示例#1
0
def generate_subRegions(img, patchSize, region_patch_ratio, eraseMap, k, minSize, sigma, thresh=0, radius=220, centers = np.array([219.5, 219.5])):

    im = img[:, :, 0]

    F0, n_region = segment.segment_label(img, sigma, k, minSize)

    eraseLabels = set(list(F0[np.where(eraseMap == 1)].flatten()))

    region_patch_list = [[] for i in range(n_region)]

    for l in range(n_region):
        if l in eraseLabels:
            region_patch_list[l] = []
        else:
            region_patch_centers = list(np.argwhere(F0 == l))
            if len(region_patch_centers) == 0:
                continue
            region_values = im[np.where(F0 == l)]
            region_mean = region_values.mean()
            # print thresh
            if region_mean < thresh:
                region_patch_list[l] = []
            else:
                hw = patchSize / 2
                region_patch_gride = np.zeros((len(region_patch_centers), 4))
                region_patch_gride[:, :2] = np.array(region_patch_centers) - hw
                region_patch_gride[:, 2:] = patchSize
                patch_list = list(region_patch_gride)
                for ii in range(len(region_patch_centers)):
                    ll = patch_list[ii]
                    if np.random.rand(1, )[0] < region_patch_ratio:
                        if isWithinCircle(ll, centers, radius):
                            region_patch_list[l].append(ll)
    return F0, region_patch_list, eraseLabels
def hierarchical_segmentation(I, k = 100, feature_mask = features.SimilarityMask(1, 1, 1, 1)):
    F0, n_region = segment.segment_label(I, 0.8, k, 100)
    adj_mat, A0 = _calc_adjacency_matrix(F0, n_region)
    feature_extractor = features.Features(I, F0, n_region)

    # stores list of regions sorted by their similarity
    S = _build_initial_similarity_set(A0, feature_extractor)

    # stores region label and its parent (empty if initial).
    R = {i : () for i in range(n_region)}

    A = [A0]    # stores adjacency relation for each step
    F = [F0]    # stores label image for each step

    # greedy hierarchical grouping loop
    while len(S):
        (s, (i, j)) = S.pop()
        t = feature_extractor.merge(i, j)

        # record merged region (larger region should come first)
        R[t] = (i, j) if feature_extractor.size[j] < feature_extractor.size[i] else (j, i)

        Ak = _new_adjacency_dict(A[-1], i, j, t)
        A.append(Ak)

        S = _merge_similarity_set(feature_extractor, Ak, S, i, j, t)

        F.append(_new_label_image(F[-1], i, j, t))

    # bounding boxes for each hierarchy
    L = feature_extractor.bbox

    return (R, F, L)
def detect_regions(imgFile,
                   eraseMap,
                   k,
                   minSize,
                   sigma,
                   thresh=0,
                   imResize=None):
    img = skimage.io.imread(imgFile)
    if imResize is not None:
        img = imresize(img, (imResize, imResize))
    if len(img.shape) == 2:
        img = skimage.color.gray2rgb(img)
    im = img[:, :, 0]
    F0, n_region = segment.segment_label(img, sigma, k, minSize)
    eraseLabels = set(list(F0[numpy.where(eraseMap == 1)].flatten()))
    filterout_labels = []
    for l in range(n_region):
        region_values = im[np.where(F0 == l)]
        region_mean = region_values.mean()
        # print thresh
        if region_mean < thresh:
            filterout_labels.append(l)

    detect_regions = numpy.ones(F0.shape).astype(numpy.uint8)
    removeLabels = list(eraseLabels) + filterout_labels
    for l in removeLabels:
        detect_regions[np.where(F0 == l)] = 0
    return detect_regions, F0, removeLabels
def hierarchical_segmentation(I,
                              k=100,
                              feature_mask=features.SimilarityMask(1, 1, 1,
                                                                   1)):
    F0, n_region = segment.segment_label(I, 0.8, k, 100)
    adj_mat, A0 = _calc_adjacency_matrix(F0, n_region)
    feature_extractor = features.Features(I, F0, n_region)

    # stores list of regions sorted by their similarity
    S = _build_initial_similarity_set(A0, feature_extractor)

    # stores region label and its parent (empty if initial).
    R = {i: () for i in range(n_region)}

    A = [A0]  # stores adjacency relation for each step
    F = [F0]  # stores label image for each step

    # greedy hierarchical grouping loop
    while len(S):
        (s, (i, j)) = S.pop()
        t = feature_extractor.merge(i, j)

        # record merged region (larger region should come first)
        R[t] = (
            i,
            j) if feature_extractor.size[j] < feature_extractor.size[i] else (
                j, i)

        Ak = _new_adjacency_dict(A[-1], i, j, t)
        A.append(Ak)

        S = _merge_similarity_set(feature_extractor, Ak, S, i, j, t)

        F.append(_new_label_image(F[-1], i, j, t))

    # bounding boxes for each hierarchy
    L = feature_extractor.bbox

    return (R, F, L)
def hierarchical_segmentation(I, k = 100, feature_mask = features.SimilarityMask(1, 1, 1, 1), eraseMap=None):
    # F0, n_region = segment.segment_label(I, 0.8, k, 100)
    F0, n_region = segment.segment_label(I, 0.5, k, 500)
    n_region = F0.max() + 1
    # ++ calculate outside region labels
    if eraseMap is not None:
        eraseLabels = set(list(F0[numpy.where(eraseMap == 1)].flatten()))
    else:
        eraseLabels = []
    adj_mat, A0 = _calc_adjacency_matrix(F0, n_region)
    feature_extractor = features.Features(I, F0, n_region)

