示例#1
0
class Controls:
    def __init__(self, sm=None, pm=None, can_sock=None, CI=None):
        config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH)

        # Setup sockets
        self.pm = pm
        if self.pm is None:
            self.pm = messaging.PubMaster([
                'sendcan', 'controlsState', 'carState', 'carControl',
                'carEvents', 'carParams'
            ])

        self.camera_packets = ["roadCameraState", "driverCameraState"]
        if TICI:
            self.camera_packets.append("wideRoadCameraState")

        self.can_sock = can_sock
        if can_sock is None:
            can_timeout = None if os.environ.get('NO_CAN_TIMEOUT',
                                                 False) else 100
            self.can_sock = messaging.sub_sock('can', timeout=can_timeout)

        if TICI:
            self.log_sock = messaging.sub_sock('androidLog')

        if CI is None:
            # wait for one pandaState and one CAN packet
            print("Waiting for CAN messages...")
            get_one_can(self.can_sock)

            self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'])
        else:
            self.CI, self.CP = CI, CI.CP

        params = Params()
        self.joystick_mode = params.get_bool("JoystickDebugMode") or (
            self.CP.notCar and sm is None)
        joystick_packet = ['testJoystick'] if self.joystick_mode else []

        self.sm = sm
        if self.sm is None:
            ignore = ['driverCameraState', 'managerState'
                      ] if SIMULATION else None
            self.sm = messaging.SubMaster(
                [
                    'deviceState', 'pandaStates', 'peripheralState', 'modelV2',
                    'liveCalibration', 'driverMonitoringState',
                    'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
                    'managerState', 'liveParameters', 'radarState'
                ] + self.camera_packets + joystick_packet,
                ignore_alive=ignore,
                ignore_avg_freq=['radarState', 'longitudinalPlan'])

        # set alternative experiences from parameters
        self.disengage_on_accelerator = params.get_bool(
            "DisengageOnAccelerator")
        self.CP.alternativeExperience = 0
        if not self.disengage_on_accelerator:
            self.CP.alternativeExperience |= ALTERNATIVE_EXPERIENCE.DISABLE_DISENGAGE_ON_GAS

        # read params
        self.is_metric = params.get_bool("IsMetric")
        self.is_ldw_enabled = params.get_bool("IsLdwEnabled")
        openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle")
        passive = params.get_bool("Passive") or not openpilot_enabled_toggle

        # detect sound card presence and ensure successful init
        sounds_available = HARDWARE.get_sound_card_online()

        car_recognized = self.CP.carName != 'mock'

        controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly
        self.read_only = not car_recognized or not controller_available or self.CP.dashcamOnly
        if self.read_only:
            safety_config = car.CarParams.SafetyConfig.new_message()
            safety_config.safetyModel = car.CarParams.SafetyModel.noOutput
            self.CP.safetyConfigs = [safety_config]

        # Write CarParams for radard
        cp_bytes = self.CP.to_bytes()
        params.put("CarParams", cp_bytes)
        put_nonblocking("CarParamsCache", cp_bytes)

        self.CC = car.CarControl.new_message()
        self.CS_prev = car.CarState.new_message()
        self.AM = AlertManager()
        self.events = Events()

        self.LoC = LongControl(self.CP)
        self.VM = VehicleModel(self.CP)

        if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
            self.LaC = LatControlAngle(self.CP, self.CI)
        elif self.CP.lateralTuning.which() == 'pid':
            self.LaC = LatControlPID(self.CP, self.CI)
        elif self.CP.lateralTuning.which() == 'indi':
            self.LaC = LatControlINDI(self.CP, self.CI)
        elif self.CP.lateralTuning.which() == 'lqr':
            self.LaC = LatControlLQR(self.CP, self.CI)

        self.initialized = False
        self.state = State.disabled
        self.enabled = False
        self.active = False
        self.can_rcv_error = False
        self.soft_disable_timer = 0
        self.v_cruise_kph = 255
        self.v_cruise_kph_last = 0
        self.mismatch_counter = 0
        self.cruise_mismatch_counter = 0
        self.can_rcv_error_counter = 0
        self.last_blinker_frame = 0
        self.distance_traveled = 0
        self.last_functional_fan_frame = 0
        self.events_prev = []
        self.current_alert_types = [ET.PERMANENT]
        self.logged_comm_issue = False
        self.button_timers = {
            ButtonEvent.Type.decelCruise: 0,
            ButtonEvent.Type.accelCruise: 0
        }
        self.last_actuators = car.CarControl.Actuators.new_message()

        # TODO: no longer necessary, aside from process replay
        self.sm['liveParameters'].valid = True

        self.startup_event = get_startup_event(car_recognized,
                                               controller_available,
                                               len(self.CP.carFw) > 0)

        if not sounds_available:
            self.events.add(EventName.soundsUnavailable, static=True)
        if not car_recognized:
            self.events.add(EventName.carUnrecognized, static=True)
            if len(self.CP.carFw) > 0:
                set_offroad_alert("Offroad_CarUnrecognized", True)
            else:
                set_offroad_alert("Offroad_NoFirmware", True)
        elif self.read_only:
            self.events.add(EventName.dashcamMode, static=True)
        elif self.joystick_mode:
            self.events.add(EventName.joystickDebug, static=True)
            self.startup_event = None

        # controlsd is driven by can recv, expected at 100Hz
        self.rk = Ratekeeper(100, print_delay_threshold=None)
        self.prof = Profiler(False)  # off by default

    def update_events(self, CS):
        """Compute carEvents from carState"""

        self.events.clear()

        # Add startup event
        if self.startup_event is not None:
            self.events.add(self.startup_event)
            self.startup_event = None

        # Don't add any more events if not initialized
        if not self.initialized:
            self.events.add(EventName.controlsInitializing)
            return

        # Disable on rising edge of accelerator or brake. Also disable on brake when speed > 0
        if (CS.gasPressed and not self.CS_prev.gasPressed and self.disengage_on_accelerator) or \
          (CS.brakePressed and (not self.CS_prev.brakePressed or not CS.standstill)):
            self.events.add(EventName.pedalPressed)

        if CS.gasPressed:
            self.events.add(
                EventName.pedalPressedPreEnable if self.
                disengage_on_accelerator else EventName.gasPressedOverride)

        self.events.add_from_msg(CS.events)

        if not self.CP.notCar:
            self.events.add_from_msg(self.sm['driverMonitoringState'].events)

        # Create events for battery, temperature, disk space, and memory
        if EON and (self.sm['peripheralState'].pandaType != PandaType.uno) and \
           self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError:
            # at zero percent battery, while discharging, OP should not allowed
            self.events.add(EventName.lowBattery)
        if self.sm['deviceState'].thermalStatus >= ThermalStatus.red:
            self.events.add(EventName.overheat)
        if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION:
            # under 7% of space free no enable allowed
            self.events.add(EventName.outOfSpace)
        # TODO: make tici threshold the same
        if self.sm['deviceState'].memoryUsagePercent > (90 if TICI else
                                                        65) and not SIMULATION:
            self.events.add(EventName.lowMemory)

        # TODO: enable this once loggerd CPU usage is more reasonable
        #cpus = list(self.sm['deviceState'].cpuUsagePercent)[:(-1 if EON else None)]
        #if max(cpus, default=0) > 95 and not SIMULATION:
        #  self.events.add(EventName.highCpuUsage)

        # Alert if fan isn't spinning for 5 seconds
        if self.sm['peripheralState'].pandaType in (PandaType.uno,
                                                    PandaType.dos):
            if self.sm['peripheralState'].fanSpeedRpm == 0 and self.sm[
                    'deviceState'].fanSpeedPercentDesired > 50:
                if (self.sm.frame -
                        self.last_functional_fan_frame) * DT_CTRL > 5.0:
                    self.events.add(EventName.fanMalfunction)
            else:
                self.last_functional_fan_frame = self.sm.frame

        # Handle calibration status
        cal_status = self.sm['liveCalibration'].calStatus
        if cal_status != Calibration.CALIBRATED:
            if cal_status == Calibration.UNCALIBRATED:
                self.events.add(EventName.calibrationIncomplete)
            else:
                self.events.add(EventName.calibrationInvalid)

        # Handle lane change
        if self.sm[
                'lateralPlan'].laneChangeState == LaneChangeState.preLaneChange:
            direction = self.sm['lateralPlan'].laneChangeDirection
            if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \
               (CS.rightBlindspot and direction == LaneChangeDirection.right):
                self.events.add(EventName.laneChangeBlocked)
            else:
                if direction == LaneChangeDirection.left:
                    self.events.add(EventName.preLaneChangeLeft)
                else:
                    self.events.add(EventName.preLaneChangeRight)
        elif self.sm['lateralPlan'].laneChangeState in (
                LaneChangeState.laneChangeStarting,
                LaneChangeState.laneChangeFinishing):
            self.events.add(EventName.laneChange)

        if not CS.canValid:
            self.events.add(EventName.canError)

        for i, pandaState in enumerate(self.sm['pandaStates']):
            # All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput
            if i < len(self.CP.safetyConfigs):
                safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or \
                                  pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam or \
                                  pandaState.alternativeExperience != self.CP.alternativeExperience
            else:
                safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES

            if safety_mismatch or self.mismatch_counter >= 200:
                self.events.add(EventName.controlsMismatch)

            if log.PandaState.FaultType.relayMalfunction in pandaState.faults:
                self.events.add(EventName.relayMalfunction)

        # Check for HW or system issues
        if len(self.sm['radarState'].radarErrors):
            self.events.add(EventName.radarFault)
        elif not self.sm.valid["pandaStates"]:
            self.events.add(EventName.usbError)
        elif not self.sm.all_checks() or self.can_rcv_error:

            if not self.sm.all_alive():
                self.events.add(EventName.commIssue)
            elif not self.sm.all_freq_ok():
                self.events.add(EventName.commIssueAvgFreq)
            else:  # invalid or can_rcv_error.
                self.events.add(EventName.commIssue)

            if not self.logged_comm_issue:
                invalid = [
                    s for s, valid in self.sm.valid.items() if not valid
                ]
                not_alive = [
                    s for s, alive in self.sm.alive.items() if not alive
                ]
                not_freq_ok = [
                    s for s, freq_ok in self.sm.freq_ok.items() if not freq_ok
                ]
                cloudlog.event("commIssue",
                               invalid=invalid,
                               not_alive=not_alive,
                               not_freq_ok=not_freq_ok,
                               can_error=self.can_rcv_error,
                               error=True)
                self.logged_comm_issue = True
        else:
            self.logged_comm_issue = False

        if not self.sm['liveParameters'].valid:
            self.events.add(EventName.vehicleModelInvalid)
        if not self.sm['lateralPlan'].mpcSolutionValid:
            self.events.add(EventName.plannerError)
        if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR:
            if self.sm.frame > 5 / DT_CTRL:  # Give locationd some time to receive all the inputs
                self.events.add(EventName.sensorDataInvalid)
        if not self.sm['liveLocationKalman'].posenetOK:
            self.events.add(EventName.posenetInvalid)
        if not self.sm['liveLocationKalman'].deviceStable:
            self.events.add(EventName.deviceFalling)

        if not REPLAY:
            # Check for mismatch between openpilot and car's PCM
            cruise_mismatch = CS.cruiseState.enabled and (
                not self.enabled or not self.CP.pcmCruise)
            self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0
            if self.cruise_mismatch_counter > int(3. / DT_CTRL):
                self.events.add(EventName.cruiseMismatch)

