示例#1
0
 def TruncatedNormal(graph: Graph.Graph, curNode: Graph.Node,
                     dictNodeNameToOutVarStr: dict,
                     extraNodeInfoDict: dict):
     curNodeDataType = curNode.getAttrMapRef()["\"dtype\""].getDataType()
     assert (curNodeDataType is not Graph.DataTypeEnum.DT_INVALID)
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 1)
     curNodeOutputShape = extraNodeInfoDict[curNode.getName()][0]
     return (None,
             AST.UninterpFuncCall(
                 extraNodeInfoDict[curNode.getName()][0],
                 TFNodesAST.UninterpFuncCallNames.TruncatedNormal.name,
                 [AST.ID(curNodeDataType.name)] +
                 list(map(lambda x: AST.Int(x), curNodeOutputShape)))
             )  # TODO
示例#2
0
 def Reshape(graph: Graph.Graph, curNode: Graph.Node,
             dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 2)
     return (None,
             AST.Reshape(AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                         extraNodeInfoDict[curNode.getName()][0], None))
示例#3
0
 def ArgMax(graph: Graph.Graph, curNode: Graph.Node,
            dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 2)
     return (None,
             AST.ArgMax(extraNodeInfoDict[curNode.getName()][0],
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[1]]),
                        extraNodeInfoDict[inputsRef[0]][0]))
示例#4
0
 def ExpandDims(graph: Graph.Graph, curNode: Graph.Node,
                dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 2)
     retAST = AST.UninterpFuncCall(
         extraNodeInfoDict[curNode.getName()][0],
         TFNodesAST.UninterpFuncCallNames.ExpandDims.name,
         list(map(lambda x: AST.ID(dictNodeNameToOutVarStr[x]), inputsRef)))
     return (None, retAST)
示例#5
0
 def Slice(graph: Graph.Graph, curNode: Graph.Node,
           dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 3)
     curNodeDataType = curNode.getAttrMapRef()["\"T\""].getDataType()
     curNodeShapeASTLi = list(
         map(lambda x: AST.Int(x), extraNodeInfoDict[curNode.getName()][0]))
     retAST = AST.UninterpFuncCall(
         extraNodeInfoDict[curNode.getName()][0],
         TFNodesAST.UninterpFuncCallNames.CreateCopy.name,
         [
             AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),  # of this
             # begin idx
             AST.ID(dictNodeNameToOutVarStr[inputsRef[1]]),
             # size
             AST.ID(dictNodeNameToOutVarStr[inputsRef[2]])
         ])
     return (None, retAST)
示例#6
0
 def Placeholder(graph: Graph.Graph, curNode: Graph.Node,
                 dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     #curNodeShapeLi = curNode.getAttrMapRef()["\"shape\""].getShape().getDimRef()
     curNodeShapeLi = extraNodeInfoDict[curNode.getName()][0]
     curNodeInputType = curNode.getAttrMapRef()["\"dtype\""].getDataType()
     assert (curNodeInputType is not Graph.DataTypeEnum.DT_INVALID)
     # TODO : There has to be some way to take range, understand the dimensions for SeeDot
     # CHANGESRI
     # return (None, AST.Input(curNodeShapeLi, curNodeInputType.name))
     return (None, AST.Decl(curNodeShapeLi, (-0.1, 0.1)))
示例#7
0
 def MaxPoolGrad(graph: Graph.Graph, curNode: Graph.Node,
                 dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     return (None,
             AST.UninterpFuncCall(
                 extraNodeInfoDict[curNode.getName()][0],
                 TFNodesAST.UninterpFuncCallNames.MaxPoolGrad.name,
                 list(
                     map(lambda x: AST.ID(dictNodeNameToOutVarStr[x]),
                         inputsRef))))
示例#8
0
 def Tile(graph: Graph.Graph, curNode: Graph.Node,
          dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 2)
     return (None,
             AST.UninterpFuncCall(
                 extraNodeInfoDict[curNode.getName()][0],
                 TFNodesAST.UninterpFuncCallNames.Tile.name, [
                     AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                     AST.ID(dictNodeNameToOutVarStr[inputsRef[1]])
                 ]))
示例#9
0
 def ZerosLike(graph: Graph.Graph, curNode: Graph.Node,
               dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 1)
     curNodeOutputType = curNode.getAttrMapRef()["\"T\""].getDataType()
     assert (curNodeOutputType is not Graph.DataTypeEnum.DT_INVALID)
     retAST = AST.UninterpFuncCall(
         extraNodeInfoDict[curNode.getName()][0],
         TFNodesAST.UninterpFuncCallNames.CreateTensor.name, [AST.Int(0)],
         isSecret=False)
     return (None, retAST)
示例#10
0
 def Pack(graph: Graph.Graph, curNode: Graph.Node,
          dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     N = curNode.getAttrMapRef()["\"N\""].getI()
     axis = curNode.getAttrMapRef()["\"axis\""].getI()
     assert (len(inputsRef) == N)
     retAST = AST.UninterpFuncCall(
         extraNodeInfoDict[curNode.getName()][0],
         TFNodesAST.UninterpFuncCallNames.Pack.name,
         list(map(lambda x: AST.ID(dictNodeNameToOutVarStr[x]),
                  inputsRef)) + [AST.Int(axis)])
     return (None, retAST)
示例#11
0
 def RandomUniform(graph: Graph.Graph, curNode: Graph.Node,
                   dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     curNodeDataType = curNode.getAttrMapRef()["\"dtype\""].getDataType()
     assert (curNodeDataType is not Graph.DataTypeEnum.DT_INVALID)
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 1)
     curNodeOutputShape = extraNodeInfoDict[curNode.getName()][0]
     return (None,
             AST.UninterpFuncCall(
                 curNodeOutputShape,
                 TFNodesAST.UninterpFuncCallNames.RandomUniform.name,
                 [AST.ID(curNodeDataType.name)]))
示例#12
0
 def Cast(graph: Graph.Graph, curNode: Graph.Node,
          dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     assert (len(inputsRef) == 1)
     sourceType = curNode.getAttrMapRef()["\"SrcT\""].getDataType()
     destType = curNode.getAttrMapRef()["\"DstT\""].getDataType()
     return (None,
             AST.UninterpFuncCall(
                 extraNodeInfoDict[curNode.getName()][0],
                 TFNodesAST.UninterpFuncCallNames.Cast.name, [
                     AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                     AST.ID(sourceType.name),
                     AST.ID(destType.name)
                 ]))
示例#13
0
 def ConcatV2(graph: Graph.Graph, curNode: Graph.Node,
              dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
     inputsRef = curNode.getInputsRef()
     N = curNode.getAttrMapRef()["\"N\""].getI()
     assert (len(inputsRef) == N + 1)  # One extra for axis
     # TODO : Since the axis of concat is constant, therefore, its known here - the input's sizes along that dim should be
     #		passed as input to the below function.
     #		For now hardcoding.
     retAST = AST.UninterpFuncCall(
         extraNodeInfoDict[curNode.getName()][0],
         TFNodesAST.UninterpFuncCallNames.Concat.name + str(N) + 'T',
         list(map(lambda x: AST.ID(dictNodeNameToOutVarStr[x]), inputsRef)),
         outputDiffInpDims=1)
     return (None, retAST)
示例#14
0
    def Assign(graph: Graph.Graph, curNode: Graph.Node,
               dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        inputsRef = curNode.getInputsRef()
        assert (len(inputsRef) == 2)
        curNodeShape = extraNodeInfoDict[curNode.getName()][0]