    # stores list of regions sorted by their similarity
    S = _build_initial_similarity_set(A0, feature_extractor)
    # ++ pop out regions outside circle
    if eraseMap is not None:
        ii = len(S) - 1
        while ii >= 0:
            if (S[ii][1][0] in eraseLabels) or (S[ii][1][1] in eraseLabels):
                S.pop(ii)
            ii -= 1
    # stores region label and its parent (empty if initial).
    R = {i : () for i in range(n_region)}

    A = [A0]    # stores adjacency relation for each step
    F = [F0]    # stores label image for each step

    # greedy hierarchical grouping loop
    while len(S):
        (s, (i, j)) = S.pop()
        t = feature_extractor.merge(i, j)

        # record merged region (larger region should come first)
        R[t] = (i, j) if feature_extractor.size[j] < feature_extractor.size[i] else (j, i)

        Ak = _new_adjacency_dict(A[-1], i, j, t)
        A.append(Ak)

        S = _merge_similarity_set(feature_extractor, Ak, S, i, j, t)
        # ++ pop out regions outside circle
        if eraseMap is not None:
            ii = len(S) - 1
            while ii >= 0:
                if (S[ii][1][0] in eraseLabels) or (S[ii][1][1] in eraseLabels):
                    S.pop(ii)
                ii -= 1

        F.append(_new_label_image(F[-1], i, j, t))

    # bounding boxes for each hierarchy
    L = feature_extractor.bbox

    L_regions = {}
    for r, l in R.iteritems():
        if r < n_region:
            L_regions[r] = [r]
        else:
            ll = []
            if l[0] >= n_region:
                ll = ll + L_regions[l[0]]
            else:
                ll.append(l[0])

            if l[1] >= n_region:
                ll = ll + L_regions[l[1]]
            else:
                ll.append(l[1])
            L_regions[r] = ll
    return (R, F, L, L_regions, eraseLabels)
def generate_subRegions(imgFileOrImg,
                        patchSize,
                        region_patch_ratio,
                        eraseMap,
                        k,
                        minSize,
                        sigma,
                        radius=220,
                        centers=np.array([219.5, 219.5]),
                        thresh=None,
                        isSaveDetection=False,
                        diffResolution=False,
                        returnFilteroutLabels=False):
    if isinstance(imgFileOrImg, str):
        img = skimage.io.imread(imgFileOrImg)
        if len(img.shape) == 2:
            img = skimage.color.gray2rgb(img)
    else:
        img = imgFileOrImg

    # im = rgb2gray(img)
    # print im.max(), im.min()
    im = img[:, :, 0]
    if thresh is None:
        thresh = 0

    F0, n_region = segment.segment_label(img, sigma, k, minSize)

    eraseLabels = set(list(F0[numpy.where(eraseMap == 1)].flatten()))
    # plt.imshow(eraseMap)
    # plt.show()
    # print eraseLabels
    region_patch_list = [[] for i in range(n_region)]
    filterout_labels = []
    for l in range(n_region):
        if l in eraseLabels:
            region_patch_list[l] = []
        else:
            region_patch_centers = list(np.argwhere(F0 == l))
            if len(region_patch_centers) == 0:
                continue
            region_values = im[np.where(F0 == l)]
            region_mean = region_values.mean()
            # print thresh
            if region_mean < thresh:
                region_patch_list[l] = []
                filterout_labels.append(l)
            else:
                hw = patchSize / 2
                region_patch_gride = np.zeros((len(region_patch_centers), 4))
                if not diffResolution:
                    region_patch_gride[:, :2] = np.array(
                        region_patch_centers) - hw
                    region_patch_gride[:, 2:] = patchSize
                    patch_list = list(region_patch_gride)
                for ii in range(len(region_patch_centers)):
                    if not diffResolution:
                        ll = patch_list[ii]
                    if np.random.rand(1, )[0] < region_patch_ratio:
                        if diffResolution:
                            patchSize = np.array(
                                esg.centerArr2sizeList(
                                    region_patch_centers[ii]))
                            ll = np.zeros((1, 4))
                            ll[:, :2] = region_patch_centers[ii]
                            ll[:, 2:] = patchSize
                            ll = list(ll)[0]
                        if esg.isWithinCircle(ll, centers, radius):
                            region_patch_list[l].append(ll)

    if isSaveDetection and (thresh != 0):
        folder = '../../Data/Results/regionDetection/'
        alpha = 0.6
        colors = numpy.random.randint(0, 255, (n_region, 3))
        print eraseLabels
        for e in eraseLabels:
            colors[e] = 0
        color_regions_before = colors[F0]
        result_before = (color_regions_before * alpha + img *
                         (1. - alpha)).astype(numpy.uint8)
        print filterout_labels
        for e in filterout_labels:
            colors[e] = 0
        color_regions_after = colors[F0]
        result_after = (color_regions_after * alpha + img *
                        (1. - alpha)).astype(numpy.uint8)
        imsave(folder + 'before.jpg', result_before)
        imsave(folder + 'after.jpg', result_after)
    if returnFilteroutLabels:
        return F0, region_patch_list, eraseLabels, filterout_labels
    else:
        return F0, region_patch_list, eraseLabels