        # Check for FCW
        stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.25
        model_fcw = self.sm[
            'modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking
        planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled
        if planner_fcw or model_fcw:
            self.events.add(EventName.fcw)

        if TICI:
            for m in messaging.drain_sock(self.log_sock, wait_for_one=False):
                try:
                    msg = m.androidLog.message
                    if any(err in msg for err in ("ERROR_CRC", "ERROR_ECC",
                                                  "ERROR_STREAM_UNDERFLOW",
                                                  "APPLY FAILED")):
                        csid = msg.split("CSID:")[-1].split(" ")[0]
                        evt = CSID_MAP.get(csid, None)
                        if evt is not None:
                            self.events.add(evt)
                except UnicodeDecodeError:
                    pass

        # TODO: fix simulator
        if not SIMULATION:
            if not NOSENSOR:
                if not self.sm['liveLocationKalman'].gpsOK and (
                        self.distance_traveled > 1000):
                    # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes
                    self.events.add(EventName.noGps)

            if not self.sm.all_alive(self.camera_packets):
                self.events.add(EventName.cameraMalfunction)
            elif not self.sm.all_freq_ok(self.camera_packets):
                self.events.add(EventName.cameraFrameRate)

            if self.sm['modelV2'].frameDropPerc > 20:
                self.events.add(EventName.modeldLagging)
            if self.sm['liveLocationKalman'].excessiveResets:
                self.events.add(EventName.localizerMalfunction)

            # Check if all manager processes are running
            not_running = {
                p.name
                for p in self.sm['managerState'].processes if not p.running
            }
            if self.sm.rcv_frame['managerState'] and (not_running -
                                                      IGNORE_PROCESSES):
                self.events.add(EventName.processNotRunning)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        speeds = self.sm['longitudinalPlan'].speeds
        if len(speeds) > 1:
            v_future = speeds[-1]
        else:
            v_future = 100.0
        if CS.brakePressed and v_future >= self.CP.vEgoStarting \
          and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3:
            self.events.add(EventName.noTarget)

    def data_sample(self):
        """Receive data from sockets and update carState"""

        # Update carState from CAN
        can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
        CS = self.CI.update(self.CC, can_strs)

        self.sm.update(0)

        if not self.initialized:
            all_valid = CS.canValid and self.sm.all_checks()
            if all_valid or self.sm.frame * DT_CTRL > 3.5 or SIMULATION:
                if not self.read_only:
                    self.CI.init(self.CP, self.can_sock,
                                 self.pm.sock['sendcan'])
                self.initialized = True

                if REPLAY and self.sm['pandaStates'][0].controlsAllowed:
                    self.state = State.enabled

                Params().put_bool("ControlsReady", True)

        # Check for CAN timeout
        if not can_strs:
            self.can_rcv_error_counter += 1
            self.can_rcv_error = True
        else:
            self.can_rcv_error = False

        # When the panda and controlsd do not agree on controls_allowed
        # we want to disengage openpilot. However the status from the panda goes through
        # another socket other than the CAN messages and one can arrive earlier than the other.
        # Therefore we allow a mismatch for two samples, then we trigger the disengagement.
        if not self.enabled:
            self.mismatch_counter = 0

        # All pandas not in silent mode must have controlsAllowed when openpilot is enabled
        if self.enabled and any(not ps.controlsAllowed
                                for ps in self.sm['pandaStates']
                                if ps.safetyModel not in IGNORED_SAFETY_MODES):
            self.mismatch_counter += 1

        self.distance_traveled += CS.vEgo * DT_CTRL

        return CS

    def state_transition(self, CS):
        """Compute conditional state transitions and execute actions on state transitions"""

        self.v_cruise_kph_last = self.v_cruise_kph

        # if stock cruise is completely disabled, then we can use our own set speed logic
        if not self.CP.pcmCruise:
            self.v_cruise_kph = update_v_cruise(self.v_cruise_kph,
                                                CS.buttonEvents,
                                                self.button_timers,
                                                self.enabled, self.is_metric)
        else:
            if CS.cruiseState.available:
                self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH
            else:
                self.v_cruise_kph = 0

        # decrement the soft disable timer at every step, as it's reset on
        # entrance in SOFT_DISABLING state
        self.soft_disable_timer = max(0, self.soft_disable_timer - 1)

        self.current_alert_types = [ET.PERMANENT]

        # ENABLED, SOFT DISABLING, PRE ENABLING, OVERRIDING
        if self.state != State.disabled:
            # user and immediate disable always have priority in a non-disabled state
            if self.events.any(ET.USER_DISABLE):
                self.state = State.disabled
                self.current_alert_types.append(ET.USER_DISABLE)

            elif self.events.any(ET.IMMEDIATE_DISABLE):
                self.state = State.disabled
                self.current_alert_types.append(ET.IMMEDIATE_DISABLE)

            else:
                # ENABLED
                if self.state == State.enabled:
                    if self.events.any(ET.SOFT_DISABLE):
                        self.state = State.softDisabling
                        self.soft_disable_timer = int(SOFT_DISABLE_TIME /
                                                      DT_CTRL)
                        self.current_alert_types.append(ET.SOFT_DISABLE)

                    elif self.events.any(ET.OVERRIDE):
                        self.state = State.overriding
                        self.current_alert_types.append(ET.OVERRIDE)

                # SOFT DISABLING
                elif self.state == State.softDisabling:
                    if not self.events.any(ET.SOFT_DISABLE):
                        # no more soft disabling condition, so go back to ENABLED
                        self.state = State.enabled

                    elif self.soft_disable_timer > 0:
                        self.current_alert_types.append(ET.SOFT_DISABLE)

                    elif self.soft_disable_timer <= 0:
                        self.state = State.disabled

                # PRE ENABLING
                elif self.state == State.preEnabled:
                    if self.events.any(ET.NO_ENTRY):
                        self.state = State.disabled
                        self.current_alert_types.append(ET.NO_ENTRY)
                    elif not self.events.any(ET.PRE_ENABLE):
                        self.state = State.enabled
                    else:
                        self.current_alert_types.append(ET.PRE_ENABLE)

                # OVERRIDING
                elif self.state == State.overriding:
                    if self.events.any(ET.SOFT_DISABLE):
                        self.state = State.softDisabling
                        self.soft_disable_timer = int(SOFT_DISABLE_TIME /
                                                      DT_CTRL)
                        self.current_alert_types.append(ET.SOFT_DISABLE)
                    elif not self.events.any(ET.OVERRIDE):
                        self.state = State.enabled
                    else:
                        self.current_alert_types.append(ET.OVERRIDE)

        # DISABLED
        elif self.state == State.disabled:
            if self.events.any(ET.ENABLE):
                if self.events.any(ET.NO_ENTRY):
                    self.current_alert_types.append(ET.NO_ENTRY)

                else:
                    if self.events.any(ET.PRE_ENABLE):
                        self.state = State.preEnabled
                    elif self.events.any(ET.OVERRIDE):
                        self.state = State.overriding
                    else:
                        self.state = State.enabled
                    self.current_alert_types.append(ET.ENABLE)
                    if not self.CP.pcmCruise:
                        self.v_cruise_kph = initialize_v_cruise(
                            CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last)

        # Check if openpilot is engaged and actuators are enabled
        self.enabled = self.state in ENABLED_STATES
        self.active = self.state in ACTIVE_STATES
        if self.active:
            self.current_alert_types.append(ET.WARNING)

    def state_control(self, CS):
        """Given the state, this function returns a CarControl packet"""

        # Update VehicleModel
        params = self.sm['liveParameters']
        x = max(params.stiffnessFactor, 0.1)
        sr = max(params.steerRatio, 0.1)
        self.VM.update_params(x, sr)

        lat_plan = self.sm['lateralPlan']
        long_plan = self.sm['longitudinalPlan']

        CC = car.CarControl.new_message()
        CC.enabled = self.enabled
        # Check which actuators can be enabled
        CC.latActive = self.active and not CS.steerFaultTemporary and not CS.steerFaultPermanent and \
                         CS.vEgo > self.CP.minSteerSpeed and not CS.standstill
        CC.longActive = self.active and not self.events.any(ET.OVERRIDE)

        actuators = CC.actuators
        actuators.longControlState = self.LoC.long_control_state

        if CS.leftBlinker or CS.rightBlinker:
            self.last_blinker_frame = self.sm.frame

        # State specific actions

        if not CC.latActive:
            self.LaC.reset()
        if not CC.longActive:
            self.LoC.reset(v_pid=CS.vEgo)

        if not self.joystick_mode:
            # accel PID loop
            pid_accel_limits = self.CI.get_pid_accel_limits(
                self.CP, CS.vEgo, self.v_cruise_kph * CV.KPH_TO_MS)
            t_since_plan = (self.sm.frame -
                            self.sm.rcv_frame['longitudinalPlan']) * DT_CTRL
            actuators.accel = self.LoC.update(CC.longActive, CS, self.CP,
                                              long_plan, pid_accel_limits,
                                              t_since_plan)

            # Steering PID loop and lateral MPC
            desired_curvature, desired_curvature_rate = get_lag_adjusted_curvature(
                self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures,
                lat_plan.curvatureRates)
            actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(
                CC.latActive, CS, self.CP, self.VM, params,
                self.last_actuators, desired_curvature, desired_curvature_rate)
        else:
            lac_log = log.ControlsState.LateralDebugState.new_message()
            if self.sm.rcv_frame['testJoystick'] > 0:
                if CC.longActive:
                    actuators.accel = 4.0 * clip(
                        self.sm['testJoystick'].axes[0], -1, 1)

                if CC.latActive:
                    steer = clip(self.sm['testJoystick'].axes[1], -1, 1)
                    # max angle is 45 for angle-based cars
                    actuators.steer, actuators.steeringAngleDeg = steer, steer * 45.

                lac_log.active = self.active
                lac_log.steeringAngleDeg = CS.steeringAngleDeg
                lac_log.output = actuators.steer
                lac_log.saturated = abs(actuators.steer) >= 0.9

        # Send a "steering required alert" if saturation count has reached the limit
        if lac_log.active and lac_log.saturated and not CS.steeringPressed:
            dpath_points = lat_plan.dPathPoints
            if len(dpath_points):
                # Check if we deviated from the path
                # TODO use desired vs actual curvature
                left_deviation = actuators.steer > 0 and dpath_points[0] < -0.20
                right_deviation = actuators.steer < 0 and dpath_points[0] > 0.20

                if left_deviation or right_deviation:
                    self.events.add(EventName.steerSaturated)

