def test_proto_seldon_runtime_data_transform_output(cls, client_gets_metrics): user_object = cls() seldon_metrics = SeldonMetrics() app = SeldonModelGRPC(user_object, seldon_metrics) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=np.array([1, 2])) ) request = prediction_pb2.SeldonMessage(data=datadef) resp = app.TransformOutput(request, None) j = json.loads(json_format.MessageToJson(resp)) assert j["data"] == { "names": ["t:0"], "tensor": {"shape": [2, 1], "values": [1.0, 2.0]}, } assert j["meta"]["tags"] == EXPECTED_TAGS assert ("metrics" in j["meta"]) == client_gets_metrics data = seldon_metrics.data[os.getpid()] verify_seldon_metrics(data, 1, [0.0202], OUTPUT_TRANSFORM_METRIC_METHOD_TAG) resp = app.TransformOutput(request, None) j = json.loads(json_format.MessageToJson(resp)) assert j["data"] == { "names": ["t:0"], "tensor": {"shape": [2, 1], "values": [1.0, 2.0]}, } assert j["meta"]["tags"] == EXPECTED_TAGS assert ("metrics" in j["meta"]) == client_gets_metrics data = seldon_metrics.data[os.getpid()] verify_seldon_metrics(data, 2, [0.0202, 0.0202], OUTPUT_TRANSFORM_METRIC_METHOD_TAG)
def test_proto_seldon_metrics_transform_output(cls): user_object = cls() seldon_metrics = SeldonMetrics() app = SeldonModelGRPC(user_object, seldon_metrics) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=np.array([1, 2]))) request = prediction_pb2.SeldonMessage(data=datadef) app.TransformOutput(request, None) data = seldon_metrics.data[os.getpid()] assert data["GAUGE", "mygauge"]["value"] == 100 assert data["GAUGE", "customtag"]["value"] == 200 assert data["GAUGE", "customtag"]["tags"] == {"mytag": "mytagvalue"} assert data["COUNTER", "mycounter"]["value"] == 1 assert np.allclose( np.histogram([20.2 / 1000], BINS)[0], data["TIMER", "mytimer"]["value"][0]) assert np.allclose(data["TIMER", "mytimer"]["value"][1], 0.0202) app.TransformOutput(request, None) data = seldon_metrics.data[os.getpid()] assert data["GAUGE", "mygauge"]["value"] == 100 assert data["GAUGE", "customtag"]["value"] == 200 assert data["GAUGE", "customtag"]["tags"] == {"mytag": "mytagvalue"} assert data["COUNTER", "mycounter"]["value"] == 2 assert np.allclose( np.histogram([20.2 / 1000, 20.2 / 1000], BINS)[0], data["TIMER", "mytimer"]["value"][0], ) assert np.allclose(data["TIMER", "mytimer"]["value"][1], 0.0404)
def test_transform_proto_output_passes_through_metrics(): user_object = UserObject() seldon_metrics = SeldonMetrics() app = SeldonModelGRPC(user_object, seldon_metrics) arr = np.array([1, 2]) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=arr)) meta = prediction_pb2.Meta() json_format.ParseDict( {"metrics": [{ "key": "request_gauge", "type": "GAUGE", "value": 100 }]}, meta) request = prediction_pb2.SeldonMessage(data=datadef, meta=meta) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) logging.info(j) assert j["meta"]["metrics"][0]["key"] == "request_gauge" assert j["meta"]["metrics"][0]["value"] == 100 assert j["meta"]["metrics"][1]["key"] == user_object.metrics()[0]["key"] assert j["meta"]["metrics"][1]["value"] == user_object.metrics( )[0]["value"] assert j["data"]["tensor"]["shape"] == [2, 1] assert j["data"]["tensor"]["values"] == [1, 2]
def test_transform_output_proto_bin_data(): user_object = UserObject() app = SeldonModelGRPC(user_object) binData = b"\0\1" request = prediction_pb2.SeldonMessage(binData=binData) resp = app.TransformOutput(request, None) assert resp.binData == binData
