def _parse_results_set_info(self):
        result_elem = extract_elem(self.parser.xml, ['SearchResults'])

        self.total = extract_attrib(result_elem, ['@numberOfRecordsMatched'])
        self.subtotal = extract_attrib(result_elem,
                                       ['@numberOfRecordsReturned'])
        self.schema = extract_attrib(result_elem, ['@recordSchema'])
 def _parse_children(self, dialect):
     children = []
     result_elem = extract_elem(self.parser.xml, ['SearchResults'])
     for child in result_elem.iterchildren():
         item = self._parse_child(child, dialect)
         if item:
             children.append(item)
     return children
 def _parse_children(self, dialect):
     children = []
     result_elem = extract_elem(self.parser.xml, ['SearchResults'])
     for child in result_elem.iterchildren():
         item = self._parse_child(child, dialect)
         if item:
             children.append(item)
     return children
    def _handle_polygon(self, polygon_elem):
        elem = extract_elem(polygon_elem, ['polygon', 'Polygon'])
        srs_name = elem.attrib.get('srsName', 'EPSG:4326')

        geom = gml_to_geom(elem)
        if srs_name != '':
            geom = reproject(geom, srs_name, 'EPSG:4326')

        # TODO: generate the envelope?
        return {"dc:spatial": to_wkt(geom)}
示例#5
0
    def _handle_polygon(self, polygon_elem):
        elem = extract_elem(polygon_elem, ['polygon', 'Polygon'])
        srs_name = elem.attrib.get('srsName', 'EPSG:4326')

        geom = gml_to_geom(elem)
        if srs_name != '':
            geom = reproject(geom, srs_name, 'EPSG:4326')

        # TODO: generate the envelope?
        return {"dc:spatial": to_wkt(geom)}
    def _parse_child(self, child, dialect):
        identifier = extract_item(child, ['header', 'identifier'])
        timestamp = extract_item(child, ['header', 'datestamp'])

        if dialect == 'oai_dc':
            dc_elem = extract_elem(child, ['metadata', 'dc'])
            dc_parser = DcItemReader(dc_elem)
            return dict(
                chain(
                    {"identifier": identifier, "timestamp": timestamp}.items(),
                    dc_parser.parse_item().items()
                )
            )
    def _parse_child(self, child, dialect):
        identifier = extract_item(child, ['header', 'identifier'])
        timestamp = extract_item(child, ['header', 'datestamp'])

        if dialect == 'oai_dc':
            dc_elem = extract_elem(child, ['metadata', 'dc'])
            dc_parser = DcItemReader(dc_elem)
            return dict(
                chain({
                    "identifier": identifier,
                    "timestamp": timestamp
                }.items(),
                      dc_parser.parse_item().items()))
示例#8
0
    def _parse_responsibleparty(self, elem):
        '''
        parse any CI_ResponsibleParty
        '''
        individual_name = extract_item(elem,
                                       ['individualName', 'CharacterString'])
        organization_name = extract_item(
            elem, ['organisationName', 'CharacterString'])
        position_name = extract_item(elem, ['positionName', 'CharacterString'])

        e = extract_elem(elem, ['contactInfo', 'CI_Contact'])
        contact = self._parse_contact(e)

        return tidy_dict({
            "individual": individual_name,
            "organization": organization_name,
            "position": position_name,
            "contact": contact
        })
    def _parse_responsibleparty(self, elem):
        '''
        parse any CI_ResponsibleParty
        '''
        individual_name = extract_item(
            elem, ['individualName', 'CharacterString'])
        organization_name = extract_item(
            elem, ['organisationName', 'CharacterString'])
        position_name = extract_item(
            elem, ['positionName', 'CharacterString'])

        e = extract_elem(elem, ['contactInfo', 'CI_Contact'])
        contact = self._parse_contact(e)

        return tidy_dict({
            "individual": individual_name,
            "organization": organization_name,
            "position": position_name,
            "contact": contact
        })
示例#10
0
    def parse(self):
        # get the series
        self.description = {}
        md = extract_elem(self.elem, ['seriesMetadata', 'MD_Metadata'])
        if md is None:
            return

        md_parser = MxParser(md)
        md_parser.parse()
        self.description = md_parser.description
        self.description['children'] = []