        # Ensure no NaNs/Infs
        for p in ACTUATOR_FIELDS:
            attr = getattr(actuators, p)
            if not isinstance(attr, Number):
                continue

            if not math.isfinite(attr):
                cloudlog.error(
                    f"actuators.{p} not finite {actuators.to_dict()}")
                setattr(actuators, p, 0.0)

        return CC, lac_log

    def update_button_timers(self, buttonEvents):
        # increment timer for buttons still pressed
        for k in self.button_timers:
            if self.button_timers[k] > 0:
                self.button_timers[k] += 1

        for b in buttonEvents:
            if b.type.raw in self.button_timers:
                self.button_timers[b.type.raw] = 1 if b.pressed else 0

    def publish_logs(self, CS, start_time, CC, lac_log):
        """Send actuators and hud commands to the car, send controlsstate and MPC logging"""

        # Orientation and angle rates can be useful for carcontroller
        # Only calibrated (car) frame is relevant for the carcontroller
        orientation_value = list(
            self.sm['liveLocationKalman'].calibratedOrientationNED.value)
        if len(orientation_value) > 2:
            CC.orientationNED = orientation_value
        angular_rate_value = list(
            self.sm['liveLocationKalman'].angularVelocityCalibrated.value)
        if len(angular_rate_value) > 2:
            CC.angularVelocity = angular_rate_value

        CC.cruiseControl.cancel = CS.cruiseState.enabled and (
            not self.enabled or not self.CP.pcmCruise)
        if self.joystick_mode and self.sm.rcv_frame[
                'testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]:
            CC.cruiseControl.cancel = True

        hudControl = CC.hudControl
        hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS)
        hudControl.speedVisible = self.enabled
        hudControl.lanesVisible = self.enabled
        hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead

        hudControl.rightLaneVisible = True
        hudControl.leftLaneVisible = True

        recent_blinker = (self.sm.frame - self.last_blinker_frame
                          ) * DT_CTRL < 5.0  # 5s blinker cooldown
        ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
                        and not CC.latActive and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED

        model_v2 = self.sm['modelV2']
        desire_prediction = model_v2.meta.desirePrediction
        if len(desire_prediction) and ldw_allowed:
            right_lane_visible = self.sm['lateralPlan'].rProb > 0.5
            left_lane_visible = self.sm['lateralPlan'].lProb > 0.5
            l_lane_change_prob = desire_prediction[Desire.laneChangeLeft - 1]
            r_lane_change_prob = desire_prediction[Desire.laneChangeRight - 1]

            lane_lines = model_v2.laneLines
            l_lane_close = left_lane_visible and (lane_lines[1].y[0] >
                                                  -(1.08 + CAMERA_OFFSET))
            r_lane_close = right_lane_visible and (lane_lines[2].y[0] <
                                                   (1.08 - CAMERA_OFFSET))

            hudControl.leftLaneDepart = bool(
                l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
            hudControl.rightLaneDepart = bool(
                r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)

        if hudControl.rightLaneDepart or hudControl.leftLaneDepart:
            self.events.add(EventName.ldw)

        clear_event_types = set()
        if ET.WARNING not in self.current_alert_types:
            clear_event_types.add(ET.WARNING)
        if self.enabled:
            clear_event_types.add(ET.NO_ENTRY)

        alerts = self.events.create_alerts(
            self.current_alert_types,
            [self.CP, self.sm, self.is_metric, self.soft_disable_timer])
        self.AM.add_many(self.sm.frame, alerts)
        current_alert = self.AM.process_alerts(self.sm.frame,
                                               clear_event_types)
        if current_alert:
            hudControl.visualAlert = current_alert.visual_alert

        if not self.read_only and self.initialized:
            # send car controls over can
            self.last_actuators, can_sends = self.CI.apply(CC)
            self.pm.send(
                'sendcan',
                can_list_to_can_capnp(can_sends,
                                      msgtype='sendcan',
                                      valid=CS.canValid))
            CC.actuatorsOutput = self.last_actuators

        force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \
                      (self.state == State.softDisabling)

        # Curvature & Steering angle
        params = self.sm['liveParameters']

        steer_angle_without_offset = math.radians(CS.steeringAngleDeg -
                                                  params.angleOffsetDeg)
        curvature = -self.VM.calc_curvature(steer_angle_without_offset,
                                            CS.vEgo, params.roll)

        # controlsState
        dat = messaging.new_message('controlsState')
        dat.valid = CS.canValid
        controlsState = dat.controlsState
        if current_alert:
            controlsState.alertText1 = current_alert.alert_text_1
            controlsState.alertText2 = current_alert.alert_text_2
            controlsState.alertSize = current_alert.alert_size
            controlsState.alertStatus = current_alert.alert_status
            controlsState.alertBlinkingRate = current_alert.alert_rate
            controlsState.alertType = current_alert.alert_type
            controlsState.alertSound = current_alert.audible_alert

        controlsState.canMonoTimes = list(CS.canMonoTimes)
        controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime[
            'longitudinalPlan']
        controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan']
        controlsState.enabled = self.enabled
        controlsState.active = self.active
        controlsState.curvature = curvature
        controlsState.state = self.state
        controlsState.engageable = not self.events.any(ET.NO_ENTRY)
        controlsState.longControlState = self.LoC.long_control_state
        controlsState.vPid = float(self.LoC.v_pid)
        controlsState.vCruise = float(self.v_cruise_kph)
        controlsState.upAccelCmd = float(self.LoC.pid.p)
        controlsState.uiAccelCmd = float(self.LoC.pid.i)
        controlsState.ufAccelCmd = float(self.LoC.pid.f)
        controlsState.cumLagMs = -self.rk.remaining * 1000.
        controlsState.startMonoTime = int(start_time * 1e9)
        controlsState.forceDecel = bool(force_decel)
        controlsState.canErrorCounter = self.can_rcv_error_counter

        lat_tuning = self.CP.lateralTuning.which()
        if self.joystick_mode:
            controlsState.lateralControlState.debugState = lac_log
        elif self.CP.steerControlType == car.CarParams.SteerControlType.angle:
            controlsState.lateralControlState.angleState = lac_log
        elif lat_tuning == 'pid':
            controlsState.lateralControlState.pidState = lac_log
        elif lat_tuning == 'lqr':
            controlsState.lateralControlState.lqrState = lac_log
        elif lat_tuning == 'indi':
            controlsState.lateralControlState.indiState = lac_log

        self.pm.send('controlsState', dat)

        # carState
        car_events = self.events.to_msg()
        cs_send = messaging.new_message('carState')
        cs_send.valid = CS.canValid
        cs_send.carState = CS
        cs_send.carState.events = car_events
        self.pm.send('carState', cs_send)

        # carEvents - logged every second or on change
        if (self.sm.frame % int(1. / DT_CTRL)
                == 0) or (self.events.names != self.events_prev):
            ce_send = messaging.new_message('carEvents', len(self.events))
            ce_send.carEvents = car_events
            self.pm.send('carEvents', ce_send)
        self.events_prev = self.events.names.copy()

        # carParams - logged every 50 seconds (> 1 per segment)
        if (self.sm.frame % int(50. / DT_CTRL) == 0):
            cp_send = messaging.new_message('carParams')
            cp_send.carParams = self.CP
            self.pm.send('carParams', cp_send)

        # carControl
        cc_send = messaging.new_message('carControl')
        cc_send.valid = CS.canValid
        cc_send.carControl = CC
        self.pm.send('carControl', cc_send)

        # copy CarControl to pass to CarInterface on the next iteration
        self.CC = CC

    def step(self):
        start_time = sec_since_boot()
        self.prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data from sockets and get a carState
        CS = self.data_sample()
        cloudlog.timestamp("Data sampled")
        self.prof.checkpoint("Sample")

        self.update_events(CS)
        cloudlog.timestamp("Events updated")

        if not self.read_only and self.initialized:
            # Update control state
            self.state_transition(CS)
            self.prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        CC, lac_log = self.state_control(CS)

        self.prof.checkpoint("State Control")

        # Publish data
        self.publish_logs(CS, start_time, CC, lac_log)
        self.prof.checkpoint("Sent")

        self.update_button_timers(CS.buttonEvents)
        self.CS_prev = CS

    def controlsd_thread(self):
        while True:
            self.step()
            self.rk.monitor_time()
            self.prof.display()
示例#2
0
class Controls:
    def __init__(self, sm=None, pm=None, can_sock=None):
        config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH)

        # Setup sockets
        self.pm = pm
        if self.pm is None:
            self.pm = messaging.PubMaster([
                'sendcan', 'controlsState', 'carState', 'carControl',
                'carEvents', 'carParams'
            ])

        self.camera_packets = ["roadCameraState", "driverCameraState"]
        if TICI:
            self.camera_packets.append("wideRoadCameraState")

        params = Params()
        self.joystick_mode = params.get_bool("JoystickDebugMode")
        joystick_packet = ['testJoystick'] if self.joystick_mode else []

        self.sm = sm
        if self.sm is None:
            ignore = ['driverCameraState', 'managerState'
                      ] if SIMULATION else None
            self.sm = messaging.SubMaster(
                [
                    'deviceState', 'pandaState', 'modelV2', 'liveCalibration',
                    'driverMonitoringState', 'longitudinalPlan', 'lateralPlan',
                    'liveLocationKalman', 'managerState', 'liveParameters',
                    'radarState'
                ] + self.camera_packets + joystick_packet,
                ignore_alive=ignore,
                ignore_avg_freq=['radarState', 'longitudinalPlan'])

        self.can_sock = can_sock
        if can_sock is None:
            can_timeout = None if os.environ.get('NO_CAN_TIMEOUT',
                                                 False) else 100
            self.can_sock = messaging.sub_sock('can', timeout=can_timeout)

        if TICI:
            self.log_sock = messaging.sub_sock('androidLog')

        # wait for one pandaState and one CAN packet
        print("Waiting for CAN messages...")
        get_one_can(self.can_sock)

        self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'])

        # read params
        self.is_metric = params.get_bool("IsMetric")
        self.is_ldw_enabled = params.get_bool("IsLdwEnabled")
        community_feature_toggle = params.get_bool("CommunityFeaturesToggle")
        openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle")
        passive = params.get_bool("Passive") or not openpilot_enabled_toggle

        # detect sound card presence and ensure successful init
        sounds_available = HARDWARE.get_sound_card_online()

        car_recognized = self.CP.carName != 'mock'

        controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly
        community_feature = self.CP.communityFeature or \
                            self.CP.fingerprintSource == car.CarParams.FingerprintSource.can
        community_feature_disallowed = community_feature and (
            not community_feature_toggle)
        self.read_only = not car_recognized or not controller_available or \
                           self.CP.dashcamOnly or community_feature_disallowed
        if self.read_only:
            self.CP.safetyModel = car.CarParams.SafetyModel.noOutput