def test_transform_output_proto_bin_data_nparray(): user_object = UserObject(ret_nparray=True) app = SeldonModelGRPC(user_object) binData = b"\0\1" request = prediction_pb2.SeldonMessage(binData=binData) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) print(j) assert j["data"]["tensor"]["values"] == list(user_object.nparray.flatten())
def test_proto_seldon_metrics_transform_output(cls, client_gets_metrics): user_object = cls() seldon_metrics = SeldonMetrics() app = SeldonModelGRPC(user_object, seldon_metrics) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=np.array([1, 2]))) request = prediction_pb2.SeldonMessage(data=datadef) resp = app.TransformOutput(request, None) assert ("metrics" in json.loads( json_format.MessageToJson(resp))["meta"]) == client_gets_metrics data = seldon_metrics.data[os.getpid()] verify_seldon_metrics(data, 1, [0.0202]) resp = app.TransformOutput(request, None) assert ("metrics" in json.loads( json_format.MessageToJson(resp))["meta"]) == client_gets_metrics data = seldon_metrics.data[os.getpid()] verify_seldon_metrics(data, 2, [0.0202, 0.0202])
def test_transform_output_proto_lowlevel_ok(): user_object = UserObjectLowLevelGrpc() app = SeldonModelGRPC(user_object) arr = np.array([1, 2]) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=arr)) request = prediction_pb2.SeldonMessage(data=datadef) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) print(j) assert j["data"]["tensor"]["shape"] == [2, 1] assert j["data"]["tensor"]["values"] == [9, 9]
def test_transform_output_proto_ok(): user_object = UserObject() app = SeldonModelGRPC(user_object) arr = np.array([1, 2]) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=arr)) request = prediction_pb2.SeldonMessage(data=datadef) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) print(j) assert j["meta"]["tags"] == {"mytag": 1} # add default type assert j["meta"]["metrics"][0]["key"] == user_object.metrics()[0]["key"] assert j["meta"]["metrics"][0]["value"] == user_object.metrics( )[0]["value"] assert j["data"]["tensor"]["shape"] == [2, 1] assert j["data"]["tensor"]["values"] == [1, 2]
def test_transform_proto_output_passes_through_tags(): user_object = UserObject() app = SeldonModelGRPC(user_object) arr = np.array([1, 2]) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=arr) ) meta = prediction_pb2.Meta() json_format.ParseDict({"tags": {"foo": "bar"}}, meta) request = prediction_pb2.SeldonMessage(data=datadef, meta=meta) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) logging.info(j) assert j["meta"]["tags"] == {"foo": "bar", "mytag": 1} assert j["meta"]["metrics"][0]["key"] == user_object.metrics()[0]["key"] assert j["meta"]["metrics"][0]["value"] == user_object.metrics()[0]["value"] assert j["data"]["tensor"]["shape"] == [2, 1] assert j["data"]["tensor"]["values"] == [1, 2]
def test_transform_output_proto_gets_meta(): user_object = UserObject(ret_meta=True) app = SeldonModelGRPC(user_object) arr = np.array([1, 2]) datadef = prediction_pb2.DefaultData( tensor=prediction_pb2.Tensor(shape=(2, 1), values=arr)) meta = prediction_pb2.Meta() metaJson = {"puid": "abc"} json_format.ParseDict(metaJson, meta) request = prediction_pb2.SeldonMessage(data=datadef, meta=meta) resp = app.TransformOutput(request, None) jStr = json_format.MessageToJson(resp) j = json.loads(jStr) print(j) assert j["meta"]["tags"] == {"inc_meta": {"puid": "abc"}} # add default type assert j["meta"]["metrics"][0]["key"] == user_object.metrics()[0]["key"] assert j["meta"]["metrics"][0]["value"] == user_object.metrics( )[0]["value"] assert j["data"]["tensor"]["shape"] == [2, 1] assert j["data"]["tensor"]["values"] == [1, 2]