示例#1
0
    def render_cv2(self,
                   im: np.ndarray,
                   view: np.ndarray = np.eye(3),
                   normalize: bool = False,
                   colors: Tuple = ((0, 0, 255), (255, 0, 0), (155, 155, 155)),
                   linewidth: int = 2) -> None:
        """
        Renders box using OpenCV2.
        :param im: <np.array: width, height, 3>. Image array. Channels are in BGR order.
        :param view: <np.array: 3, 3>. Define a projection if needed (e.g. for drawing projection in an image).
        :param normalize: Whether to normalize the remaining coordinate.
        :param colors: ((R, G, B), (R, G, B), (R, G, B)). Colors for front, side & rear.
        :param linewidth: Linewidth for plot.
        """
        corners = view_points(self.corners(), view, normalize=normalize)[:2, :]

        def draw_rect(selected_corners, color):
            prev = selected_corners[-1]
            for corner in selected_corners:
                cv2.line(im,
                         (int(prev[0]), int(prev[1])),
                         (int(corner[0]), int(corner[1])),
                         color, linewidth)
                prev = corner

        # Draw the sides
        for i in range(4):
            cv2.line(im,
                     (int(corners.T[i][0]), int(corners.T[i][1])),
                     (int(corners.T[i + 4][0]), int(corners.T[i + 4][1])),
                     colors[2][::-1], linewidth)

        # Draw front (first 4 corners) and rear (last 4 corners) rectangles(3d)/lines(2d)
        draw_rect(corners.T[:4], colors[0][::-1])
        draw_rect(corners.T[4:], colors[1][::-1])

        # Draw line indicating the front
        center_bottom_forward = np.mean(corners.T[2:4], axis=0)
        center_bottom = np.mean(corners.T[[2, 3, 7, 6]], axis=0)
        cv2.line(im,
                 (int(center_bottom[0]), int(center_bottom[1])),
                 (int(center_bottom_forward[0]), int(center_bottom_forward[1])),
                 colors[0][::-1], linewidth)
示例#2
0
 def _render_helper(self,
                    color_channel: int,
                    ax: Axes,
                    view: np.ndarray,
                    x_lim: Tuple,
                    y_lim: Tuple,
                    marker_size: float) -> None:
     """
     Helper function for rendering.
     :param color_channel: Point channel to use as color.
     :param ax: Axes on which to render the points.
     :param view: <np.float: n, n>. Defines an arbitrary projection (n <= 4).
     :param x_lim: (min <float>, max <float>).
     :param y_lim: (min <float>, max <float>).
     :param marker_size: Marker size.
     """
     points = view_points(self.points[:3, :], view, normalize=False)
     ax.scatter(points[0, :], points[1, :], c=self.points[color_channel, :], s=marker_size)
     ax.set_xlim(x_lim[0], x_lim[1])
     ax.set_ylim(y_lim[0], y_lim[1])
示例#3
0
    def render(self,
               axis: Axes,
               view: np.ndarray = np.eye(3),
               normalize: bool = False,
               colors: Tuple = ('b', 'r', 'k'),
               linewidth: float = 2):
        """
        Renders the box in the provided Matplotlib axis.
        :param axis: Axis onto which the box should be drawn.
        :param view: <np.array: 3, 3>. Define a projection in needed (e.g. for drawing projection in an image).
        :param normalize: Whether to normalize the remaining coordinate.
        :param colors: (<Matplotlib.colors>: 3). Valid Matplotlib colors (<str> or normalized RGB tuple) for front,
            back and sides.
        :param linewidth: Width in pixel of the box sides.
        """
        corners = view_points(self.corners(), view, normalize=normalize)[:2, :]

        def draw_rect(selected_corners, color):
            prev = selected_corners[-1]
            for corner in selected_corners:
                axis.plot([prev[0], corner[0]], [prev[1], corner[1]], color=color, linewidth=linewidth)
                prev = corner

        # Draw the sides
        for i in range(4):
            axis.plot([corners.T[i][0], corners.T[i + 4][0]],
                      [corners.T[i][1], corners.T[i + 4][1]],
                      color=colors[2], linewidth=linewidth)