        # Write CarParams for radard
        cp_bytes = self.CP.to_bytes()
        params.put("CarParams", cp_bytes)
        put_nonblocking("CarParamsCache", cp_bytes)

        self.CC = car.CarControl.new_message()
        self.AM = AlertManager()
        self.events = Events()

        self.LoC = LongControl(self.CP, self.CI.compute_gb)
        self.VM = VehicleModel(self.CP)

        if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
            self.LaC = LatControlAngle(self.CP)
        elif self.CP.lateralTuning.which() == 'pid':
            self.LaC = LatControlPID(self.CP)
        elif self.CP.lateralTuning.which() == 'indi':
            self.LaC = LatControlINDI(self.CP)
        elif self.CP.lateralTuning.which() == 'lqr':
            self.LaC = LatControlLQR(self.CP)

        self.initialized = False
        self.state = State.disabled
        self.enabled = False
        self.active = False
        self.can_rcv_error = False
        self.soft_disable_timer = 0
        self.v_cruise_kph = 255
        self.v_cruise_kph_last = 0
        self.mismatch_counter = 0
        self.can_error_counter = 0
        self.last_blinker_frame = 0
        self.saturated_count = 0
        self.distance_traveled = 0
        self.last_functional_fan_frame = 0
        self.events_prev = []
        self.current_alert_types = [ET.PERMANENT]
        self.logged_comm_issue = False
        self.v_target = 0.0
        self.a_target = 0.0

        # TODO: no longer necessary, aside from process replay
        self.sm['liveParameters'].valid = True

        self.startup_event = get_startup_event(car_recognized,
                                               controller_available,
                                               self.CP.fuzzyFingerprint,
                                               len(self.CP.carFw) > 0)

        if not sounds_available:
            self.events.add(EventName.soundsUnavailable, static=True)
        if community_feature_disallowed and car_recognized and not self.CP.dashcamOnly:
            self.events.add(EventName.communityFeatureDisallowed, static=True)
        if not car_recognized:
            self.events.add(EventName.carUnrecognized, static=True)
        elif self.read_only:
            self.events.add(EventName.dashcamMode, static=True)
        elif self.joystick_mode:
            self.events.add(EventName.joystickDebug, static=True)
            self.startup_event = None

        # controlsd is driven by can recv, expected at 100Hz
        self.rk = Ratekeeper(100, print_delay_threshold=None)
        self.prof = Profiler(False)  # off by default

    def update_events(self, CS):
        """Compute carEvents from carState"""

        self.events.clear()
        self.events.add_from_msg(CS.events)
        self.events.add_from_msg(self.sm['driverMonitoringState'].events)

        # Handle startup event
        if self.startup_event is not None:
            self.events.add(self.startup_event)
            self.startup_event = None

        # Don't add any more events if not initialized
        if not self.initialized:
            self.events.add(EventName.controlsInitializing)
            return

        # Create events for battery, temperature, disk space, and memory
        if self.sm['deviceState'].batteryPercent < 1 and self.sm[
                'deviceState'].chargingError:
            # at zero percent battery, while discharging, OP should not allowed
            self.events.add(EventName.lowBattery)
        if self.sm['deviceState'].thermalStatus >= ThermalStatus.red:
            self.events.add(EventName.overheat)
        if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION:
            # under 7% of space free no enable allowed
            self.events.add(EventName.outOfSpace)
        # TODO: make tici threshold the same
        if self.sm['deviceState'].memoryUsagePercent > (90 if TICI else
                                                        65) and not SIMULATION:
            self.events.add(EventName.lowMemory)

        # Alert if fan isn't spinning for 5 seconds
        if self.sm['pandaState'].pandaType in [PandaType.uno, PandaType.dos]:
            if self.sm['pandaState'].fanSpeedRpm == 0 and self.sm[
                    'deviceState'].fanSpeedPercentDesired > 50:
                if (self.sm.frame -
                        self.last_functional_fan_frame) * DT_CTRL > 5.0:
                    self.events.add(EventName.fanMalfunction)
            else:
                self.last_functional_fan_frame = self.sm.frame

        # Handle calibration status
        cal_status = self.sm['liveCalibration'].calStatus
        if cal_status != Calibration.CALIBRATED:
            if cal_status == Calibration.UNCALIBRATED:
                self.events.add(EventName.calibrationIncomplete)
            else:
                self.events.add(EventName.calibrationInvalid)

        # Handle lane change
        if self.sm[
                'lateralPlan'].laneChangeState == LaneChangeState.preLaneChange:
            direction = self.sm['lateralPlan'].laneChangeDirection
            if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \
               (CS.rightBlindspot and direction == LaneChangeDirection.right):
                self.events.add(EventName.laneChangeBlocked)
            else:
                if direction == LaneChangeDirection.left:
                    self.events.add(EventName.preLaneChangeLeft)
                else:
                    self.events.add(EventName.preLaneChangeRight)
        elif self.sm['lateralPlan'].laneChangeState in [
                LaneChangeState.laneChangeStarting,
                LaneChangeState.laneChangeFinishing
        ]:
            self.events.add(EventName.laneChange)

        if self.can_rcv_error or not CS.canValid:
            self.events.add(EventName.canError)

        safety_mismatch = self.sm[
            'pandaState'].safetyModel != self.CP.safetyModel or self.sm[
                'pandaState'].safetyParam != self.CP.safetyParam
        if safety_mismatch or self.mismatch_counter >= 200:
            self.events.add(EventName.controlsMismatch)

        if not self.sm['liveParameters'].valid:
            self.events.add(EventName.vehicleModelInvalid)

        if len(self.sm['radarState'].radarErrors):
            self.events.add(EventName.radarFault)
        elif not self.sm.valid["pandaState"]:
            self.events.add(EventName.usbError)
        elif not self.sm.all_alive_and_valid():
            self.events.add(EventName.commIssue)
            if not self.logged_comm_issue:
                invalid = [
                    s for s, valid in self.sm.valid.items() if not valid
                ]
                not_alive = [
                    s for s, alive in self.sm.alive.items() if not alive
                ]
                cloudlog.event("commIssue",
                               invalid=invalid,
                               not_alive=not_alive)
                self.logged_comm_issue = True
        else:
            self.logged_comm_issue = False

        if not self.sm['lateralPlan'].mpcSolutionValid:
            self.events.add(EventName.plannerError)
        if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR:
            if self.sm.frame > 5 / DT_CTRL:  # Give locationd some time to receive all the inputs
                self.events.add(EventName.sensorDataInvalid)
        if not self.sm['liveLocationKalman'].posenetOK:
            self.events.add(EventName.posenetInvalid)
        if not self.sm['liveLocationKalman'].deviceStable:
            self.events.add(EventName.deviceFalling)
        if log.PandaState.FaultType.relayMalfunction in self.sm[
                'pandaState'].faults:
            self.events.add(EventName.relayMalfunction)
        if self.sm['longitudinalPlan'].fcw or (
                self.enabled and self.sm['modelV2'].meta.hardBrakePredicted):
            self.events.add(EventName.fcw)

        if TICI:
            logs = messaging.drain_sock(self.log_sock, wait_for_one=False)
            messages = []
            for m in logs:
                try:
                    messages.append(m.androidLog.message)
                except UnicodeDecodeError:
                    pass

            for err in [
                    "ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW",
                    "APPLY FAILED"
            ]:
                for m in messages:
                    if err not in m:
                        continue

                    csid = m.split("CSID:")[-1].split(" ")[0]
                    evt = {
                        "0": EventName.roadCameraError,
                        "1": EventName.wideRoadCameraError,
                        "2": EventName.driverCameraError
                    }.get(csid, None)
                    if evt is not None:
                        self.events.add(evt)

        # TODO: fix simulator
        if not SIMULATION:
            if not NOSENSOR:
                if not self.sm['liveLocationKalman'].gpsOK and (
                        self.distance_traveled > 1000):
                    # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes
                    self.events.add(EventName.noGps)
            if not self.sm.all_alive(self.camera_packets):
                self.events.add(EventName.cameraMalfunction)
            if self.sm['modelV2'].frameDropPerc > 20:
                self.events.add(EventName.modeldLagging)
            if self.sm['liveLocationKalman'].excessiveResets:
                self.events.add(EventName.localizerMalfunction)

            # Check if all manager processes are running
            not_running = set(p.name for p in self.sm['managerState'].processes
                              if not p.running)
            if self.sm.rcv_frame['managerState'] and (not_running -
                                                      IGNORE_PROCESSES):
                self.events.add(EventName.processNotRunning)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        speeds = self.sm['longitudinalPlan'].speeds
        if len(speeds) > 1:
            v_future = speeds[-1]
        else:
            v_future = 100.0
        if CS.brakePressed and v_future >= STARTING_TARGET_SPEED \
          and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3:
            self.events.add(EventName.noTarget)

    def data_sample(self):
        """Receive data from sockets and update carState"""

        # Update carState from CAN
        can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
        CS = self.CI.update(self.CC, can_strs)

        self.sm.update(0)

        all_valid = CS.canValid and self.sm.all_alive_and_valid()
        if not self.initialized and (all_valid
                                     or self.sm.frame * DT_CTRL > 2.0):
            self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan'])
            self.initialized = True
            Params().put_bool("ControlsReady", True)

        # Check for CAN timeout
        if not can_strs:
            self.can_error_counter += 1
            self.can_rcv_error = True
        else:
            self.can_rcv_error = False

        # When the panda and controlsd do not agree on controls_allowed
        # we want to disengage openpilot. However the status from the panda goes through
        # another socket other than the CAN messages and one can arrive earlier than the other.
        # Therefore we allow a mismatch for two samples, then we trigger the disengagement.
        if not self.enabled:
            self.mismatch_counter = 0

        if not self.sm['pandaState'].controlsAllowed and self.enabled:
            self.mismatch_counter += 1

        self.distance_traveled += CS.vEgo * DT_CTRL

        return CS

    def state_transition(self, CS):
        """Compute conditional state transitions and execute actions on state transitions"""

        self.v_cruise_kph_last = self.v_cruise_kph

        # if stock cruise is completely disabled, then we can use our own set speed logic
        if not self.CP.pcmCruise:
            self.v_cruise_kph = update_v_cruise(self.v_cruise_kph,
                                                CS.buttonEvents, self.enabled)
        elif self.CP.pcmCruise and CS.cruiseState.enabled:
            self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

        # decrease the soft disable timer at every step, as it's reset on
        # entrance in SOFT_DISABLING state
        self.soft_disable_timer = max(0, self.soft_disable_timer - 1)

        self.current_alert_types = [ET.PERMANENT]

        # ENABLED, PRE ENABLING, SOFT DISABLING
        if self.state != State.disabled:
            # user and immediate disable always have priority in a non-disabled state
            if self.events.any(ET.USER_DISABLE):
                self.state = State.disabled
                self.current_alert_types.append(ET.USER_DISABLE)

            elif self.events.any(ET.IMMEDIATE_DISABLE):
                self.state = State.disabled
                self.current_alert_types.append(ET.IMMEDIATE_DISABLE)

            else:
                # ENABLED
                if self.state == State.enabled:
                    if self.events.any(ET.SOFT_DISABLE):
                        self.state = State.softDisabling
                        self.soft_disable_timer = 300  # 3s
                        self.current_alert_types.append(ET.SOFT_DISABLE)