        # get the children
        children = extract_elems(
            self.elem, ['composedOf', 'DS_DataSet', 'has', 'MD_Metadata'])
        for child in children:
            child_parser = MxParser(child)
            child_parser.parse()
            if child_parser.description:
                self.description['children'].append(child_parser.description)

        self.description = tidy_dict(self.description)
    def parse(self):
        # get the series
        self.description = {}
        md = extract_elem(self.elem, ['seriesMetadata', 'MD_Metadata'])
        if md is None:
            return

        md_parser = MxParser(md)
        md_parser.parse()
        self.description = md_parser.description
        self.description['children'] = []

        # get the children
        children = extract_elems(
            self.elem, ['composedOf', 'DS_DataSet', 'has', 'MD_Metadata'])
        for child in children:
            child_parser = MxParser(child)
            child_parser.parse()
            if child_parser.description:
                self.description['children'].append(child_parser.description)

        self.description = tidy_dict(self.description)
    def _parse_extent(self, elem):
        '''
        handle the spatial and/or temporal extent
        starting from the *:extent element
        '''
        extents = {}
        geo_elem = extract_elem(
            elem, ['extent', 'EX_Extent', 'geographicElement'])
        if geo_elem is not None:
            # we need to sort out what kind of thing it
            # is bbox, polygon, list of points
            bbox_elem = extract_elem(geo_elem, ['EX_GeographicBoundingBox'])
            if bbox_elem is not None:
                extents.update(self._handle_bbox(bbox_elem))

            # NOTE: this will obv overwrite the above
            poly_elem = extract_elem(geo_elem, ['EX_BoundingPolygon'])
            if poly_elem is not None:
                extents.update(self._handle_polygon(poly_elem))

        time_elem = extract_elem(
            elem,
            [
                'extent',
                'EX_Extent',
                'temporalElement',
                'EX_TemporalExtent',
                'extent',
                'TimePeriod'
            ]
        )
        if time_elem is not None:
            begin_position = extract_elem(time_elem, ['beginPosition'])
            end_position = extract_elem(time_elem, ['endPosition'])

            if begin_position is not None and 'indeterminatePosition' not in begin_position.attrib:
                begin_position = self._parse_timestamp(begin_position.text)
            if end_position is not None and 'indeterminatePosition' not in end_position.attrib:
                end_position = self._parse_timestamp(end_position.text)

            extents.update({
                "esip:startDate": begin_position.isoformat(),
                "esip:endDate": end_position.isoformat()
            })

        return extents
示例#13
0
    def _parse_extent(self, elem):
        '''
        handle the spatial and/or temporal extent
        starting from the *:extent element
        '''
        extents = {}
        geo_elem = extract_elem(elem,
                                ['extent', 'EX_Extent', 'geographicElement'])
        if geo_elem is not None:
            # we need to sort out what kind of thing it
            # is bbox, polygon, list of points
            bbox_elem = extract_elem(geo_elem, ['EX_GeographicBoundingBox'])
            if bbox_elem is not None:
                extents.update(self._handle_bbox(bbox_elem))

            # NOTE: this will obv overwrite the above
            poly_elem = extract_elem(geo_elem, ['EX_BoundingPolygon'])
            if poly_elem is not None:
                extents.update(self._handle_polygon(poly_elem))

        time_elem = extract_elem(elem, [
            'extent', 'EX_Extent', 'temporalElement', 'EX_TemporalExtent',
            'extent', 'TimePeriod'
        ])
        if time_elem is not None:
            begin_position = extract_elem(time_elem, ['beginPosition'])
            end_position = extract_elem(time_elem, ['endPosition'])

            if begin_position is not None and 'indeterminatePosition' not in begin_position.attrib:
                begin_position = self._parse_timestamp(begin_position.text)
            if end_position is not None and 'indeterminatePosition' not in end_position.attrib:
                end_position = self._parse_timestamp(end_position.text)

            extents.update({
                "esip:startDate": begin_position.isoformat(),
                "esip:endDate": end_position.isoformat()
            })

