示例#1
0
def test_misc():  # test miscellaneous functionalities
    units = 6
    batch_shape = (8, 100, 2 * units)

    reset_seeds(reset_graph_with_backend=K)
    model = make_model(GRU,
                       batch_shape,
                       activation='relu',
                       recurrent_dropout=0.3,
                       IMPORTS=IMPORTS)
    x, y, sw = make_data(batch_shape, units)
    model.train_on_batch(x, y, sw)

    weights_norm(model, 'gru', omit_names='bias', verbose=1)
    weights_norm(model, ['gru', 1, (1, 1)], norm_fn=np.abs)
    stats = weights_norm(model, 'gru')
    weights_norm(model, 'gru', _dict=stats)

    grads = get_gradients(model, 1, x, y)
    get_gradients(model, 1, x, y, as_dict=True)
    get_gradients(model, ['gru', 1], x, y)
    get_outputs(model, ['gru', 1], x)

    features_1D(grads,
                subplot_samples=True,
                tight=True,
                borderwidth=2,
                share_xy=False)
    with tempdir() as dirpath:
        features_0D(grads[0], savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_1D(grads[0],
                    subplot_samples=True,
                    annotations=[1, 'pi'],
                    savepath=os.path.join(dirpath, 'img.png'))
    features_2D(grads.T, n_rows=1.5, tight=True, borderwidth=2)
    with tempdir() as dirpath:
        features_2D(grads.T[:, :, 0],
                    norm='auto',
                    savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist(grads,
                      show_borders=False,
                      borderwidth=1,
                      annotations=[0],
                      show_xy_ticks=[0, 0],
                      share_xy=(1, 1),
                      title="grads",
                      savepath=os.path.join(dirpath, 'img.png'))
    with tempdir() as dirpath:
        features_hist_v2(list(grads[:, :4, :3]),
                         colnames=list('abcd'),
                         show_borders=False,
                         xlims=(-.01, .01),
                         ylim=100,
                         borderwidth=1,
                         show_xy_ticks=[0, 0],
                         side_annot='row',
                         share_xy=True,
                         title="Grads",
                         savepath=os.path.join(dirpath, 'img.png'))
    features_hist(grads, center_zero=True, xlims=(-1, 1), share_xy=0)
    features_hist_v2(list(grads[:, :4, :3]),
                     center_zero=True,
                     xlims=(-1, 1),
                     share_xy=(False, False))
    with tempdir() as dirpath:
        rnn_histogram(model,
                      1,
                      show_xy_ticks=[0, 0],
                      equate_axes=2,
                      savepath=os.path.join(dirpath, 'img.png'))
    rnn_histogram(model,
                  1,
                  equate_axes=False,
                  configs={
                      'tight': dict(left=0, right=1),
                      'plot': dict(color='red'),
                      'title': dict(fontsize=14),
                  })
    rnn_heatmap(model, 1, cmap=None, normalize=True, show_borders=False)
    rnn_heatmap(model, 1, cmap=None, norm='auto', absolute_value=True)
    rnn_heatmap(model, 1, norm=None)
    with tempdir() as dirpath:
        rnn_heatmap(model,
                    1,
                    norm=(-.004, .004),
                    savepath=os.path.join(dirpath, 'img.png'))

    hist_clipped(grads, peaks_to_clip=2)
    _, ax = plt.subplots(1, 1)
    hist_clipped(grads, peaks_to_clip=2, ax=ax, annot_kw=dict(fontsize=15))

    get_full_name(model, 'gru')
    get_full_name(model, 1)
    pass_on_error(get_full_name, model, 'croc')

    get_weights(model, 'gru', as_dict=False)
    get_weights(model, 'gru', as_dict=True)
    get_weights(model, 'gru/bias')
    get_weights(model, ['gru', 1, (1, 1)])
    pass_on_error(get_weights, model, 'gru/goo')

    get_weights(model, '*')
    get_gradients(model, '*', x, y)
    get_outputs(model, '*', x)

    from see_rnn.utils import _filter_duplicates_by_keys
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4])
    assert keys == ['a', 'b', 'c']
    assert data == [1, 2, 4]
    keys, data = _filter_duplicates_by_keys(list('abbc'), [1, 2, 3, 4],
                                            [5, 6, 7, 8])
    assert keys == ['a', 'b', 'c']
    assert data[0] == [1, 2, 4] and data[1] == [5, 6, 8]

    from see_rnn.inspect_gen import get_layer, detect_nans
    get_layer(model, 'gru')
    get_rnn_weights(model, 1, concat_gates=False, as_tensors=True)
    rnn_heatmap(model, 1, input_data=x, labels=y, mode='weights')
    _test_prefetched_data(model)