                # SOFT DISABLING
                elif self.state == State.softDisabling:
                    if not self.events.any(ET.SOFT_DISABLE):
                        # no more soft disabling condition, so go back to ENABLED
                        self.state = State.enabled

                    elif self.events.any(
                            ET.SOFT_DISABLE) and self.soft_disable_timer > 0:
                        self.current_alert_types.append(ET.SOFT_DISABLE)

                    elif self.soft_disable_timer <= 0:
                        self.state = State.disabled

                # PRE ENABLING
                elif self.state == State.preEnabled:
                    if not self.events.any(ET.PRE_ENABLE):
                        self.state = State.enabled
                    else:
                        self.current_alert_types.append(ET.PRE_ENABLE)

        # DISABLED
        elif self.state == State.disabled:
            if self.events.any(ET.ENABLE):
                if self.events.any(ET.NO_ENTRY):
                    self.current_alert_types.append(ET.NO_ENTRY)

                else:
                    if self.events.any(ET.PRE_ENABLE):
                        self.state = State.preEnabled
                    else:
                        self.state = State.enabled
                    self.current_alert_types.append(ET.ENABLE)
                    self.v_cruise_kph = initialize_v_cruise(
                        CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last)

        # Check if actuators are enabled
        self.active = self.state == State.enabled or self.state == State.softDisabling
        if self.active:
            self.current_alert_types.append(ET.WARNING)

        # Check if openpilot is engaged
        self.enabled = self.active or self.state == State.preEnabled

    def state_control(self, CS):
        """Given the state, this function returns an actuators packet"""

        # Update VehicleModel
        params = self.sm['liveParameters']
        x = max(params.stiffnessFactor, 0.1)
        sr = max(params.steerRatio, 0.1)
        self.VM.update_params(x, sr)

        lat_plan = self.sm['lateralPlan']
        long_plan = self.sm['longitudinalPlan']

        actuators = car.CarControl.Actuators.new_message()

        if CS.leftBlinker or CS.rightBlinker:
            self.last_blinker_frame = self.sm.frame

        # State specific actions

        if not self.active:
            self.LaC.reset()
            self.LoC.reset(v_pid=CS.vEgo)

        if not self.joystick_mode:
            # Gas/Brake PID loop
            actuators.gas, actuators.brake, self.v_target, self.a_target = self.LoC.update(
                self.active, CS, self.CP, long_plan)

            # Steering PID loop and lateral MPC
            desired_curvature, desired_curvature_rate = get_lag_adjusted_curvature(
                self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures,
                lat_plan.curvatureRates)
            actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(
                self.active, CS, self.CP, self.VM, params, desired_curvature,
                desired_curvature_rate)
        else:
            lac_log = log.ControlsState.LateralDebugState.new_message()
            if self.sm.rcv_frame['testJoystick'] > 0 and self.active:
                gb = clip(self.sm['testJoystick'].axes[0], -1, 1)
                actuators.gas, actuators.brake = max(gb, 0), max(-gb, 0)

                steer = clip(self.sm['testJoystick'].axes[1], -1, 1)
                # max angle is 45 for angle-based cars
                actuators.steer, actuators.steeringAngleDeg = steer, steer * 45.

                lac_log.active = True
                lac_log.steeringAngleDeg = CS.steeringAngleDeg
                lac_log.output = steer
                lac_log.saturated = abs(steer) >= 0.9

        # Check for difference between desired angle and angle for angle based control
        angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \
          abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD

        if angle_control_saturated and not CS.steeringPressed and self.active:
            self.saturated_count += 1
        else:
            self.saturated_count = 0

        # Send a "steering required alert" if saturation count has reached the limit
        if (lac_log.saturated and not CS.steeringPressed) or \
           (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT):

            if len(lat_plan.dPathPoints):
                # Check if we deviated from the path
                left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[
                    0] < -0.1
                right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[
                    0] > 0.1

                if left_deviation or right_deviation:
                    self.events.add(EventName.steerSaturated)

        return actuators, lac_log

    def publish_logs(self, CS, start_time, actuators, lac_log):
        """Send actuators and hud commands to the car, send controlsstate and MPC logging"""

        CC = car.CarControl.new_message()
        CC.enabled = self.enabled
        CC.actuators = actuators

        CC.cruiseControl.override = True
        CC.cruiseControl.cancel = not self.CP.pcmCruise or (
            not self.enabled and CS.cruiseState.enabled)
        if self.joystick_mode and self.sm.rcv_frame[
                'testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]:
            CC.cruiseControl.cancel = True

        # TODO remove car specific stuff in controls
        # Some override values for Honda
        # brake discount removes a sharp nonlinearity
        brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0))
        speed_override = max(0.0,
                             (self.LoC.v_pid + CS.cruiseState.speedOffset) *
                             brake_discount)
        CC.cruiseControl.speedOverride = float(
            speed_override if self.CP.pcmCruise else 0.0)
        CC.cruiseControl.accelOverride = float(
            self.CI.calc_accel_override(CS.aEgo, self.a_target, CS.vEgo,
                                        self.v_target))

        CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS)
        CC.hudControl.speedVisible = self.enabled
        CC.hudControl.lanesVisible = self.enabled
        CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead

        right_lane_visible = self.sm['lateralPlan'].rProb > 0.5
        left_lane_visible = self.sm['lateralPlan'].lProb > 0.5
        CC.hudControl.rightLaneVisible = bool(right_lane_visible)
        CC.hudControl.leftLaneVisible = bool(left_lane_visible)

        recent_blinker = (self.sm.frame - self.last_blinker_frame
                          ) * DT_CTRL < 5.0  # 5s blinker cooldown
        ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
                        and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED

        meta = self.sm['modelV2'].meta
        if len(meta.desirePrediction) and ldw_allowed:
            l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft -
                                                       1]
            r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight -
                                                       1]
            l_lane_close = left_lane_visible and (
                self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + CAMERA_OFFSET))
            r_lane_close = right_lane_visible and (
                self.sm['modelV2'].laneLines[2].y[0] < (1.08 - CAMERA_OFFSET))

            CC.hudControl.leftLaneDepart = bool(
                l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
            CC.hudControl.rightLaneDepart = bool(
                r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)

        if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart:
            self.events.add(EventName.ldw)

        clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None
        alerts = self.events.create_alerts(self.current_alert_types,
                                           [self.CP, self.sm, self.is_metric])
        self.AM.add_many(self.sm.frame, alerts, self.enabled)
        self.AM.process_alerts(self.sm.frame, clear_event)
        CC.hudControl.visualAlert = self.AM.visual_alert

        if not self.read_only and self.initialized:
            # send car controls over can
            can_sends = self.CI.apply(CC)
            self.pm.send(
                'sendcan',
                can_list_to_can_capnp(can_sends,
                                      msgtype='sendcan',
                                      valid=CS.canValid))

        force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \
                      (self.state == State.softDisabling)

        # Curvature & Steering angle
        params = self.sm['liveParameters']
        steer_angle_without_offset = math.radians(CS.steeringAngleDeg -
                                                  params.angleOffsetAverageDeg)
        curvature = -self.VM.calc_curvature(steer_angle_without_offset,
                                            CS.vEgo)

        # controlsState
        dat = messaging.new_message('controlsState')
        dat.valid = CS.canValid
        controlsState = dat.controlsState
        controlsState.alertText1 = self.AM.alert_text_1
        controlsState.alertText2 = self.AM.alert_text_2
        controlsState.alertSize = self.AM.alert_size
        controlsState.alertStatus = self.AM.alert_status
        controlsState.alertBlinkingRate = self.AM.alert_rate
        controlsState.alertType = self.AM.alert_type
        controlsState.alertSound = self.AM.audible_alert
        controlsState.canMonoTimes = list(CS.canMonoTimes)
        controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime[
            'longitudinalPlan']
        controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan']
        controlsState.enabled = self.enabled
        controlsState.active = self.active
        controlsState.curvature = curvature
        controlsState.state = self.state
        controlsState.engageable = not self.events.any(ET.NO_ENTRY)
        controlsState.longControlState = self.LoC.long_control_state
        controlsState.vPid = float(self.LoC.v_pid)
        controlsState.vCruise = float(self.v_cruise_kph)
        controlsState.upAccelCmd = float(self.LoC.pid.p)
        controlsState.uiAccelCmd = float(self.LoC.pid.i)
        controlsState.ufAccelCmd = float(self.LoC.pid.f)
        controlsState.cumLagMs = -self.rk.remaining * 1000.
        controlsState.startMonoTime = int(start_time * 1e9)
        controlsState.forceDecel = bool(force_decel)
        controlsState.canErrorCounter = self.can_error_counter

        if self.joystick_mode:
            controlsState.lateralControlState.debugState = lac_log
        elif self.CP.steerControlType == car.CarParams.SteerControlType.angle:
            controlsState.lateralControlState.angleState = lac_log
        elif self.CP.lateralTuning.which() == 'pid':
            controlsState.lateralControlState.pidState = lac_log
        elif self.CP.lateralTuning.which() == 'lqr':
            controlsState.lateralControlState.lqrState = lac_log
        elif self.CP.lateralTuning.which() == 'indi':
            controlsState.lateralControlState.indiState = lac_log
        self.pm.send('controlsState', dat)

        # carState
        car_events = self.events.to_msg()
        cs_send = messaging.new_message('carState')
        cs_send.valid = CS.canValid
        cs_send.carState = CS
        cs_send.carState.events = car_events
        self.pm.send('carState', cs_send)

        # carEvents - logged every second or on change
        if (self.sm.frame % int(1. / DT_CTRL)
                == 0) or (self.events.names != self.events_prev):
            ce_send = messaging.new_message('carEvents', len(self.events))
            ce_send.carEvents = car_events
            self.pm.send('carEvents', ce_send)
        self.events_prev = self.events.names.copy()

        # carParams - logged every 50 seconds (> 1 per segment)
        if (self.sm.frame % int(50. / DT_CTRL) == 0):
            cp_send = messaging.new_message('carParams')
            cp_send.carParams = self.CP
            self.pm.send('carParams', cp_send)

        # carControl
        cc_send = messaging.new_message('carControl')
        cc_send.valid = CS.canValid
        cc_send.carControl = CC
        self.pm.send('carControl', cc_send)

        # copy CarControl to pass to CarInterface on the next iteration
        self.CC = CC

    def step(self):
        start_time = sec_since_boot()
        self.prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data from sockets and get a carState
        CS = self.data_sample()
        self.prof.checkpoint("Sample")

        self.update_events(CS)

        if not self.read_only and self.initialized:
            # Update control state
            self.state_transition(CS)
            self.prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, lac_log = self.state_control(CS)

        self.prof.checkpoint("State Control")

        # Publish data
        self.publish_logs(CS, start_time, actuators, lac_log)
        self.prof.checkpoint("Sent")

    def controlsd_thread(self):
        while True:
            self.step()
            self.rk.monitor_time()
            self.prof.display()
示例#3
0
def radard_thread(gctx=None):
  set_realtime_priority(2)

  # wait for stats about the car to come in from controls
  cloudlog.info("radard is waiting for CarParams")
  CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
  mocked = CP.carName == "mock"
  VM = VehicleModel(CP)
  cloudlog.info("radard got CarParams")