        return extents
    def parse(self):
        '''
        from the root node, parse:
            identification (title, abstract, point of contact, keywords,
            extent) if identificationInfo contains SV_ServiceIdentification,
            add as child distribution info
        '''
        # set up the url set
        urls = set()
        urls.add(self.output['catalog_record']['urls'][0]['object_id'])

        for id_elem in extract_elems(
                self.elem,
                ['//*', 'identificationInfo', 'MD_DataIdentification']):
            dataset, keywords = self._parse_identification_info(id_elem)
            dataset['relationships'].append({
                "relate": "bcube:hasMetadataRecord",
                "object_id": self.output['catalog_record']['object_id']
            })
            dataset.update({
                "bcube:dateCreated":
                    self.harvest_details.get('harvest_date', ''),
                "bcube:lastUpdated":
                    self.harvest_details.get('harvest_date', '')
            })
            self.output['catalog_record']['relationships'].append({
                "relate": "foaf:primaryTopic",
                "object_id": dataset['object_id']
            })

            # point of contact from the root node and this might be an issue
            # in things like the -1/-3 from ngdc so try for an idinfo blob
            poc_elem = extract_elem(id_elem, [
                'identificationInfo',
                'MD_DataIdentification',
                'pointOfContact',
                'CI_ResponsibleParty'])
            # if poc_elem is None:
            #     # and if that fails try for the root-level contact
            #     poc_elem = extract_elem(
            #         self.elem,
            #         ['contact', 'CI_ResponsibleParty'])

            # TODO: point of contact is not necessarily the publisher
            if poc_elem is not None:
                poc = self._parse_responsibleparty(poc_elem)
                location = (
                    ' '.join(
                        [poc['contact'].get('city', ''),
                         poc['contact'].get('country', '')])
                ).strip() if poc.get('contact', {}) else ''

                self.output['publishers'].append(tidy_dict({
                    "object_id": generate_uuid_urn(),
                    "name": poc.get('organization', ''),
                    "location": location
                }))
                dataset['relationships'].append({
                    "relate": "dcterms:publisher",
                    "object_id": self.output['publisher']['object_id']
                })

            dataset['urls'] = []
            dist_elems = extract_elems(self.elem, ['distributionInfo'])
            for dist_elem in dist_elems:
                for d in self._parse_distribution(dist_elem):
                    if not d:
                        continue
                    url_sha = generate_sha_urn(d)
                    if url_sha not in urls:
                        urls.add(url_sha)
                        url_id = generate_uuid_urn()
                        dist = self._generate_harvest_manifest(**{
                            "bcube:hasUrlSource": "Harvested",
                            "bcube:hasConfidence": "Good",
                            "vcard:hasURL": d,
                            "object_id": url_id,
                            "dc:identifier": url_sha
                        })
                        dataset['urls'].append(dist)
                        dataset['relationships'].append({
                            "relate": "dcterms:references",
                            "object_id": url_id
                        })

            self.output['datasets'].append(dataset)
            self.output['keywords'] += keywords

        # TODO: removing this until we have a definition for SERVICE
        # # check for the service elements
        # service_elems = extract_elems(self.elem,
        #     ['identificationInfo', 'SV_ServiceIdentification'])
        # self.description['services'] = []
        # for service_elem in service_elems:
        #     sv = SrvParser(service_elem)
        #     self.description['services'].append(sv.parse())

        # switch the catalog record to a list for conformity. eep.
        self.output['catalog_records'] = [self.output['catalog_record']]
        del self.output['catalog_record']
        self.description = tidy_dict(self.output)
示例#15
0
    def parse_item(self):
        output = {}

        urls = set()

        catalog_object_id = generate_uuid_urn()

        output['catalog_record'] = {
            "object_id": catalog_object_id,
            "bcube:dateCreated": self.harvest_details.get('harvest_date', ''),
            "bcube:lastUpdated": self.harvest_details.get('harvest_date', ''),
            # "dc:conformsTo": extract_attrib(
            #     self.elem, ['@noNamespaceSchemaLocation']).split(),
            "rdf:type": "FGDC:CSDGM",
            "relationships": [],
            "urls": []
        }
        output['urls'] = []