    # test NaN/Inf detection
    nan_txt = detect_nans(np.array([1] * 9999 + [np.nan])).replace('\n', ' ')
    print(nan_txt)  # case: print as quantity
    data = np.array([np.nan, np.inf, -np.inf, 0])
    print(detect_nans(data, include_inf=True))
    print(detect_nans(data, include_inf=False))
    data = np.array([np.inf, 0])
    print(detect_nans(data, include_inf=True))
    detect_nans(np.array([0]))

    K.set_value(model.optimizer.lr, 1e12)
    train_model(model, iterations=10)
    rnn_histogram(model, 1)
    rnn_heatmap(model, 1)

    del model
    reset_seeds(reset_graph_with_backend=K)

    # test SimpleRNN & other
    _model = make_model(SimpleRNN,
                        batch_shape,
                        units=128,
                        use_bias=False,
                        IMPORTS=IMPORTS)
    train_model(_model, iterations=1)  # TF2-Keras-Graph bug workaround
    rnn_histogram(_model, 1)  # test _pretty_hist
    K.set_value(_model.optimizer.lr, 1e50)  # force NaNs
    train_model(_model, iterations=20)
    rnn_heatmap(_model, 1)
    data = get_rnn_weights(_model, 1)
    rnn_heatmap(_model, 1, input_data=x, labels=y, data=data)
    os.environ["TF_KERAS"] = '0'
    get_rnn_weights(_model, 1, concat_gates=False)
    del _model

    assert True
    cprint("\n<< MISC TESTS PASSED >>\n", 'green')
示例#2
0
def test_track_weight_decays():
    """This example should be able to run without error"""
    def make_model(batch_shape, layer_kw={}):
        """Conv1D autoencoder"""
        dim = batch_shape[-1]
        bdim = dim // 2

        ipt = Input(batch_shape=batch_shape)
        x = Conv1D(dim, 8, activation='relu', **layer_kw)(ipt)
        x = Conv1D(bdim, 1, activation='relu', **layer_kw)(x)  # bottleneck
        out = Conv1D(dim, 8, activation='linear', **layer_kw)(x)

        model = Model(ipt, out)
        model.compile('adam', 'mse')
        return model

    def make_data(batch_shape, n_batches):
        X = Y = np.random.randn(n_batches, *batch_shape)
        return X, Y

    ########### Train setup ###################################################
    batch_shape = (32, 15, 12)
    n_epochs = 4
    n_batches = 10
    wd = 2e-3
    layer_kw = dict(padding='same', kernel_regularizer=l2(wd))

    model = make_model(batch_shape, layer_kw)
    X, Y = make_data(batch_shape, n_batches)

    ## Train ####################
    l2_stats = {}
    for epoch in range(n_epochs):
        l2_stats[epoch] = {}
        for i, (x, y) in enumerate(zip(X, Y)):
            model.train_on_batch(x, y)

            l2_stats[epoch] = weights_norm(model, [1, 3],
                                           l2_stats[epoch],
                                           omit_names='bias',
                                           verbose=1)
        print("Epoch", epoch + 1, "finished")
        print()

    ########### Preprocess funcs ##################################################
    def _get_weight_names(model, layer_names, omit_names):
        weight_names = []
        for name in layer_names:
            layer = model.get_layer(name=name)
            for w in layer.weights:
                if not any(to_omit in w.name for to_omit in omit_names):
                    weight_names.append(w.name)
        return weight_names

    def _merge_layers_and_weights(l2_stats):
        stats_merged = []
        for stats in l2_stats.values():
            x = np.array(list(
                stats.values()))  # (layers, weights, stats, batches)
            x = x.reshape(-1, *x.shape[2:])  # (layers-weights, stats, batches)
            stats_merged.append(x)
        return stats_merged  # (epochs, layer-weights, stats, batches)

    ########### Plot setup ########################################################
    ylim = 5
    xlims = (.4, 1.2)
    omit_names = 'bias'
    suptitle = "wd={:.0e}".format(wd).replace('0', '')
    side_annot = "EP"
    configs = {'side_annot': dict(xy=(.9, .9))}

    layer_names = list(l2_stats[0].keys())
    weight_names = _get_weight_names(model, layer_names, omit_names)
    stats_merged = _merge_layers_and_weights(l2_stats)

    ## Plot ########
    features_hist_v2(stats_merged,
                     colnames=weight_names,
                     title=suptitle,
                     xlims=xlims,
                     ylim=ylim,
                     side_annot=side_annot,
                     pad_xticks=True,
                     configs=configs)