def __init__(_,net_name,out_channels): super().__init__() _.net_name = net_name _.shapes_have_been_printed = False _.a = nn.Conv2d(a, b, kernel_size=3, stride=2) _.b = nn.ReLU(inplace=True) _.c = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.d = Fire(b, b_, c, c) _.e = Fire(c+c, b, d, d) _.f = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.g = Fire(e, c, e, e) _.i = Fire(e+e, c, e, e) _.j = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.k = nn.Upsample((32,32),mode='nearest') _.k2 = nn.Upsample((64,64),mode='nearest') _.k3 = nn.Upsample((200,200),mode='nearest') _.l = nn.Conv2d( in_channels=d+d, out_channels=out_channels, padding=1, kernel_size=3) _.l2 = nn.Conv2d( in_channels=e+e, out_channels=out_channels, padding=1, kernel_size=3) _.o = nn.AvgPool2d(2, stride=2) _.bn3 = nn.BatchNorm2d(a) _.bn32 = nn.BatchNorm2d(d) _.bn64 = nn.BatchNorm2d(e)
def __init__(self,net_name): super().__init__() self.net_name = net_name self.shapes_have_been_printed = True self.a = nn.Conv2d(a, d, kernel_size=3, stride=2) self.b = nn.ReLU(inplace=True) self.c = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) self.d = Fire(d, b, d, d) self.e = Fire(d+d, b, d, d) self.f = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) self.g = Fire(e, c, e, e) self.i = Fire(e+e, c, e, e) self.j = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) self.k = nn.Upsample((32,32),mode='nearest') self.k2 = nn.Upsample((64,64),mode='nearest') self.k3 = nn.Upsample((140,140),mode='nearest') self.l = nn.Conv2d( in_channels=d+d, out_channels=a, padding=1, kernel_size=3) self.l2 = nn.Conv2d( in_channels=e+e, out_channels=a, padding=1, kernel_size=3) self.o = nn.AvgPool2d(2, stride=2) self.bn3 = nn.BatchNorm2d(3) self.bn32 = nn.BatchNorm2d(32) self.bn64 = nn.BatchNorm2d(64)
def __init__(_, net_name, out_channels): super().__init__() _.A = {} _.quant = torch.quantization.QuantStub() _.dequant = torch.quantization.DeQuantStub() _.net_name = net_name _.shapes_have_been_printed = False _.a = torch.nn.Conv2d(a, b_, kernel_size=3, stride=2) _.b = nn.ReLU(inplace=True) _.c = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.d = Fire(b_, b_, b_, b_) _.e = Fire(b, b, b_, b_) _.f = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.g = Fire(e, c, c, c) _.i = Fire(c + c, c, c, c) _.j = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.k = nn.Upsample((32, 32), mode='nearest') _.k2 = nn.Upsample((64, 64), mode='nearest') _.k200 = nn.Upsample((200, 200), mode='nearest') _.k1000 = nn.Upsample((1000, 1000), mode='nearest') _.l = nn.Conv2d(in_channels=d + d, out_channels=out_channels, padding=1, kernel_size=3) _.l2 = nn.Conv2d(in_channels=b, out_channels=out_channels, padding=0, kernel_size=1) _.o = nn.AvgPool2d(2, stride=2) _.bn3 = nn.Identity() #nn.BatchNorm2d(a) _.bn32 = nn.Identity() #nn.BatchNorm2d(d) _.bn64 = nn.Identity() #nn.BatchNorm2d(e)
def __init__(_, net_name, in_channels, out_channels): super().__init__() _.quant = torch.quantization.QuantStub() _.dequant = torch.quantization.DeQuantStub() _.net_name = net_name _.shapes_have_been_printed = False _.a = nn.Conv2d(in_channels, d, kernel_size=3, stride=2) _.b = nn.ReLU(inplace=True) _.c = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.d0 = Fire(35, 32, 32, 32) _.d0_ = Fire(38, 32, 32, 32) _.d1 = Fire(40, 32, 32, 32) _.d = Fire(d, b, d, d) _.e = Fire(d + d, b, b, b) _.f = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.g = Fire(e, c, e, e) _.i = Fire(e + e, c, e, e) _.j = nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True) _.k = nn.Upsample((32, 32), mode='nearest') _.k2 = nn.Upsample((64, 64), mode='nearest') _.k200 = nn.Upsample((200, 200), mode='nearest') _.k1000 = nn.Upsample((1000, 1000), mode='nearest') _.l = nn.Conv2d(in_channels=d + d, out_channels=out_channels, padding=1, kernel_size=3) _.l2 = nn.Conv2d(in_channels=e + e, out_channels=out_channels, padding=1, kernel_size=6) _.o = nn.AvgPool2d(2, stride=2) _.bn3 = nn.BatchNorm2d(a) _.bn32 = nn.BatchNorm2d(d) _.bn64 = nn.BatchNorm2d(e)