        # add the harvest info
        # this is not necessary as a sha just for set inclusion
        url_sha = generate_sha_urn(self.url)
        urls.add(url_sha)
        original_url = self._generate_harvest_manifest(
            **{
                "bcube:hasUrlSource": "Harvested",
                "bcube:hasConfidence": "Good",
                "vcard:hasURL": self.url,
                "object_id": generate_uuid_urn(),
                "dc:identifier": url_sha
            })
        output['catalog_record']['urls'].append(original_url)
        # NOTE: this is not the sha from the url
        output['catalog_record']['relationships'].append({
            "relate":
            "bcube:originatedFrom",
            "object_id":
            original_url['object_id']
        })

        datsetid = extract_item(self.elem, ['idinfo', 'datsetid'])
        dataset_object_id = generate_uuid_urn()

        dataset = {
            "object_id":
            dataset_object_id,
            "dcterms:identifier":
            datsetid,
            "bcube:dateCreated":
            self.harvest_details.get('harvest_date', ''),
            "bcube:lastUpdated":
            self.harvest_details.get('harvest_date', ''),
            "dc:description":
            extract_item(self.elem, ['idinfo', 'descript', 'abstract']),
            "dcterms:title":
            extract_item(self.elem,
                         ['idinfo', 'citation', 'citeinfo', 'title']),
            "urls": [],
            "relationships": []
        }

        bbox_elem = extract_elem(self.elem, ['idinfo', 'spdom', 'bounding'])
        if bbox_elem is not None:
            # that's not even valid
            west = extract_item(bbox_elem, ['westbc'])
            east = extract_item(bbox_elem, ['eastbc'])
            north = extract_item(bbox_elem, ['northbc'])
            south = extract_item(bbox_elem, ['southbc'])
            bbox = [west, south, east, north]
            bbox = bbox_to_geom(bbox)
            bbox = to_wkt(bbox)

            dataset.update({
                "dc:spatial": bbox,
                "esip:westBound": west,
                "esip:eastBound": east,
                "esip:northBound": north,
                "esip:southBound": south
            })

        time_elem = extract_elem(self.elem, ['idinfo', 'timeperd', 'timeinfo'])
        if time_elem is not None:
            caldate = extract_item(time_elem, ['sngdate', 'caldate'])
            if caldate:
                # TODO: we should see if it's at least a valid date
                dataset['esip:startDate'] = self._convert_date(caldate)

            rngdate = extract_elem(time_elem, ['rngdates'])
            if rngdate is not None:
                dataset['esip:startDate'] = self._convert_date(
                    extract_item(rngdate, ['begdate']))
                dataset['esip:endDate'] = self._convert_date(
                    extract_item(rngdate, ['enddate']))
            # TODO: add the min/max of the list of dates

        dataset['relationships'] = [{
            "relate": "bcube:hasMetadataRecord",
            "object_id": catalog_object_id
        }]

        publisher = {
            "object_id":
            generate_uuid_urn(),
            "name":
            extract_item(
                self.elem,
                ['idinfo', 'citation', 'citeinfo', 'pubinfo', 'publish']),
            "location":
            extract_item(
                self.elem,
                ['idinfo', 'citation', 'citeinfo', 'pubinfo', 'pubplace'])
        }
        output['publisher'] = publisher
        dataset['relationships'].append({
            "relate": "dcterms:publisher",
            "object_id": publisher['object_id']
        })

        distrib_elems = extract_elems(self.elem,
                                      ['distinfo', 'stdorder', 'digform'])

        for distrib_elem in distrib_elems:
            link = extract_item(
                distrib_elem,
                ['digtopt', 'onlinopt', 'computer', 'networka', 'networkr'])
            # format = extract_item(distrib_elem, ['digtinfo', 'formname'])
            url_sha = generate_sha_urn(link)
            if url_sha not in urls:
                urls.add(url_sha)
                url_id = generate_uuid_urn()
                dist = self._generate_harvest_manifest(
                    **{
                        "bcube:hasUrlSource": "Harvested",
                        "bcube:hasConfidence": "Good",
                        "vcard:hasURL": link,
                        "object_id": url_id,
                        "dc:identifier": url_sha
                    })
                dataset['urls'].append(dist)
                # this is a distribution link so
                # we are assuming it is to data
                dataset['relationships'].append({
                    "relate": "dcterms:references",
                    "object_id": url_id
                })

