def run_pipeline(events, models): tNameId = bt.Feature_id_transform(min_size=0, exclude_missing=True, zero_based=True, input_feature="name", output_feature="nameId") tAuto = pauto.Auto_transform(max_values_numeric_categorical=2, exclude=["nameId", "name"]) sk_classifier = RandomForestClassifier(verbose=1) classifier = ske.SKLearnClassifier(clf=sk_classifier, target="nameId", excluded=["name"]) cv = cf.Seldon_KFold(classifier, 5) logger.info("cross validation scores %s", cv.get_scores()) transformers = [("tName", tNameId), ("tAuto", tAuto), ("cv", cv)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe(events) df2 = p.fit_transform(df) pw.save_pipeline(p, models) logger.info("cross validation scores %s", cv.get_scores())
def run_pipeline(events, models): tNameId = bt.Feature_id_transform(min_size=0, exclude_missing=True, zero_based=True, input_feature="name", output_feature="nameId") tAuto = pauto.Auto_transform(max_values_numeric_categorical=2, exclude=["nameId", "name"]) xgb = xg.XGBoostClassifier(target="nameId", target_readable="name", excluded=["name"], learning_rate=0.1, silent=1) cv = cf.Seldon_KFold(xgb, 5) logger.info("cross validation scores %s", cv.get_scores()) transformers = [("tName", tNameId), ("tAuto", tAuto), ("cv", cv)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe_from_files(events) df2 = p.fit_transform(df) pw.save_pipeline(p, models) logger.info("cross validation scores %s", cv.get_scores())
def run_pipeline(events,models): tAuto = pauto.Auto_transform(max_values_numeric_categorical=2,exclude=["label"]) detector = anod.iNNEDetector() wrapper = aw.AnomalyWrapper(clf=detector,excluded=["label"]) transformers = [("tAuto",tAuto),("clf",wrapper)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe_from_files(events) df2 = p.fit_transform(df) pw.save_pipeline(p,models)
def run_pipeline(events, models): tNameId = bt.Feature_id_transform(min_size=0, exclude_missing=True, zero_based=True, input_feature="name", output_feature="nameId") tAuto = pauto.Auto_transform(max_values_numeric_categorical=2, exclude=["nameId", "name"]) keras = sk.KerasClassifier(model_create=create_model, target="nameId", target_readable="name") transformers = [("tName", tNameId), ("tAuto", tAuto), ("keras", keras)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe(events) df2 = p.fit(df) pw.save_pipeline(p, models)
def run_pipeline(events, models): tNameId = bt.Feature_id_transform(min_size=0, exclude_missing=True, zero_based=True, input_feature="name", output_feature="nameId") tAuto = pauto.Auto_transform(max_values_numeric_categorical=2, exclude=["nameId", "name"]) xgb = xg.XGBoostClassifier(target="nameId", target_readable="name", excluded=["name"], learning_rate=0.1, silent=0) transformers = [("tName", tNameId), ("tAuto", tAuto), ("xgb", xgb)] p = Pipeline(transformers) pw = sutl.Pipeline_wrapper() df = pw.create_dataframe(events) df2 = p.fit(df) pw.save_pipeline(p, models)
import seldon.pipeline.auto_transforms as auto import pandas as pd df = pd.DataFrame([{ "a": 10, "b": 1, "c": "cat" }, { "a": 5, "b": 2, "c": "dog", "d": "Nov 13 08:36:29 2015" }, { "a": 10, "b": 3, "d": "Oct 13 10:50:12 2015" }]) t = auto.Auto_transform(max_values_numeric_categorical=2, date_cols=["d"]) t.fit(df) df2 = t.transform(df) print df2