
示例#15
0
from datetime import datetime

# set up initial parameters (these are also set as defaults in the PWP code, so don't need to put them in)
T0 = 0
# reference temperature (degC)
S0 = 34
# reference salinity (parts per thousand; ppt)
rho0 = 1025
# reference density (kg m^-3)
alpha = -sw.alpha(
    S0, T0, 0) * rho0  # thermal expansion   coefficient (kg m^-3 degC^-1)
beta = sw.beta(S0, T0,
               0) * rho0  # haline contraction coefficient (kg m^-3 ppt^-1 )
latitude = -75
# degrees north
f = sw.f(latitude)  # planetary vorticity

fwflux1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/fwflux1_oneyear.csv',
                     delimiter=',')
qnet1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/qnet1_oneyear.csv',
                   delimiter=',')
taux1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/taux1_oneyear.csv',
                   delimiter=',')
tauy1 = np.loadtxt('/home/erobo/ThompsonResearch/Data/tauy1_oneyear.csv',
                   delimiter=',')
temp_profile = np.loadtxt(
    '/home/erobo/ThompsonResearch/Data/temp_profile_snapshot.txt')
salt_profile = np.loadtxt(
    '/home/erobo/ThompsonResearch/Data/salt_profile_snapshot.txt')
depth_profile = np.loadtxt(
    '/home/erobo/ThompsonResearch/Data/Schodlok_depths.txt')
# isotropic
Eiso = np.empty((292, omg.size))

for i in range(omg.size):
    kiso, Eiso[:, i] = calc_ispec(k, l, E[:, :, i])

# linear dispersion relationship
kr = 2 * pi * kiso * 1.e-3
kr2 = kr**2

m = np.logspace(-3, 0., 500)

#omgr = 2*pi*omg/8600.

N2 = (1.7e-5)
f2 = sw.f(59.247177)**2

b = 1.e3
jmax = 100

#for j in range(jmax):
for j in range(m.size):
    #m = (pi*j)/b
    m2 = m[i]**2
    omgr = np.sqrt((f2 * m2 + N2 * kr2) / (kr2 + m2))
    krp = 1.e3 * kr / (2 * pi)

    if j == 0:
        omgrp = 3600 * omgr / (2 * pi)
    else:
        omgrp = np.vstack([omgrp, 3600 * omgr / (2 * pi)])
示例#17
0
def model_timestep(T,
                   S,
                   U,
                   V,
                   z,
                   I,
                   L,
                   E,
                   P,
                   tau_x,
                   tau_y,
                   dt,
                   nabla_b=None,
                   Ekman_Q_flux=None,
                   use_static_stability=True,
                   use_mixed_layer_stability=True,
                   use_shear_stability=True,
                   use_Ekman_flux=False,
                   use_MLI=False,
                   tracer=None,
                   vert_diffusivity=None,
                   verbose=False,
                   I1=0.62,
                   I2=None,
                   lambda1=.6,
                   lambda2=20,
                   T0=17,
                   S0=36,
                   rho0=None,
                   alpha=None,
                   beta=None,
                   f=sw.f(40),
                   return_MLD=False):
    # define initial variables
    c = 4218  # heat capacity (J kg^-1 K^-1)
    if I2 is None:
        I2 = 1 - I1
    if I1 + I2 != 1:
        raise Exception('Shortwave insolation amplitudes need to sum to unity')
    if rho0 is None:
        rho0 = sw.dens(S0, T0, 0)
    if alpha is None:
        alpha = -sw.alpha(
            S0, T0, 0
        ) * rho0  # multiply by rho to fit into nice equation of state (see get_rho function)
    if beta is None:
        beta = sw.beta(
            S0, T0, 0
        ) * rho0  # # multiply by rho to fit into nice equation of state (see get_rho function)

    dz = z[1] - z[0]

    if use_Ekman_flux and Ekman_Q_flux is None:
        raise Exception(
            'Using Ekman-induced buoyacy flux but no buoyancy gradients were given.'
        )
    if use_MLI and nabla_b is None:
        raise Exception('Using MLI but no horizontal buoyancy gradient given.')