  # import the radar from the fingerprint
  cloudlog.info("radard is importing %s", CP.carName)
  RadarInterface = importlib.import_module('selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

  sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])

  # Default parameters
  live_parameters = messaging.new_message()
  live_parameters.init('liveParameters')
  live_parameters.liveParameters.valid = True
  live_parameters.liveParameters.steerRatio = CP.steerRatio
  live_parameters.liveParameters.stiffnessFactor = 1.0

  MP = ModelParser()
  RI = RadarInterface(CP)

  last_md_ts = 0
  last_controls_state_ts = 0

  # *** publish radarState and liveTracks
  radarState = messaging.pub_sock(service_list['radarState'].port)
  liveTracks = messaging.pub_sock(service_list['liveTracks'].port)

  path_x = np.arange(0.0, 140.0, 0.1)    # 140 meters is max

  # Time-alignment
  rate = 1. / DT_MDL  # model and radar are both at 20Hz
  v_len = 20   # how many speed data points to remember for t alignment with rdr data

  active = 0
  steer_angle = 0.
  steer_override = False

  tracks = defaultdict(dict)

  # Kalman filter stuff:
  ekfv = EKFV1D()
  speedSensorV = SimpleSensor(XV, 1, 2)

  # v_ego
  v_ego = 0.
  v_ego_hist_t = deque([0], maxlen=v_len)
  v_ego_hist_v = deque([0], maxlen=v_len)
  v_ego_t_aligned = 0.

  rk = Ratekeeper(rate, print_delay_threshold=None)
  while 1:
    rr = RI.update()

    ar_pts = {}
    for pt in rr.points:
      ar_pts[pt.trackId] = [pt.dRel + RDR_TO_LDR, pt.yRel, pt.vRel, pt.measured]

    sm.update(0)

    if sm.updated['liveParameters']:
        VM.update_params(sm['liveParameters'].stiffnessFactor, sm['liveParameters'].steerRatio)

    if sm.updated['controlsState']:
      active = sm['controlsState'].active
      v_ego = sm['controlsState'].vEgo
      steer_angle = sm['controlsState'].angleSteers
      steer_override = sm['controlsState'].steerOverride

      v_ego_hist_v.append(v_ego)
      v_ego_hist_t.append(float(rk.frame)/rate)

      last_controls_state_ts = sm.logMonoTime['controlsState']

    if sm.updated['model']:
      last_md_ts = sm.logMonoTime['model']
      MP.update(v_ego, sm['model'])


    # run kalman filter only if prob is high enough
    if MP.lead_prob > 0.7:
      reading = speedSensorV.read(MP.lead_dist, covar=np.matrix(MP.lead_var))
      ekfv.update_scalar(reading)
      ekfv.predict(DT_MDL)

      # When changing lanes the distance to the lead car can suddenly change,
      # which makes the Kalman filter output large relative acceleration
      if mocked and abs(MP.lead_dist - ekfv.state[XV]) > 2.0:
        ekfv.state[XV] = MP.lead_dist
        ekfv.covar = (np.diag([MP.lead_var, ekfv.var_init]))
        ekfv.state[SPEEDV] = 0.

      ar_pts[VISION_POINT] = (float(ekfv.state[XV]), np.polyval(MP.d_poly, float(ekfv.state[XV])),
                              float(ekfv.state[SPEEDV]), False)
    else:
      ekfv.state[XV] = MP.lead_dist
      ekfv.covar = (np.diag([MP.lead_var, ekfv.var_init]))
      ekfv.state[SPEEDV] = 0.

      if VISION_POINT in ar_pts:
        del ar_pts[VISION_POINT]

    # *** compute the likely path_y ***
    if (active and not steer_override) or mocked:
      # use path from model (always when mocking as steering is too noisy)
      path_y = np.polyval(MP.d_poly, path_x)
    else:
      # use path from steer, set angle_offset to 0 it does not only report the physical offset
      path_y = calc_lookahead_offset(v_ego, steer_angle, path_x, VM, angle_offset=live_parameters.liveParameters.angleOffsetAverage)[0]

    # *** remove missing points from meta data ***
    for ids in tracks.keys():
      if ids not in ar_pts:
        tracks.pop(ids, None)

    # *** compute the tracks ***
    for ids in ar_pts:
      # ignore standalone vision point, unless we are mocking the radar
      if ids == VISION_POINT and not mocked:
        continue
      rpt = ar_pts[ids]

      # align v_ego by a fixed time to align it with the radar measurement
      cur_time = float(rk.frame)/rate
      v_ego_t_aligned = np.interp(cur_time - RI.delay, v_ego_hist_t, v_ego_hist_v)

      d_path = np.sqrt(np.amin((path_x - rpt[0]) ** 2 + (path_y - rpt[1]) ** 2))
      # add sign
      d_path *= np.sign(rpt[1] - np.interp(rpt[0], path_x, path_y))

      # create the track if it doesn't exist or it's a new track
      if ids not in tracks:
        tracks[ids] = Track()
      tracks[ids].update(rpt[0], rpt[1], rpt[2], d_path, v_ego_t_aligned, rpt[3], steer_override)

    # allow the vision model to remove the stationary flag if distance and rel speed roughly match
    if VISION_POINT in ar_pts:
      fused_id = None
      best_score = NO_FUSION_SCORE
      for ids in tracks:
        dist_to_vision = np.sqrt((0.5*(ar_pts[VISION_POINT][0] - tracks[ids].dRel)) ** 2 + (2*(ar_pts[VISION_POINT][1] - tracks[ids].yRel)) ** 2)
        rel_speed_diff = abs(ar_pts[VISION_POINT][2] - tracks[ids].vRel)
        tracks[ids].update_vision_score(dist_to_vision, rel_speed_diff)
        if best_score > tracks[ids].vision_score:
          fused_id = ids
          best_score = tracks[ids].vision_score

      if fused_id is not None:
        tracks[fused_id].vision_cnt += 1
        tracks[fused_id].update_vision_fusion()

    if DEBUG:
      print("NEW CYCLE")
      if VISION_POINT in ar_pts:
        print("vision", ar_pts[VISION_POINT])

    idens = list(tracks.keys())
    track_pts = np.array([tracks[iden].get_key_for_cluster() for iden in idens])

    # If we have multiple points, cluster them
    if len(track_pts) > 1:
      cluster_idxs = cluster_points_centroid(track_pts, 2.5)
      clusters = [None] * (max(cluster_idxs) + 1)

      for idx in xrange(len(track_pts)):
        cluster_i = cluster_idxs[idx]
        if clusters[cluster_i] is None:
          clusters[cluster_i] = Cluster()
        clusters[cluster_i].add(tracks[idens[idx]])

    elif len(track_pts) == 1:
      # TODO: why do we need this?
      clusters = [Cluster()]
      clusters[0].add(tracks[idens[0]])
    else:
      clusters = []

    if DEBUG:
      for i in clusters:
        print(i)
    # *** extract the lead car ***
    lead_clusters = [c for c in clusters
                     if c.is_potential_lead(v_ego)]
    lead_clusters.sort(key=lambda x: x.dRel)
    lead_len = len(lead_clusters)

    # *** extract the second lead from the whole set of leads ***
    lead2_clusters = [c for c in lead_clusters
                      if c.is_potential_lead2(lead_clusters)]
    lead2_clusters.sort(key=lambda x: x.dRel)
    lead2_len = len(lead2_clusters)

    # *** publish radarState ***
    dat = messaging.new_message()
    dat.init('radarState')
    dat.valid = sm.all_alive_and_valid(service_list=['controlsState'])
    dat.radarState.mdMonoTime = last_md_ts
    dat.radarState.canMonoTimes = list(rr.canMonoTimes)
    dat.radarState.radarErrors = list(rr.errors)
    dat.radarState.controlsStateMonoTime = last_controls_state_ts
    if lead_len > 0:
      dat.radarState.leadOne = lead_clusters[0].toRadarState()
      if lead2_len > 0:
        dat.radarState.leadTwo = lead2_clusters[0].toRadarState()
      else:
        dat.radarState.leadTwo.status = False
    else:
      dat.radarState.leadOne.status = False

    dat.radarState.cumLagMs = -rk.remaining*1000.
    radarState.send(dat.to_bytes())

    # *** publish tracks for UI debugging (keep last) ***
    dat = messaging.new_message()
    dat.init('liveTracks', len(tracks))

    for cnt, ids in enumerate(tracks.keys()):
      if DEBUG:
        print("id: %4.0f x:  %4.1f  y: %4.1f  vr: %4.1f d: %4.1f  va: %4.1f  vl: %4.1f  vlk: %4.1f alk: %4.1f  s: %1.0f  v: %1.0f" % \
          (ids, tracks[ids].dRel, tracks[ids].yRel, tracks[ids].vRel,
           tracks[ids].dPath, tracks[ids].vLat,
           tracks[ids].vLead, tracks[ids].vLeadK,
           tracks[ids].aLeadK,
           tracks[ids].stationary,
           tracks[ids].measured))
      dat.liveTracks[cnt] = {
        "trackId": ids,
        "dRel": float(tracks[ids].dRel),
        "yRel": float(tracks[ids].yRel),
        "vRel": float(tracks[ids].vRel),
        "aRel": float(tracks[ids].aRel),
        "stationary": bool(tracks[ids].stationary),
        "oncoming": bool(tracks[ids].oncoming),
      }
    liveTracks.send(dat.to_bytes())

    rk.monitor_time()
示例#4
0
class Controls:
  def __init__(self, sm=None, pm=None, can_sock=None):
    config_realtime_process(3, Priority.CTRL_HIGH)

    # Setup sockets
    self.pm = pm
    if self.pm is None:
      self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState',
                                     'carControl', 'carEvents', 'carParams'])

    self.sm = sm
    if self.sm is None:
      ignore = ['driverCameraState', 'managerState'] if SIMULATION else None
      self.sm = messaging.SubMaster(['deviceState', 'pandaState', 'modelV2', 'liveCalibration',
                                     'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman',
                                     'roadCameraState', 'driverCameraState', 'managerState', 'liveParameters', 'radarState'], ignore_alive=ignore)

    self.can_sock = can_sock
    if can_sock is None:
      can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100
      self.can_sock = messaging.sub_sock('can', timeout=can_timeout)

    # wait for one pandaState and one CAN packet
    hw_type = messaging.recv_one(self.sm.sock['pandaState']).pandaState.pandaType
    has_relay = hw_type in [PandaType.blackPanda, PandaType.uno, PandaType.dos]
    print("Waiting for CAN messages...")
    get_one_can(self.can_sock)

    self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'], has_relay)

    # read params
    params = Params()
    self.is_metric = params.get_bool("IsMetric")
    self.is_ldw_enabled = params.get_bool("IsLdwEnabled")
    community_feature_toggle = params.get_bool("CommunityFeaturesToggle")
    openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle")
    passive = params.get_bool("Passive") or not openpilot_enabled_toggle

