示例#1
0
 def get_naive_bayes_conf(self):
     name = '-'.join([
         'AL%d' % self.exp.exp_id,
         'Iter%d' % self.iteration.iter_num, 'all', 'NaiveBayes'
     ])
     classifier_conf = self.exp.exp_conf.core_conf.classifier_conf
     optim_conf = classifier_conf.hyperparam_conf.optim_conf
     multiclass = True
     factory = classifiers.get_factory()
     naive_bayes_conf = factory.get_default('GaussianNaiveBayes',
                                            optim_conf.num_folds,
                                            optim_conf.n_jobs, multiclass,
                                            self.exp.logger)
     test_conf = UnlabeledLabeledConf(self.exp.logger)
     classification_conf = ClassificationConf(naive_bayes_conf, test_conf,
                                              self.exp.logger)
     features_conf = FeaturesConf(
         self.exp.exp_conf.features_conf.input_features,
         self.exp.exp_conf.features_conf.sparse,
         self.exp.exp_conf.features_conf.logger,
         filter_in_f=self.exp.exp_conf.features_conf.filter_in_f,
         filter_out_f=self.exp.exp_conf.features_conf.filter_out_f)
     exp_conf = DiademConf(self.exp.exp_conf.secuml_conf,
                           self.exp.exp_conf.dataset_conf,
                           features_conf,
                           self.exp.exp_conf.annotations_conf,
                           classification_conf,
                           None,
                           name=name,
                           parent=self.exp.exp_id)
     DiademExp(exp_conf, session=self.exp.session)
     return naive_bayes_conf
示例#2
0
 def get_naive_bayes_conf(self):
     name = '-'.join([
         'AL%d' % self.exp.exp_id,
         'Iter%d' % self.iteration.iter_num, 'all', 'NaiveBayes'
     ])
     classifier_conf = self.exp.exp_conf.core_conf.classifier_conf
     optim_conf = classifier_conf.hyperparam_conf.optim_conf
     multiclass = True
     hyperparam_conf = HyperparamConf.get_default(
         optim_conf.num_folds, optim_conf.n_jobs, multiclass,
         GaussianNaiveBayesConf._get_hyper_desc(), self.exp.logger)
     naive_bayes_conf = GaussianNaiveBayesConf(multiclass, hyperparam_conf,
                                               self.exp.logger)
     test_conf = UnlabeledLabeledConf(self.exp.logger, None)
     classification_conf = ClassificationConf(naive_bayes_conf, test_conf,
                                              self.exp.logger)
     exp_conf = DiademConf(self.exp.exp_conf.secuml_conf,
                           self.exp.exp_conf.dataset_conf,
                           self.exp.exp_conf.features_conf,
                           self.exp.exp_conf.annotations_conf,
                           classification_conf,
                           name=name,
                           parent=self.exp.exp_id)
     naive_bayes_exp = DiademExp(exp_conf, session=self.exp.session)
     naive_bayes_exp.create_exp()
     return naive_bayes_conf
示例#3
0
 def _create_naive_bayes_conf(self):
     name = '-'.join([
         'AL%d' % (self.exp.exp_id),
         'Iter%d' % (self.iteration.iter_num), 'all', 'NaiveBayes'
     ])
     multiclass_model = self.exp.exp_conf.core_conf.multiclass_model
     classifier_conf = multiclass_model.classifier_conf
     optim_conf = classifier_conf.hyperparam_conf.optim_conf
     multiclass = True
     factory = classifiers.get_factory()
     naive_bayes_conf = factory.get_default('GaussianNaiveBayes',
                                            optim_conf.num_folds,
                                            optim_conf.n_jobs, multiclass,
                                            self.exp.logger)
     test_conf = UnlabeledLabeledConf(self.exp.logger)
     classif_conf = ClassificationConf(naive_bayes_conf, test_conf,
                                       self.exp.logger)
     DiademConf(self.exp.exp_conf.secuml_conf,
                self.exp.exp_conf.dataset_conf,
                self.exp.exp_conf.features_conf,
                self.exp.exp_conf.annotations_conf,
                classif_conf,
                None,
                name=name,
                parent=self.exp.exp_id)
     return naive_bayes_conf
示例#4
0
文件: gornitz.py 项目: zzszmyf/SecuML
 def _get_main_model_conf(self, validation_conf, logger):
     hyperparam_conf = HyperparamConf.get_default(None, None, False, None,
                                                  logger)
     classifier_conf = SssvddConf(hyperparam_conf, logger)
     return ClassificationConf(classifier_conf,
                               UnlabeledLabeledConf(logger),
                               logger,
                               validation_conf=validation_conf)
示例#5
0
def _rcd_conf(args, logger):
    factory = classifiers.get_factory()
    classifier_conf = factory.get_default('LogisticRegression', None, None,
                                          True, logger)
    classif_conf = ClassificationConf(classifier_conf,
                                      UnlabeledLabeledConf(logger), logger)
    return RcdStrategyConf(classif_conf, args.cluster_strategy,
                           args.num_annotations, 'uniform', logger)
示例#6
0
文件: aladin.py 项目: zzszmyf/SecuML
 def _get_lr_conf(self, validation_conf, logger, multiclass=False):
     factory = classifiers.get_factory()
     classifier_conf = factory.get_default('LogisticRegression', None, None,
                                           multiclass, logger)
     return ClassificationConf(classifier_conf,
                               UnlabeledLabeledConf(logger),
                               logger,
                               validation_conf=validation_conf)
示例#7
0
 def _get_lr_conf(self, validation_conf, logger, multiclass=False):
     hyperparam_conf = HyperparamConf.get_default(
                                 None, None, multiclass,
                                 LogisticRegressionConf._get_hyper_desc(),
                                 logger)
     core_conf = LogisticRegressionConf(multiclass, 'liblinear',
                                        hyperparam_conf, logger)
     return ClassificationConf(core_conf,
                               UnlabeledLabeledConf(logger, None),
                               logger, validation_conf=validation_conf)
示例#8
0
def _rcd_conf(args, logger):
    hyperparam_conf = HyperparamConf.get_default(
                                None, None, True,
                                LogisticRegressionConf._get_hyper_desc(),
                                logger)
    core_conf = LogisticRegressionConf(True, 'liblinear', hyperparam_conf,
                                       logger)
    classif_conf = ClassificationConf(core_conf,
                                      UnlabeledLabeledConf(logger, None),
                                      logger)
    return RcdStrategyConf(classif_conf, args.cluster_strategy,
                           args.num_annotations, 'uniform', logger)
示例#9
0
 def from_args(self, method, args, logger):
     validation_conf = None
     if args.validation_datasets is not None:
         validation_conf = ValidationDatasetsConf.from_args(args, logger)
     class_ = self.get_class(method)
     main_model_type = class_.main_model_type()
     main_model_conf = None
     if main_model_type is not None:
         factory = classifiers.get_factory()
         args.multiclass = main_model_type == 'multiclass'
         classifier_conf = factory.from_args(args.model_class, args, logger)
         test_conf = UnlabeledLabeledConf(logger)
         main_model_conf = ClassificationConf(
                                         classifier_conf, test_conf,
                                         logger,
                                         validation_conf=validation_conf)
     return class_.from_args(args, main_model_conf, validation_conf, logger)