    T = T.copy()
    S = S.copy()
    U = U.copy()
    V = V.copy()
    # so don't overwrite data
    if tracer is not None:
        tracer = tracer.copy()

    # make initial heat profile
    I_profile = -I / dz * (
        I1 * np.exp(-z / lambda1) *
        (np.exp(-dz / 2 / lambda1) - np.exp(dz / 2 / lambda1)) +
        I2 * np.exp(-z / lambda2) *
        (np.exp(-dz / 2 / lambda2) - np.exp(dz / 2 / lambda2)))
    L_profile = np.zeros(len(z))
    L_profile[0] = L / dz
    Q_profile = I_profile + L_profile

    if use_Ekman_flux:
        A = 0.1  # eddy viscosity m^2 s^-1
        z_Ek = np.sqrt(A / np.abs(f))
        if verbose:
            print('Using Ekman depth of %d m' % z_Ek)
        z_Ek_ind = np.where(z > z_Ek)[0][0]
        Q_Ek_profile = np.zeros(len(z))
        Q_Ek_profile[0:z_Ek_ind] = Ekman_Q_flux / z_Ek * dz
        Q_profile += Q_Ek_profile

    # update temperature
    dTdt = Q_profile / (c * rho0)
    if use_MLI:
        mld_ind = get_mld_ind(T, S, U, V, z)
        mld = z[mld_ind]
        C_e = 0.06
        g = 9.81
        # gravitational acceleration (m s^-2)
        c = 4218
        # heat capacity (J kg^-1 degC^-1
        MLI_dTdt = -C_e * nabla_b**2 * mld**2 * rho0 / (np.abs(f) * alpha * g)
        vert_profile = 4 / mld * (1 - 2 * z / mld) * (
            16 + 10 *
            (1 - 2 * z / mld)**2) / 21  # this is vertical derivative of mu(z)
        vert_profile[mld_ind::] = 0
        vert_profile[0:mld_ind] -= np.mean(
            vert_profile[0:mld_ind]
        )  # just to ensure that no heat added to system
        dTdt += MLI_dTdt * vert_profile
    T += dTdt * dt

    # update salinity
    dSdt = S[0] * (E - P) / dz / 1000
    S[0] += dSdt * dt

    if use_MLI:
        rho = get_rho(T, S, T0, S0, rho0, alpha, beta)
        half_mld_ind = int(mld_ind / 2)
        if np.any(np.diff(rho[half_mld_ind::]) < 0):
            if verbose:
                print(
                    'Need to homogenize discontinuity at base of previous mixed layer'
                )
            # get rid of discontinuity at base of previous mixed layer
            # homogenize the region of water from mld/2 to z*
            # z* is the shallowest value (> mld/2) such that the homogenized rho <= rho(z*)
            zstar_ind = mld_ind.copy()
            while np.mean(rho[half_mld_ind:zstar_ind]) >= rho[zstar_ind]:
                if verbose:
                    print('Deepening z*...')
                zstar_ind += 1
            T[half_mld_ind:zstar_ind] = np.mean(T[half_mld_ind:zstar_ind])
            S[half_mld_ind:zstar_ind] = np.mean(S[half_mld_ind:zstar_ind])
            if tracer is not None:
                tracer[:, half_mld_ind:zstar_ind] = np.atleast_2d(
                    np.mean(tracer[:, half_mld_ind:zstar_ind], axis=1)).T
        elif verbose:
            print('No need to homogenize base of previous mixed layer')

    # update momentum
    # first rotate momentum halfway
    angle = -f * dt / 2  # currently assuming this is in rad
    U, V = rotate(angle, U, V)
    # then add wind stress
    mld_ind = get_mld_ind(T, S, U, V, z)
    mld = z[mld_ind]
    U[0:mld_ind] += tau_x / mld / rho0 * dz * dt
    V[0:mld_ind] += tau_y / mld / rho0 * dz * dt
    # then rotate second half
    U, V = rotate(angle, U, V)