    # detect sound card presence and ensure successful init
    sounds_available = HARDWARE.get_sound_card_online()

    car_recognized = self.CP.carName != 'mock'
    # If stock camera is disconnected, we loaded car controls and it's not dashcam mode
    controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive and not self.CP.dashcamOnly
    community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle
    self.read_only = not car_recognized or not controller_available or \
                       self.CP.dashcamOnly or community_feature_disallowed
    if self.read_only:
      self.CP.safetyModel = car.CarParams.SafetyModel.noOutput

    # Write CarParams for radard and boardd safety mode
    cp_bytes = self.CP.to_bytes()
    params.put("CarParams", cp_bytes)
    put_nonblocking("CarParamsCache", cp_bytes)

    self.CC = car.CarControl.new_message()
    self.AM = AlertManager()
    self.events = Events()

    self.LoC = LongControl(self.CP, self.CI.compute_gb)
    self.VM = VehicleModel(self.CP)

    if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
      self.LaC = LatControlAngle(self.CP)
    elif self.CP.lateralTuning.which() == 'pid':
      self.LaC = LatControlPID(self.CP)
    elif self.CP.lateralTuning.which() == 'indi':
      self.LaC = LatControlINDI(self.CP)
    elif self.CP.lateralTuning.which() == 'lqr':
      self.LaC = LatControlLQR(self.CP)

    self.state = State.disabled
    self.enabled = False
    self.active = False
    self.can_rcv_error = False
    self.soft_disable_timer = 0
    self.v_cruise_kph = 255
    self.v_cruise_kph_last = 0
    self.mismatch_counter = 0
    self.can_error_counter = 0
    self.last_blinker_frame = 0
    self.saturated_count = 0
    self.distance_traveled = 0
    self.last_functional_fan_frame = 0
    self.events_prev = []
    self.current_alert_types = [ET.PERMANENT]
    self.logged_comm_issue = False

    # scc smoother
    self.is_cruise_enabled = False
    self.cruiseVirtualMaxSpeed = 0
    self.clu_speed_ms = 0.
    self.apply_accel = 0.
    self.fused_accel = 0.
    self.lead_drel = 0.
    self.aReqValue = 0.
    self.aReqValueMin = 0.
    self.aReqValueMax = 0.
    self.angle_steers_des = 0.

    self.sm['liveCalibration'].calStatus = Calibration.CALIBRATED
    self.sm['deviceState'].freeSpacePercent = 100
    self.sm['driverMonitoringState'].events = []
    self.sm['driverMonitoringState'].awarenessStatus = 1.
    self.sm['driverMonitoringState'].faceDetected = False
    self.sm['liveParameters'].valid = True

    self.startup_event = get_startup_event(car_recognized, controller_available, hw_type)

    if not sounds_available:
      self.events.add(EventName.soundsUnavailable, static=True)
    if community_feature_disallowed:
      self.events.add(EventName.communityFeatureDisallowed, static=True)
    if not car_recognized:
      self.events.add(EventName.carUnrecognized, static=True)
    elif self.read_only:
      self.events.add(EventName.dashcamMode, static=True)

    # controlsd is driven by can recv, expected at 100Hz
    self.rk = Ratekeeper(100, print_delay_threshold=None)
    self.prof = Profiler(False)  # off by default

  def update_events(self, CS):
    """Compute carEvents from carState"""

    self.events.clear()
    self.events.add_from_msg(CS.events)
    self.events.add_from_msg(self.sm['driverMonitoringState'].events)

    # Handle startup event
    if self.startup_event is not None:
      self.events.add(self.startup_event)
      self.startup_event = None

    # Create events for battery, temperature, disk space, and memory
    if self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError:
      # at zero percent battery, while discharging, OP should not allowed
      self.events.add(EventName.lowBattery)
    if self.sm['deviceState'].thermalStatus >= ThermalStatus.red:
      self.events.add(EventName.overheat)
    if self.sm['deviceState'].freeSpacePercent < 7:
      # under 7% of space free no enable allowed
      self.events.add(EventName.outOfSpace)
    if self.sm['deviceState'].memoryUsagePercent  > 90:
      self.events.add(EventName.lowMemory)

    # Alert if fan isn't spinning for 5 seconds
    if self.sm['pandaState'].pandaType in [PandaType.uno, PandaType.dos]:
      if self.sm['pandaState'].fanSpeedRpm == 0 and self.sm['deviceState'].fanSpeedPercentDesired > 50:
        if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0:
          self.events.add(EventName.fanMalfunction)
      else:
        self.last_functional_fan_frame = self.sm.frame

    # Handle calibration status
    cal_status = self.sm['liveCalibration'].calStatus
    if cal_status != Calibration.CALIBRATED:
      if cal_status == Calibration.UNCALIBRATED:
        self.events.add(EventName.calibrationIncomplete)
      else:
        self.events.add(EventName.calibrationInvalid)

    # Handle lane change
    if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange:
      direction = self.sm['lateralPlan'].laneChangeDirection
      if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \
         (CS.rightBlindspot and direction == LaneChangeDirection.right):
        self.events.add(EventName.laneChangeBlocked)
      elif self.sm['lateralPlan'].autoLaneChangeEnabled and self.sm['lateralPlan'].autoLaneChangeTimer > 0:
        self.events.add(EventName.autoLaneChange)
      else:
        if direction == LaneChangeDirection.left:
          self.events.add(EventName.preLaneChangeLeft)
        else:
          self.events.add(EventName.preLaneChangeRight)
    elif self.sm['lateralPlan'].laneChangeState in [LaneChangeState.laneChangeStarting,
                                                 LaneChangeState.laneChangeFinishing]:
      self.events.add(EventName.laneChange)

    if self.can_rcv_error or (not CS.canValid and self.sm.frame > 5 / DT_CTRL):
      self.events.add(EventName.canError)

    safety_mismatch = self.sm['pandaState'].safetyModel != self.CP.safetyModel
    safety_mismatch = safety_mismatch or self.sm['pandaState'].safetyParam != self.CP.safetyParam
    if (safety_mismatch and self.sm.frame > 2 / DT_CTRL) or self.mismatch_counter >= 200:
      self.events.add(EventName.controlsMismatch)

    if not self.sm['liveParameters'].valid:
      self.events.add(EventName.vehicleModelInvalid)

    if len(self.sm['radarState'].radarErrors):
      self.events.add(EventName.radarFault)
    elif not self.sm.all_alive_and_valid():
      self.events.add(EventName.commIssue)
      if not self.logged_comm_issue:
        cloudlog.error(f"commIssue - valid: {self.sm.valid} - alive: {self.sm.alive}")
        self.logged_comm_issue = True
    else:
      self.logged_comm_issue = False

    if not self.sm['lateralPlan'].mpcSolutionValid and not (EventName.turningIndicatorOn in self.events.names):
      self.events.add(EventName.plannerError)
    if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR:
      if self.sm.frame > 5 / DT_CTRL:  # Give locationd some time to receive all the inputs
        self.events.add(EventName.sensorDataInvalid)
    if not self.sm['liveLocationKalman'].posenetOK:
      self.events.add(EventName.posenetInvalid)
    if not self.sm['liveLocationKalman'].deviceStable:
      self.events.add(EventName.deviceFalling)
    if log.PandaState.FaultType.relayMalfunction in self.sm['pandaState'].faults:
      self.events.add(EventName.relayMalfunction)
    if self.sm['longitudinalPlan'].fcw:
      self.events.add(EventName.fcw)

    # TODO: fix simulator
    if not SIMULATION:
      #if not NOSENSOR:
        #if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000) and not TICI:
          # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes
          #self.events.add(EventName.noGps)
      if not self.sm.all_alive(['roadCameraState', 'driverCameraState']) and (self.sm.frame > 5 / DT_CTRL):
        self.events.add(EventName.cameraMalfunction)
      if self.sm['modelV2'].frameDropPerc > 20:
        self.events.add(EventName.modeldLagging)

      # Check if all manager processes are running
      not_running = set(p.name for p in self.sm['managerState'].processes if not p.running)
      if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES):
        self.events.add(EventName.processNotRunning)

    # Only allow engagement with brake pressed when stopped behind another stopped car
    #if CS.brakePressed and self.sm['longitudinalPlan'].vTargetFuture >= STARTING_TARGET_SPEED \
      #and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3:
      #self.events.add(EventName.noTarget)

  def data_sample(self):
    """Receive data from sockets and update carState"""

    # Update carState from CAN
    can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True)
    CS = self.CI.update(self.CC, can_strs)

    self.sm.update(0)

    # Check for CAN timeout
    if not can_strs:
      self.can_error_counter += 1
      self.can_rcv_error = True
    else:
      self.can_rcv_error = False

    # When the panda and controlsd do not agree on controls_allowed
    # we want to disengage openpilot. However the status from the panda goes through
    # another socket other than the CAN messages and one can arrive earlier than the other.
    # Therefore we allow a mismatch for two samples, then we trigger the disengagement.
    if not self.enabled:
      self.mismatch_counter = 0

    if not self.sm['pandaState'].controlsAllowed and self.enabled:
      self.mismatch_counter += 1

    self.distance_traveled += CS.vEgo * DT_CTRL

    return CS

  def state_transition(self, CS):
    """Compute conditional state transitions and execute actions on state transitions"""

    self.v_cruise_kph_last = self.v_cruise_kph

    # if stock cruise is completely disabled, then we can use our own set speed logic
    self.CP.enableCruise = self.CI.CP.enableCruise

    #if not self.CP.enableCruise:
    #  self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled, self.is_metric)
    #elif self.CP.enableCruise and CS.cruiseState.enabled:
    #  self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

    # scc smoother
    SccSmoother.update_cruise_buttons(self, CS, self.CP.openpilotLongitudinalControl)

    # decrease the soft disable timer at every step, as it's reset on
    # entrance in SOFT_DISABLING state
    self.soft_disable_timer = max(0, self.soft_disable_timer - 1)

    self.current_alert_types = [ET.PERMANENT]

    # ENABLED, PRE ENABLING, SOFT DISABLING
    if self.state != State.disabled:
      # user and immediate disable always have priority in a non-disabled state
      if self.events.any(ET.USER_DISABLE):
        self.state = State.disabled
        self.current_alert_types.append(ET.USER_DISABLE)

      elif self.events.any(ET.IMMEDIATE_DISABLE):
        self.state = State.disabled
        self.current_alert_types.append(ET.IMMEDIATE_DISABLE)

      else:
        # ENABLED
        if self.state == State.enabled:
          if self.events.any(ET.SOFT_DISABLE):
            self.state = State.softDisabling
            self.soft_disable_timer = 50   # 0.5s
            self.current_alert_types.append(ET.SOFT_DISABLE)

        # SOFT DISABLING
        elif self.state == State.softDisabling:
          if not self.events.any(ET.SOFT_DISABLE):
            # no more soft disabling condition, so go back to ENABLED
            self.state = State.enabled

          elif self.events.any(ET.SOFT_DISABLE) and self.soft_disable_timer > 0:
            self.current_alert_types.append(ET.SOFT_DISABLE)

          elif self.soft_disable_timer <= 0:
            self.state = State.disabled

        # PRE ENABLING
        elif self.state == State.preEnabled:
          if not self.events.any(ET.PRE_ENABLE):
            self.state = State.enabled
          else:
            self.current_alert_types.append(ET.PRE_ENABLE)