        # TODO_TAB : for inference, have commented the copyTensor function calls.
        # TODO : Hack -- fix this later after discussing with Aseem
        # return (None, AST.UninterpFuncCall(curNodeShape,
        # 									TFNodesAST.UninterpFuncCallNames.CopyTensor.name,
        # 									[AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
        # 									AST.ID(dictNodeNameToOutVarStr[inputsRef[1]])]))

        return (None, None)
示例#15
0
    def Identity(graph: Graph.Graph, curNode: Graph.Node,
                 dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        # In SeeDot, J2=J1 creates a new reference for J1 -- so
        #	the corresponding code in Seedot cannot simply be J2 = J1.
        #	Instead create a new tensor first and then assign the old one to the new one.
        inputsRef = curNode.getInputsRef()
        assert (len(inputsRef) == 1)

        curNodeDataType = curNode.getAttrMapRef()["\"T\""].getDataType()
        assert (curNodeDataType is not Graph.DataTypeEnum.DT_INVALID)

        curNodeShape = extraNodeInfoDict[curNode.getName()][0]
        retAST = AST.UninterpFuncCall(
            curNodeShape, TFNodesAST.UninterpFuncCallNames.CreateIdentity.name,
            [AST.ID(dictNodeNameToOutVarStr[inputsRef[0]])])
        return (None, retAST)
示例#16
0
    def Squeeze(graph: Graph.Graph, curNode: Graph.Node,
                dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        # TODO : Do this in somewhat better way
        inputsRef = curNode.getInputsRef()
        inputTensorShape = extraNodeInfoDict[inputsRef[0]][0]
        inputTensorRank = len(inputTensorShape)

        squeezeDims = curNode.getAttrMapRef()["\"squeeze_dims\""].getList(
        ).getILi()
        squeezeDimsRank = len(squeezeDims)

        return (None,
                AST.UninterpFuncCall(
                    extraNodeInfoDict[curNode.getName()][0],
                    TFNodesAST.UninterpFuncCallNames.Squeeze.name,
                    list(map(lambda x: AST.Int(x, 32), squeezeDims)) +
                    [AST.ID(dictNodeNameToOutVarStr[inputsRef[0]])]))
示例#17
0
    def Fill(graph: Graph.Graph, curNode: Graph.Node,
             dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        inputsRef = curNode.getInputsRef()
        assert (len(inputsRef) == 2)
        curNodeOutputShape = extraNodeInfoDict[inputsRef[0]][0]
        # inputsRef[0] denotes a shape and should have a rank of 1
        assert (len(curNodeOutputShape) == 1)