    if use_static_stability:
        T, S, U, V, tracer = static_stability(T,
                                              S,
                                              U,
                                              V,
                                              z,
                                              T0,
                                              S0,
                                              rho0,
                                              alpha,
                                              beta,
                                              tracer=tracer,
                                              verbose=verbose)
    if use_mixed_layer_stability:
        T, S, U, V, tracer = mixed_layer_stability(T,
                                                   S,
                                                   U,
                                                   V,
                                                   z,
                                                   T0,
                                                   S0,
                                                   rho0,
                                                   alpha,
                                                   beta,
                                                   tracer=tracer,
                                                   verbose=verbose)
    if use_shear_stability:
        T, S, U, V, tracer = shear_stability(T,
                                             S,
                                             U,
                                             V,
                                             z,
                                             T0,
                                             S0,
                                             rho0,
                                             alpha,
                                             beta,
                                             tracer=tracer,
                                             verbose=verbose)

    if vert_diffusivity is not None:
        dTdt = np.zeros(len(T))
        dTdt[1:-1] = np.diff(np.diff(T)) / dz**2
        T += vert_diffusivity * dTdt * dt

        dSdt = np.zeros(len(S))
        dSdt[1:-1] = np.diff(np.diff(S)) / dz**2
        S += vert_diffusivity * dSdt * dt

        dUdt = np.zeros(len(U))
        dUdt[1:-1] = np.diff(np.diff(U)) / dz**2
        U += vert_diffusivity * dUdt * dt

        dVdt = np.zeros(len(V))
        dVdt[1:-1] = np.diff(np.diff(V)) / dz**2
        V += vert_diffusivity * dSdt * dt

        if tracer is not None:
            dtdt = np.zeros(shape=tracer.shape)
            dtdt[:, 1:-1] = np.diff(np.diff(tracer, axis=1), axis=1) / dz**2
            tracer += vert_diffusivity * dtdt * dt

    return_variables = (
        T,
        S,
        U,
        V,
    )
    if tracer is not None:
        return_variables += (tracer, )
    if return_MLD:
        return_variables += (get_mld(T, S, U, V, z), )
    return return_variables
示例#18
0
def vmodes(N2, z, nm, lat, ubdy='N', lbdy='N'):
    f0 = sw.f(lat)
    dz = np.abs(z[1] - z[0])

    # f2n2 array
    f2n2 = (f0**2) / N2

    # assembling matrices

    # N2F2 matrix
    N2F2 = np.eye(z.size - 1)
    for i in range(0, z.size - 1):
        N2F2[i, i] = (f2n2[i] + f2n2[i + 1]) / 2

    # 1st order difference matrix
    A = np.eye(z.size)[:, :-1]
    for i in range(1, z.size):
        A[i, i - 1] = -1

    A = A / dz

    # linear operator C = A*N2F2*(A.transpose())
    A = np.matrix(A)
    N2F2 = np.matrix(N2F2)

    C = A * N2F2 * A.transpose()

    if ubdy == 'D':
        C = C[1:, 1:]
    if lbdy == 'D':
        C = C[:-1, :-1]

    # solve the eigenvalue problem
    lam, fi = np.linalg.eig(C)

    i = np.argsort(lam)
    ei = lam[i]
    fi = fi[:, i]

    ei = ei[:nm]
    fi = fi[:, :nm]

    if ubdy == 'D':
        fi = np.append(np.matrix(np.zeros(nm)), fi, axis=0)
    if lbdy == 'D':
        fi = np.append(fi, np.matrix(np.zeros(nm)), axis=0)

    # normalizing to get orthonormal modes
    H = np.abs(z).max()

    for i in range(nm):
        s = np.sqrt(
            dz *
            ((np.array(fi[1:, i])**2 + np.array(fi[:-1, i])**2) / 2 / H).sum())
        fi[:, i] = fi[:, i] / s

    # to keep consistency multiply by plus/minus to make the leading term positive
    for i in range(nm):
        if np.sign(fi[1, i]) < 0:
            fi[:, i] = -fi[:, i]