        # Draw front (first 4 corners) and rear (last 4 corners) rectangles(3d)/lines(2d)
        draw_rect(corners.T[:4], colors[0])
        draw_rect(corners.T[4:], colors[1])

        # Draw line indicating the front
        center_bottom_forward = np.mean(corners.T[2:4], axis=0)
        center_bottom = np.mean(corners.T[[2, 3, 7, 6]], axis=0)
        axis.plot([center_bottom[0], center_bottom_forward[0]],
                  [center_bottom[1], center_bottom_forward[1]],
                  color=colors[0], linewidth=linewidth)
示例#4
0
def visualize_sample(nusc: NuScenes,
                     sample_token: str,
                     gt_boxes: EvalBoxes,
                     pred_boxes: EvalBoxes,
                     nsweeps: int = 1,
                     conf_th: float = 0.15,
                     eval_range: float = 50,
                     verbose: bool = True,
                     savepath: str = None) -> None:
    """
    Visualizes a sample from BEV with annotations and detection results.
    :param nusc: NuScenes object.
    :param sample_token: The nuScenes sample token.
    :param gt_boxes: Ground truth boxes grouped by sample.
    :param pred_boxes: Prediction grouped by sample.
    :param nsweeps: Number of sweeps used for lidar visualization.
    :param conf_th: The confidence threshold used to filter negatives.
    :param eval_range: Range in meters beyond which boxes are ignored.
    :param verbose: Whether to print to stdout.
    :param savepath: If given, saves the the rendering here instead of displaying.
    """
    # Retrieve sensor & pose records.
    sample_rec = nusc.get('sample', sample_token)
    sd_record = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
    cs_record = nusc.get('calibrated_sensor',
                         sd_record['calibrated_sensor_token'])
    pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])

    # Get boxes.
    boxes_gt_global = gt_boxes[sample_token]
    boxes_est_global = pred_boxes[sample_token]

    # Map GT boxes to lidar.
    boxes_gt = boxes_to_sensor(boxes_gt_global, pose_record, cs_record)

    # Map EST boxes to lidar.
    boxes_est = boxes_to_sensor(boxes_est_global, pose_record, cs_record)

    # Add scores to EST boxes.
    for box_est, box_est_global in zip(boxes_est, boxes_est_global):
        box_est.score = box_est_global.detection_score

    # Get point cloud in lidar frame.
    pc, _ = LidarPointCloud.from_file_multisweep(nusc,
                                                 sample_rec,
                                                 'LIDAR_TOP',
                                                 'LIDAR_TOP',
                                                 nsweeps=nsweeps)

    # Init axes.
    _, ax = plt.subplots(1, 1, figsize=(9, 9))

    # Show point cloud.
    points = view_points(pc.points[:3, :], np.eye(4), normalize=False)
    dists = np.sqrt(np.sum(pc.points[:2, :]**2, axis=0))
    colors = np.minimum(1, dists / eval_range)
    ax.scatter(points[0, :], points[1, :], c=colors, s=0.2)

    # Show ego vehicle.
    ax.plot(0, 0, 'x', color='black')

    # Show GT boxes.
    for box in boxes_gt:
        box.render(ax, view=np.eye(4), colors=('g', 'g', 'g'), linewidth=2)

    # Show EST boxes.
    for box in boxes_est:
        # Show only predictions with a high score.
        assert not np.isnan(box.score), 'Error: Box score cannot be NaN!'
        if box.score >= conf_th:
            box.render(ax, view=np.eye(4), colors=('b', 'b', 'b'), linewidth=1)

    # Limit visible range.
    axes_limit = eval_range + 3  # Slightly bigger to include boxes that extend beyond the range.
    ax.set_xlim(-axes_limit, axes_limit)
    ax.set_ylim(-axes_limit, axes_limit)

    # Show / save plot.
    if verbose:
        print('Rendering sample token %s' % sample_token)
    plt.title(sample_token)
    if savepath is not None:
        plt.savefig(savepath)
        plt.close()
    else:
        plt.show()