def getTopWeightedFeatures(exp_id, instance_id, size): instance_id = int(instance_id) classifier = get_classifier(exp_id) # get the features exp = update_curr_exp(exp_id) f_names, f_values = FeaturesFromExp.get_instance(exp, instance_id) # scale the features scaled_values = classifier.named_steps['scaler'].transform( np.reshape(f_values, (1, -1))) weighted_values = np.multiply(scaled_values, classifier.named_steps['model'].coef_) features = list( map(lambda name, value, w_value: (name, value, w_value), f_names, f_values, weighted_values[0])) features.sort(key=lambda tup: abs(tup[2])) features = features[:-int(size) - 1:-1] f_names, f_values, f_weighted = list(zip(*features)) labels = [str(name) for name in f_names] tooltips = [ '%s (%.2f)' % (name, f_values[i]) for i, name in enumerate(f_names) ] barplot = BarPlot(labels) dataset = PlotDataset(f_weighted, None) dataset.set_color(red) barplot.add_dataset(dataset) return jsonify(barplot.to_json(tooltip_data=tooltips))
def to_barplot(self, directory): head_coeff = self.coef_summary.head(n=NUM_COEFF_EXPORT) coefficients = head_coeff['mean'].values features_ids = list(head_coeff.index) features_names = [] user_ids = [] for feature_id in features_ids: query = self.exp.session.query(FeaturesAlchemy) query = query.filter(FeaturesAlchemy.id == int(feature_id)) row = query.one() features_names.append(row.name) user_ids.append(row.user_id) barplot = BarPlot(user_ids) dataset = PlotDataset(coefficients, None) score = self.classifier_conf.get_feature_importance() if score == 'weight': dataset.set_color(red) else: dataset.set_color(blue) barplot.add_dataset(dataset) if self.class_label is None: out_filename = 'coeff_barplot.json' else: out_filename = 'coeff_barplot_%s.json' % self.class_label return barplot.export_to_json(path.join(directory, out_filename), tooltip_data=features_names)
def display(self, directory): labels = ['0-10%', '10-20%', '20-30%', '30-40%', '40-50%', '50-60%', '60-70%', '70-80%', '80-90%', '90-100%'] barplot = BarPlot(labels) if not self.has_ground_truth: dataset = PlotDataset(list(map(len, self.ranges)), 'num_instances') dataset.set_color(get_label_color('all')) barplot.add_dataset(dataset) else: self.display_label(barplot, MALICIOUS) self.display_label(barplot, BENIGN) barplot.export_to_json(path.join(directory, 'predictions_barplot.json'))
def getClusterStats(exp_id): experiment = update_curr_exp(exp_id) clustering = ClustersExp.from_json(experiment.output_dir()) num_clusters = clustering.num_clusters num_instances_v = [] labels = [] for c in range(num_clusters): instances_in_cluster = clustering.clusters[c].instances_ids num_instances = len(instances_in_cluster) num_instances_v.append(num_instances) labels.append(clustering.clusters[c].label) barplot = BarPlot(labels) dataset = PlotDataset(num_instances_v, 'Num. Instances') barplot.add_dataset(dataset) return jsonify(barplot.to_json())
def getFamiliesBarplot(annotations_id, iteration, label): iteration = None if iteration == 'None' else int(iteration) family_counts = annotations_db_tools.get_families_counts( session, annotations_id, iter_max=iteration, label=label) df = pd.DataFrame({ 'families': list(family_counts.keys()), 'counts': [family_counts[k] for k in list(family_counts.keys())] }) sort_data_frame(df, 'families', ascending=True, inplace=True) barplot = BarPlot(df['families'].values) dataset = PlotDataset(df['counts'].values, 'Num. Instances') dataset.set_color(get_label_color(label)) barplot.add_dataset(dataset) return jsonify(barplot.to_json())
class FeaturePlots(object): def __init__(self, instances, feature_index): self.feature_index = feature_index features_info = instances.features.info self.feature_type = features_info.types[self.feature_index] self.feature_name = features_info.names[self.feature_index] self.feature_id = features_info.ids[self.feature_index] self.all_values = instances.features.get_values_from_index( self.feature_index) self._gen_plot_datasets(instances) def compute(self): if self.feature_type == FeatureType.binary: self._gen_binary_histogram() elif self.feature_type == FeatureType.numeric: self._gen_bloxplot() # Added to deal with numpy issue #8627 # In this case, the variance is null. # The plots are not generated, since the scoring metrics # contain all the informations. try: self._gen_histogram() except Exception: self.barplot = None pass self._gen_density() def export(self, output_dir): output_dir = path.join(output_dir, str(self.feature_id)) os.makedirs(output_dir) if self.barplot is None: return if self.feature_type == FeatureType.binary: self.barplot.export_to_json( path.join(output_dir, 'binary_histogram.json')) elif self.feature_type == FeatureType.numeric: self.boxplot.display(path.join(output_dir, 'boxplot.png')) self.barplot.export_to_json(path.join(output_dir, 'histogram.json')) self.density.display(path.join(output_dir, 'density.png')) def _gen_plot_datasets(self, instances): self.plot_datasets = {} self._gen_label_plot_dataset(instances, MALICIOUS) self._gen_label_plot_dataset(instances, BENIGN) self._gen_label_plot_dataset(instances, 'unlabeled') def _gen_label_plot_dataset(self, instances, label): if label != 'unlabeled': instances = instances.get_annotated_instances(label=label) else: instances = instances.get_unlabeled_instances() values = instances.features.get_values_from_index(self.feature_index) dataset = PlotDataset(values, label) dataset.set_color(get_label_color(label)) self.plot_datasets[label] = dataset def _gen_bloxplot(self): self.boxplot = BoxPlot(title='Feature %s' % self.feature_name) for label, dataset in self.plot_datasets.items(): if len(dataset.values) > 0: self.boxplot.add_dataset(dataset) def _gen_histogram(self): # 10 equal-width bins computed on all the data _, bin_edges = np.histogram(self.all_values, bins=10, density=False) x_labels = [ '%.2f - %.2f' % (bin_edges[e], bin_edges[e + 1]) for e in range(len(bin_edges) - 1) ] self.barplot = BarPlot(x_labels) for label, dataset in self.plot_datasets.items(): if len(dataset.values) > 0: hist, _ = np.histogram(dataset.values, bins=bin_edges, density=False) hist_dataset = PlotDataset(hist, label) hist_dataset.set_color(dataset.color) self.barplot.add_dataset(hist_dataset) def _gen_binary_histogram(self): self.barplot = BarPlot(['0', '1']) for label, dataset in self.plot_datasets.items(): if len(dataset.values) > 0: num_0 = sum(dataset.values == 0) num_1 = sum(dataset.values == 1) hist_dataset = PlotDataset([num_0, num_1], label) hist_dataset.set_color(dataset.color) self.barplot.add_dataset(hist_dataset) def _gen_density(self): self.density = Density(title='Feature %s' % self.feature_name) for _, dataset in self.plot_datasets.items(): if len(dataset.values) > 0: self.density.add_dataset(dataset)
class FeaturePlots(object): def __init__(self, instances, multiclass, feature_index, logger, with_density=True): self.feature_index = feature_index self.logger = logger self.with_density = with_density features_info = instances.features.info self.feature_type = features_info.types[self.feature_index] self.feature_name = features_info.names[self.feature_index] self.feature_id = features_info.ids[self.feature_index] self._gen_plot_datasets(instances, multiclass) def compute(self): if self.feature_type == FeatureType.binary: self._gen_binary_histogram() elif self.feature_type == FeatureType.numeric: self._gen_bloxplot() self._gen_histogram() if self.with_density: self._gen_density() def export(self, output_dir): output_dir = path.join(output_dir, str(self.feature_id)) os.makedirs(output_dir) if self.feature_type == FeatureType.binary: self.barplot.export_to_json(path.join(output_dir, 'binary_histogram.json')) elif self.feature_type == FeatureType.numeric: self.boxplot.display(path.join(output_dir, 'boxplot.png')) self.barplot.export_to_json(path.join(output_dir, 'histogram.json')) if self.with_density: self.density.display(path.join(output_dir, 'density.png')) def _gen_plot_datasets(self, instances, multiclass): self.plot_datasets = {} if not multiclass: self._gen_label_plot_dataset(instances, label=MALICIOUS) self._gen_label_plot_dataset(instances, label=BENIGN) self._gen_label_plot_dataset(instances, label='unlabeled') else: families = list(instances.annotations.get_families_values()) families_colors = colors(len(families)) for family, color in zip(families, families_colors): self._gen_label_plot_dataset(instances, family=family, color=color) def _gen_label_plot_dataset(self, instances, label=None, family=None, color=None): if label is not None: if label != 'unlabeled': instances = instances.get_annotated_instances(label=label) else: instances = instances.get_unlabeled_instances() else: instances = instances.get_annotated_instances(family=family) values = instances.features.get_values_from_index(self.feature_index) if isinstance(values, spmatrix): values = values.toarray() plot_label = label if label is not None else family plot_color = color if plot_color is None: plot_color = get_label_color(plot_label) dataset = PlotDataset(values, plot_label) dataset.set_color(plot_color) self.plot_datasets[plot_label] = dataset def _gen_bloxplot(self): self.boxplot = BoxPlot(title='Feature %s' % self.feature_name) for label, dataset in self.plot_datasets.items(): if dataset.values.shape[0] > 0: self.boxplot.add_dataset(dataset) def _gen_histogram(self): self.barplot = Histogram(self.plot_datasets, self.logger) def _gen_binary_histogram(self): self.barplot = BarPlot(['0', '1']) for label, dataset in self.plot_datasets.items(): if dataset.values.shape[0] > 0: num_0 = sum(dataset.values == 0) num_1 = sum(dataset.values == 1) hist_dataset = PlotDataset(np.array([num_0, num_1]), label) hist_dataset.set_color(dataset.color) self.barplot.add_dataset(hist_dataset) def _gen_density(self): self.density = Density(title='Feature %s' % self.feature_name) for _, dataset in self.plot_datasets.items(): if dataset.values.shape[0] > 0: self.density.add_dataset(dataset)