    # compute the deformation radii [km]; the barotropic radius is computed by sqrt(gH)/f0
    radii = np.zeros(nm)
    radii[0] = np.sqrt(9.81 * H) / np.abs(f0) / 1000
    radii[1:] = 1 / np.sqrt(ei[1:]) / 1000

    return fi, radii
示例#19
0
def plotsec(opname,
            rad,
            pastafig,
            pathadcp,
            corsta='b',
            cond=False,
            ts=False,
            fmed=False,
            interp=False,
            radcomplicada=False,
            mdrcalc=True):


    vsec,latv,lonv,lat,lon,section,lonsta,latsta = [],[],[],[],[],[],[],[]
    adcp, lat_adcp, lon_adcp = [], [], []

    radname = 'r' + os.path.split(rad)[1]

    if mdrcalc:
        vsec, lat, lon, section = extsect(rad, sup=True)
    else:
        vsec, lat, lon, section = extsect(rad, sup=False)

#    opname = section.items.values[0].split('0')[0]

    if ts:
        tscomp(section)

        plt.savefig(pastafig + opname + '/ts/' + 'ts' + radname + '.png',
                    dpi=100,
                    format='png')
        plt.close('all')

    lat_adcp, lon_adcp, adcp = adcpvel(lat,
                                       lon,
                                       pathadcp,
                                       dya=600,
                                       interp=interp)

    if mdrcalc:
        vsec = mdr(vsec, adcp)

#    lonsta = np.nanmean(section.minor_xs('lon'),axis=0)
#    latsta = np.nanmean(section.minor_xs('lat'),axis=0)

    latv = lat[:-1] + np.diff(lat) / 2
    lonv = lon[:-1] + np.diff(lon) / 2

    if fmed:
        f = sw.f(latv)
        vsec = vsec * (f / np.mean(f))

    if cond:
        #    SALINIDADE
        plotprop(z=section.minor_xs('sp'),
                 lat=latsta,
                 lon=lonsta,
                 cor=corsta,
                 csteps=0.5,
                 title=u'Salinidade Prática',
                 propmin=34,
                 propmax=37)

        plt.savefig(pastafig + opname + '/salinidade/' + 'sal' + radname +
                    '.png',
                    dpi=100,
                    format='png')
        plt.close('all')

        #    TEMPERATURA
        plotprop(z=section.minor_xs('pt'),
                 lat=latsta,
                 lon=lonsta,
                 cor=corsta,
                 csteps=2.5,
                 title=u'Temperatura Potencial ($\\theta_0$)',
                 propmin=0,
                 propmax=28)

        plt.savefig(pastafig + opname + '/temperatura/' + 'temp' + radname +
                    '.png',
                    dpi=100,
                    format='png')
        plt.close('all')

        #    MASSAS D'ÁGUA
        plotprop(z=section.minor_xs('psigma0'),
                 lat=latsta,
                 lon=lonsta,
                 cor=corsta,
                 wmass=True,
                 title=u'Massas D\'água ($\\rho_0$)')

        plt.savefig(pastafig + opname + '/massas/' + 'mass' + radname + '.png',
                    dpi=100,
                    format='png')
        plt.close('all')

        #    DENSIDADE POTENCIAL
        plotprop(z=section.minor_xs('psigma0'),
                 lat=latsta,
                 lon=lonsta,
                 cor=corsta,
                 csteps=0.5,
                 title=u'Densidade Potencial ($\\rho_0$)',
                 propmin=23,
                 propmax=28)

        plt.savefig(pastafig + opname + '/densidade/' + 'dens' + radname +
                    '.png',
                    dpi=100,
                    format='png')
        plt.close('all')

#    reff = adcp.iloc[150,:].values-vsec.iloc[150,:].values
#    vsec += reff
    if radcomplicada:
        latv[3] = -2.0933934592636545
        lonv[3] = -38.442823159524877

    if mdrcalc:
        ttitle = u'Velocidade Geostrófica (MDR)'
    else:
        ttitle = u'Velocidade Geostrófica (Isopicnal = 32.15)'