    # DISABLED
    elif self.state == State.disabled:
      if self.events.any(ET.ENABLE):
        if self.events.any(ET.NO_ENTRY):
          self.current_alert_types.append(ET.NO_ENTRY)

        else:
          if self.events.any(ET.PRE_ENABLE):
            self.state = State.preEnabled
          else:
            self.state = State.enabled
          self.current_alert_types.append(ET.ENABLE)
          self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last)

    # Check if actuators are enabled
    self.active = self.state == State.enabled or self.state == State.softDisabling
    if self.active:
      self.current_alert_types.append(ET.WARNING)

    # Check if openpilot is engaged
    self.enabled = self.active or self.state == State.preEnabled

  def state_control(self, CS):
    """Given the state, this function returns an actuators packet"""

    # Update VehicleModel
    params = self.sm['liveParameters']
    x = max(params.stiffnessFactor, 0.1)
    #sr = max(params.steerRatio, 0.1)

    if ntune_isEnabled('useLiveSteerRatio'):
      sr = max(self.sm['liveParameters'].steerRatio, 0.1)
    else:
      if self.CP.carName in [CAR.GENESIS_G80]:
        sr = interp(abs(self.angle_steers_des), [5., 15.], [13., 17.])
      else:
        sr = max(ntune_get('steerRatio'), 0.1)

    self.VM.update_params(x, sr)

    lat_plan = self.sm['lateralPlan']
    long_plan = self.sm['longitudinalPlan']

    actuators = car.CarControl.Actuators.new_message()

    if CS.leftBlinker or CS.rightBlinker:
      self.last_blinker_frame = self.sm.frame

    # State specific actions

    if not self.active:
      self.LaC.reset()
      self.LoC.reset(v_pid=CS.vEgo)

    long_plan_age = DT_CTRL * (self.sm.frame - self.sm.rcv_frame['longitudinalPlan'])
    # no greater than dt mpc + dt, to prevent too high extraps
    dt = min(long_plan_age, LON_MPC_STEP + DT_CTRL) + DT_CTRL

    a_acc_sol = long_plan.aStart + (dt / LON_MPC_STEP) * (long_plan.aTarget - long_plan.aStart)
    v_acc_sol = long_plan.vStart + dt * (a_acc_sol + long_plan.aStart) / 2.0

    # Gas/Brake PID loop

    #actuators.gas, actuators.brake = self.LoC.update(self.active, CS, v_acc_sol, long_plan.vTargetFuture, a_acc_sol, self.CP)

    # scc smoother
    actuators.gas, actuators.brake = self.LoC.update(self.active and CS.cruiseState.speed > 1.,
                                                     CS,
                                                     v_acc_sol,
                                                     long_plan.vTargetFuture,
                                                     a_acc_sol,
                                                     self.CP,
                                                     self.sm['radarState'])

    # Steering PID loop and lateral MPC
    actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(self.active, CS, self.CP, self.VM, params, lat_plan)

    # Check for difference between desired angle and angle for angle based control
    angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \
      abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD

    if angle_control_saturated and not CS.steeringPressed and self.active:
      self.saturated_count += 1
    else:
      self.saturated_count = 0

    # Send a "steering required alert" if saturation count has reached the limit
    if (lac_log.saturated and not CS.steeringPressed) or \
       (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT):

      if len(lat_plan.dPathPoints):
        # Check if we deviated from the path
        left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[0] < -0.1
        right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[0] > 0.1

      #if left_deviation or right_deviation:
      #  self.events.add(EventName.steerSaturated)

    return actuators, v_acc_sol, a_acc_sol, lac_log

  def publish_logs(self, CS, start_time, actuators, v_acc, a_acc, lac_log):
    """Send actuators and hud commands to the car, send controlsstate and MPC logging"""

    CC = car.CarControl.new_message()
    CC.enabled = self.enabled
    CC.actuators = actuators

    CC.cruiseControl.override = True
    CC.cruiseControl.cancel = self.CP.enableCruise and not self.enabled and CS.cruiseState.enabled

    # Some override values for Honda
    # brake discount removes a sharp nonlinearity
    brake_discount = (1.0 - clip(actuators.brake * 3., 0.0, 1.0))
    speed_override = max(0.0, (self.LoC.v_pid + CS.cruiseState.speedOffset) * brake_discount)
    CC.cruiseControl.speedOverride = float(speed_override if self.CP.enableCruise else 0.0)
    CC.cruiseControl.accelOverride = self.CI.calc_accel_override(CS.aEgo, self.sm['longitudinalPlan'].aTarget, CS.vEgo, self.sm['longitudinalPlan'].vTarget)

    CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS)
    CC.hudControl.speedVisible = self.enabled
    CC.hudControl.lanesVisible = self.enabled
    CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead

    right_lane_visible = self.sm['lateralPlan'].rProb > 0.5
    left_lane_visible = self.sm['lateralPlan'].lProb > 0.5
    CC.hudControl.rightLaneVisible = bool(right_lane_visible)
    CC.hudControl.leftLaneVisible = bool(left_lane_visible)

    recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0  # 5s blinker cooldown
    ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \
                    and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED

    meta = self.sm['modelV2'].meta
    if len(meta.desirePrediction) and ldw_allowed:
      l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1]
      r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1]
      cameraOffset = ntune_get("cameraOffset")
      l_lane_close = left_lane_visible and (self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + cameraOffset))
      r_lane_close = right_lane_visible and (self.sm['modelV2'].laneLines[2].y[0] < (1.08 - cameraOffset))

      CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close)
      CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close)

    if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart:
      self.events.add(EventName.ldw)

    clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None
    alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric])
    self.AM.add_many(self.sm.frame, alerts, self.enabled)
    self.AM.process_alerts(self.sm.frame, clear_event)
    CC.hudControl.visualAlert = self.AM.visual_alert

    if not self.read_only:
      # send car controls over can
      can_sends = self.CI.apply(CC, self)
      self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid))

    force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \
                  (self.state == State.softDisabling)

    # Curvature & Steering angle
    params = self.sm['liveParameters']
    lat_plan = self.sm['lateralPlan']

    steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg)
    curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo)
    self.angle_steers_des = math.degrees(self.VM.get_steer_from_curvature(-lat_plan.curvature, CS.vEgo))
    self.angle_steers_des += params.angleOffsetDeg

    # controlsState
    dat = messaging.new_message('controlsState')
    dat.valid = CS.canValid
    controlsState = dat.controlsState
    controlsState.alertText1 = self.AM.alert_text_1
    controlsState.alertText2 = self.AM.alert_text_2
    controlsState.alertSize = self.AM.alert_size
    controlsState.alertStatus = self.AM.alert_status
    controlsState.alertBlinkingRate = self.AM.alert_rate
    controlsState.alertType = self.AM.alert_type
    controlsState.alertSound = self.AM.audible_alert
    controlsState.canMonoTimes = list(CS.canMonoTimes)
    controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan']
    controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan']
    controlsState.enabled = self.enabled
    controlsState.active = self.active
    controlsState.curvature = curvature
    controlsState.steeringAngleDesiredDeg = self.angle_steers_des
    controlsState.state = self.state
    controlsState.engageable = not self.events.any(ET.NO_ENTRY)
    controlsState.longControlState = self.LoC.long_control_state
    controlsState.vPid = float(self.LoC.v_pid)
    controlsState.vCruise = float(self.cruiseVirtualMaxSpeed if self.CP.openpilotLongitudinalControl else self.v_cruise_kph)
    controlsState.upAccelCmd = float(self.LoC.pid.p)
    controlsState.uiAccelCmd = float(self.LoC.pid.i)
    controlsState.ufAccelCmd = float(self.LoC.pid.f)
    controlsState.vTargetLead = float(v_acc)
    controlsState.aTarget = float(a_acc)
    controlsState.cumLagMs = -self.rk.remaining * 1000.
    controlsState.startMonoTime = int(start_time * 1e9)
    controlsState.forceDecel = bool(force_decel)
    controlsState.canErrorCounter = self.can_error_counter

    controlsState.angleSteers = steer_angle_without_offset * CV.RAD_TO_DEG
    controlsState.cluSpeedMs = self.clu_speed_ms
    controlsState.applyAccel = self.apply_accel
    controlsState.fusedAccel = self.fused_accel
    controlsState.leadDist = self.lead_drel
    controlsState.aReqValue = self.aReqValue
    controlsState.aReqValueMin = self.aReqValueMin
    controlsState.aReqValueMax = self.aReqValueMax

    controlsState.steerRatio = self.VM.sR
    controlsState.steerRateCost = ntune_get('steerRateCost')
    controlsState.steerActuatorDelay = ntune_get('steerActuatorDelay')

    if self.CP.steerControlType == car.CarParams.SteerControlType.angle:
      controlsState.lateralControlState.angleState = lac_log
    elif self.CP.lateralTuning.which() == 'pid':
      controlsState.lateralControlState.pidState = lac_log
    elif self.CP.lateralTuning.which() == 'lqr':
      controlsState.lateralControlState.lqrState = lac_log
    elif self.CP.lateralTuning.which() == 'indi':
      controlsState.lateralControlState.indiState = lac_log
    self.pm.send('controlsState', dat)

    # carState
    car_events = self.events.to_msg()
    cs_send = messaging.new_message('carState')
    cs_send.valid = CS.canValid
    cs_send.carState = CS
    cs_send.carState.events = car_events
    self.pm.send('carState', cs_send)

    # carEvents - logged every second or on change
    if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev):
      ce_send = messaging.new_message('carEvents', len(self.events))
      ce_send.carEvents = car_events
      self.pm.send('carEvents', ce_send)
    self.events_prev = self.events.names.copy()

    # carParams - logged every 50 seconds (> 1 per segment)
    if (self.sm.frame % int(50. / DT_CTRL) == 0):
      cp_send = messaging.new_message('carParams')
      cp_send.carParams = self.CP
      self.pm.send('carParams', cp_send)

    # carControl
    cc_send = messaging.new_message('carControl')
    cc_send.valid = CS.canValid
    cc_send.carControl = CC
    self.pm.send('carControl', cc_send)

    # copy CarControl to pass to CarInterface on the next iteration
    self.CC = CC

  def step(self):
    start_time = sec_since_boot()
    self.prof.checkpoint("Ratekeeper", ignore=True)

    # Sample data from sockets and get a carState
    CS = self.data_sample()
    self.prof.checkpoint("Sample")

    self.update_events(CS)

    if not self.read_only:
      # Update control state
      self.state_transition(CS)
      self.prof.checkpoint("State transition")

    # Compute actuators (runs PID loops and lateral MPC)
    actuators, v_acc, a_acc, lac_log = self.state_control(CS)

    self.prof.checkpoint("State Control")

    # Publish data
    self.publish_logs(CS, start_time, actuators, v_acc, a_acc, lac_log)
    self.prof.checkpoint("Sent")

  def controlsd_thread(self):
    while True:
      self.step()
      self.rk.monitor_time()
      self.prof.display()