        curNodeOutputType = curNode.getAttrMapRef()["\"T\""].getDataType()
        assert (curNodeOutputType is not Graph.DataTypeEnum.DT_INVALID)

        retAST = AST.UninterpFuncCall(
            extraNodeInfoDict[curNode.getName()][0],
            TFNodesAST.UninterpFuncCallNames.CreateTensor.name,
            [AST.ID(dictNodeNameToOutVarStr[inputsRef[1]])],
            isSecret=False)
        return (None, retAST)
示例#18
0
    def AvgPool(graph: Graph.Graph, curNode: Graph.Node,
                dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        inputsRef = curNode.getInputsRef()
        assert (len(inputsRef) == 1)

        options = {}

        stridesUsed = curNode.getAttrMapRef()["\"strides\""].getList().getILi()
        assert ((stridesUsed[0] == 1) and (stridesUsed[3] == 1))
        strideH = stridesUsed[1]
        strideW = stridesUsed[2]

        kSizeUsed = curNode.getAttrMapRef()["\"ksize\""].getList().getILi()
        assert ((kSizeUsed[0] == 1) and (kSizeUsed[3] == 1))
        kSizeH = kSizeUsed[1]
        kSizeW = kSizeUsed[2]

        paddingUsedStr = curNode.getAttrMapRef()["\"padding\""].getS()
        zPadH = zPadW = -1
        if (paddingUsedStr == "\"SAME\""):
            zPadH = int((kSizeH - 1) / 2)
            zPadW = int((kSizeW - 1) / 2)
        elif (paddingUsedStr == "\"VALID\""):
            zPadH = zPadW = 0
        else:
            zPadH = zPadW = -1

        inputShape = extraNodeInfoDict[inputsRef[0]][0]
        imgH = inputShape[1]
        imgW = inputShape[2]
        return (None,
                AST.UninterpFuncCall(
                    extraNodeInfoDict[curNode.getName()][0],
                    TFNodesAST.UninterpFuncCallNames.AvgPool.name, [
                        AST.Int(kSizeH, 32),
                        AST.Int(kSizeW, 32),
                        AST.Int(zPadH, 32),
                        AST.Int(zPadW, 32),
                        AST.Int(strideH, 32),
                        AST.Int(strideW, 32),
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[0]])
                    ]))
示例#19
0
    def FusedBatchNorm(graph: Graph.Graph, curNode: Graph.Node,
                       dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        # NOTE : Since the weights to this layer will be scaled appropriately, this op will become identity.
        inputsRef = curNode.getInputsRef()

        # TODO : This below thing is the right way of implementing the operator
        #		For now using uninterpreted function call.
        # tempAst = AST.BOp(AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
        # 					TFNodesAST.getOperatorsIdx('*'),
        # 					AST.ID(dictNodeNameToOutVarStr[inputsRef[1]])
        # 					)
        # return (None, AST.BOp(tempAst,
        # 					TFNodesAST.getOperatorsIdx('+'),
        # 					AST.ID(dictNodeNameToOutVarStr[inputsRef[2]])
        # 					))
        return (None,
                AST.UninterpFuncCall(
                    extraNodeInfoDict[curNode.getName()][0],
                    TFNodesAST.UninterpFuncCallNames.TempFusedBatchNorm.name, [
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[1]]),
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[2]]),
                    ]))
示例#20
0
    def Pad(graph: Graph.Graph, curNode: Graph.Node,
            dictNodeNameToOutVarStr: dict, extraNodeInfoDict: dict):
        # Mode refers to 'CONSTANT', 'REFLECT' or 'SYMMETRIC'
        mode = 0
        if ("\"mode\"" in curNode.getAttrMapRef()):
            mode = curNode.getAttrMapRef()["\"mode\""].getI()

        constant_values = 0
        if ("\"constant_values\"" in curNode.getAttrMapRef()):
            constant_values = curNode.getAttrMapRef(
            )["\"constant_values\""].getI()

        # For now to make life easy - deal with SYMMETRIC AND REFLECT when time comes
        assert (mode == 0 and constant_values == 0)
        inputsRef = curNode.getInputsRef()
        inputTensorShapeLi = extraNodeInfoDict[inputsRef[0]][0]
        return (None,
                AST.UninterpFuncCall(
                    extraNodeInfoDict[curNode.getName()][0],
                    TFNodesAST.UninterpFuncCallNames.Pad.name, [
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[0]]),
                        AST.ID(dictNodeNameToOutVarStr[inputsRef[1]])
                    ],
                    outputDiffInpDims=1))