#    Velocidade Geostrófica
    plotprop(z=vsec,
             cmap='RdBu_r',
             lat=latv,
             lon=lonv,
             cor=corsta,
             csteps=0.1,
             title=ttitle,
             propmin=-1.5,
             propmax=1.5,
             lim=-300)

    plt.savefig(pastafig + opname + '/geostrofia/' + 'geos' + radname + '.png',
                dpi=100,
                format='png')
    plt.close('all')

    plotprop(z=vsec,
             lat=latv,
             lon=lonv,
             cor=corsta,
             z2=adcp,
             lat2=lat_adcp,
             lon2=lon_adcp,
             cor2='g',
             csteps=0.1,
             title=u'Velocidade Geostrófica X Velocidade Observada',
             cmap='RdBu_r',
             propmin=-1.5,
             propmax=1.5,
             comp=True,
             lim=-300)

    plt.savefig(pastafig + opname + '/velocidade/' + 'vel' + radname +
                'adcp.png',
                dpi=100,
                format='png')
    plt.close('all')
示例#20
0
    """
    params = {}
    params['dt'] = 3600.0*dt
    params['dt_d'] = params['dt']/86400.
    params['dz'] = dz
    params['dt_save'] = dt_save
    params['lat'] = lat
    params['rb'] = rb
    params['rg'] = rg
    params['rkz'] = rkz
    params['beta1'] = beta1
    params['beta2'] = beta2
    params['max_depth'] = max_depth
  
    params['g'] = 9.81
    params['f'] = sw.f(lat)
    params['cpw'] = 4183.3
    params['ucon'] = (0.1*np.abs(params['f']))
    params['mld_thresh'] = mld_thresh
    
    params['winds_ON'] = winds_ON
    params['emp_ON'] = emp_ON
    params['heat_ON'] = heat_ON
    params['drag_ON'] = drag_ON
    
    return params
    
    

def prep_data(met_dset, prof_dset, params):
    
示例#21
0
def qg_stability_2d(N2,
                    ubar,
                    vbar,
                    z,
                    k,
                    l,
                    lat,
                    hx=0.,
                    hy=0.,
                    structure=False):

    f0 = sw.f(lat)
    beta = 2 * 7.29e-5 * np.cos(lat * pi / 180.) / 6371.e3

    # calculate surface shear
    ubarz, vbarz = ubar[0] - ubar[1], vbar[0] - vbar[1]

    dz = np.abs(z[1] - z[0])

    S = (f0**2) / N2
    L = stretching_matrix(z.size, S, dz)

    k2 = k**2 + l**2

    L2 = L - np.eye(ubar.size) * k2
    Qy = np.eye(
        ubar.size) * (beta - np.array(np.matrix(L) * np.matrix(ubar).T))
    Qx = np.eye(ubar.size) * np.array(np.matrix(L) * np.matrix(vbar).T)

    # bottom bc with topography
    Qx[-1, -1] += (f0 / dz) * hx
    Qy[-1, -1] += (f0 / dz) * hy

    Q = k * Qy - l * Qx

    L3 = np.empty_like(L2)
    for i in range(ubar.size):
        L3[i, :] = L2[i, :] * (ubar[i] * k + vbar[i] * l)

    A = (L3 + Q)
    B = L2.copy()

    # append surface boundary condition
    #A = np.vstack([np.zeros_like(z),A])
    #B = np.vstack([np.zeros_like(z),B])

    #A = np.hstack([np.zeros(z),A])
    #B = np.hstack([np.zeros(z),B])

    #print(A.shape)
    #print(B.shape)

    # the upper boundary condition
    #A[0,0] = (ubar[0]*k+vbar[0]*l)
    #A[0,1] = -(ubar[0]*k+vbar[0]*l)
    #A[0,0] += -(k*ubarz + l*vbarz)
    #B[0,0], B[0,1] = dz,-dz

    #print(A[0,:5])

    # bottom boundary condition satisfied
    # (may be should include topographic gradients)

    try:
        evals, evecs = sp.linalg.eig(A, B)
        imax = evals.imag.argmax()
        eval_max = evals[imax]
        evec_max = evecs[0:, imax]
    except:
        eval_max = np.nan + 1.j * np.nan
        evec_max = np.nan * z

    #print(eval_max)

    if structure:
        PSI, X, Z = wave_structure(evec_max, z, k)
        return eval_max, evec_max, PSI, X, Z
    else:
        return eval_max, evec_max
示例#22
0
    #Le = np.linspace(750.,10.,30)
    #k = 2*pi/(Le*1.e3)

    #gr = []
    #for i in range(k.size):
    #    c,psi,PSI,X,Z = qg_stability(N2i,Up,-zi,k=k[i],lat=58)
    #    gr.append(c.imag*k[i])

    #Le = np.linspace(1000.,1.,50)
    Le = np.logspace(3, 5., 50)
    k = 2 * pi / (Le * 1.e3)

    k = np.hstack([-np.flipud(k), k])
    l = k.copy()

    f0 = sw.f(-58)
    S = f0**2 / N2i
    N = N2i.size

    evals, evecs = pmodes(N, S, -zi, nn=10, dz=zi[2] - zi[1])

    xi = integrate.trapz(evecs[:, 1]**3, zi) / zi.max()
    delta = .25 * ((np.sqrt(xi**2 + 4.) - xi)**2)

    # project Ui onto evecs
    #A = evecs
    #ATA = np.dot(A.T,A)
    #ATU = np.dot(A.T,Up)
    #alpha = np.dot(np.linalg.inv(ATA),ATU)

    au, av = modal_projection(evecs, Up), modal_projection(evecs, Vp)
示例#23
0
ds1 = xr.open_dataset('../data/model_stats/S0.01_gridded_stats.nc')
ds1 = ds1.drop('index')
ds1.set_coords(['alpha', 'slope', 'seed', 'period'])
df1 = ds1.to_dataframe()

ds5 = xr.open_dataset('../data/model_stats/S0.005_gridded_stats.nc')
ds5 = ds5.drop('index')
ds5.set_coords(['alpha', 'slope', 'seed', 'period'])
df5 = ds5.to_dataframe()
df = pd.concat([df1, df5])

cg = 9.8*df.t0m1_mean/4/np.pi
cg1 = 9.8*df1.t0m1_mean/4/np.pi
cg5 = 9.8*df5.t0m1_mean/4/np.pi
c_llc = 9.8*dfl.t0m1_mean/4/np.pi
f = sw.f(31.5)

ind=df.alpha<0.9
ind1=df1.alpha<0.9
ind5=df5.alpha<0.9

corr_df = np.corrcoef(df.vorticity[ind].values, cg[ind]*df.hs_grad[ind]/df.hs_mean[ind]/df.slope[ind])[0, 1]
cor_llc = np.corrcoef(dfl.vorticity, c_llc*dfl.hs_grad/dfl.hs_mean/dfl.EKE_psi_slope)[0,1]
a, b, __, __, __ = linregress(df.vorticity[ind]/f, cg[ind]*df.hs_grad[ind]/df.hs_mean[ind]/df.slope[ind]/f)

############################################
# Normalized scatterplot
############################################
plt.figure(figsize=(8,8))
plt.plot(df1.vorticity[ind1]/f, cg1[ind1]*df1.hs_grad[ind1]/df1.hs_mean[ind1]/df1.slope[ind1]/f, 'o',
                        color='steelblue', alpha=.5, label='KE = 0.01 m$^2$/s$^2$')
示例#24
0
    Nb = np.nanmean(N2)
    P = np.arange(0., N2.size)
    P0 = np.ones(N2.size)
    plt.figure()
    rdi = np.zeros(nmodes)
    for n in np.arange(1, nmodes):
        P[0] = (-1)**n * np.sqrt(2 * N2[0] / Nb)
        P[-1] = np.sqrt(2 * N2[-1] / Nb)
        rdi[n] = np.abs((n * np.pi * f / (Nb * N2.size - 1)))
        for z in np.arange(1, N2.size):
            P[z] = np.sqrt(2 * N2[z] / Nb) * np.cos(
                n * np.pi / (Nb * N2.size - 1) * np.sum(N2[z:]))
        plt.plot(np.flipud(P), -np.arange(0, N2.size), linewidth=1.6)
    plt.plot(np.flipud(P0), -np.arange(0, N2.size), linewidth=1.6)
    plt.plot(np.tile(0, N2.size), -np.arange(0, N2.size), '--k', linewidth=1.6)

    return rdi


prof_max = 5000.
z = np.arange(0., prof_max + 1) * -1
d = 900.
f = sw.f(23.)

N2 = 10**4 * np.exp(z / d) * f**2
#N2=np.ones(z.size)*5
plt.figure()
plt.plot(N2, z)

rdi = wkb(N2, f, nmodes=3)