        webpages = []
        onlink_elems = extract_elems(
            self.elem, ['idinfo', 'citation', 'citeinfo', 'onlink'])
        for onlink_elem in onlink_elems:
            link = onlink_elem.text.strip() if onlink_elem.text else ''
            if not link:
                continue
            url_sha = generate_sha_urn(link)
            if url_sha not in urls:
                urls.add(url_sha)
                url_id = generate_uuid_urn()
                dist = self._generate_harvest_manifest(
                    **{
                        "bcube:hasUrlSource": "Harvested",
                        "bcube:hasConfidence": "Good",
                        "vcard:hasURL": link,
                        "object_id": url_id,
                        "dc:identifier": url_sha
                    })
                dataset['urls'].append(dist)
                webpages.append({
                    "object_id":
                    generate_uuid_urn(),
                    "relationships": [{
                        "relate": "dcterms:references",
                        "object_id": url_id
                    }]
                })

        output['catalog_record']['webpages'] = webpages
        for webpage in webpages:
            dataset['relationships'].append({
                "relate": "dcterms:references",
                "object_id": webpage['object_id']
            })

        # retain the keyword sets with type, thesaurus name and split
        # the terms as best we can
        keywords = []
        key_elem = extract_elem(self.elem, ['idinfo', 'keywords'])
        for child in key_elem.iterchildren():
            key_type = extract_element_tag(child.tag)
            key_tag = 'strat' if key_type == 'stratum' else key_type
            key_tag = 'temp' if key_tag == 'temporal' else key_tag
            thesaurus = extract_item(child, ['%skt' % key_tag])

            # TODO: split these up
            terms = extract_items(child, ['%skey' % key_tag])

            if terms:
                # if there's a parsing error (bad cdata, etc) may not have
                # TODO: add something for a set without a thesaurus name
                keywords.append(
                    tidy_dict({
                        "object_id": generate_uuid_urn(),
                        "dc:partOf": thesaurus,
                        "bcube:hasType": key_type,
                        "bcube:hasValue": terms
                    }))
        output['keywords'] = keywords
        for keyword in keywords:
            dataset['relationships'].append({
                "relate": "dc:conformsTo",
                "object_id": keyword['object_id']
            })

        output['datasets'] = [dataset]

        # add the metadata relate
        output['catalog_record']['relationships'].append({
            "relate":
            "foaf:primaryTopic",
            "object_id":
            dataset_object_id
        })

        output['catalog_records'] = [output['catalog_record']]
        del output['catalog_record']
        self.description = tidy_dict(output)
    def parse_item(self):
        output = {}

        urls = set()

        catalog_object_id = generate_uuid_urn()

        output['catalog_record'] = {
            "object_id": catalog_object_id,
            "bcube:dateCreated": self.harvest_details.get('harvest_date', ''),
            "bcube:lastUpdated": self.harvest_details.get('harvest_date', ''),
            # "dc:conformsTo": extract_attrib(
            #     self.elem, ['@noNamespaceSchemaLocation']).split(),
            "rdf:type": "FGDC:CSDGM",
            "relationships": [],
            "urls": []
        }
        output['urls'] = []

        # add the harvest info
        # this is not necessary as a sha just for set inclusion
        url_sha = generate_sha_urn(self.url)
        urls.add(url_sha)
        original_url = self._generate_harvest_manifest(**{
            "bcube:hasUrlSource": "Harvested",
            "bcube:hasConfidence": "Good",
            "vcard:hasURL": self.url,
            "object_id": generate_uuid_urn(),
            "dc:identifier": url_sha
        })
        output['catalog_record']['urls'].append(original_url)
        # NOTE: this is not the sha from the url
        output['catalog_record']['relationships'].append(
            {
                "relate": "bcube:originatedFrom",
                "object_id": original_url['object_id']
            }
        )

        datsetid = extract_item(self.elem, ['idinfo', 'datsetid'])
        dataset_object_id = generate_uuid_urn()

        dataset = {
            "object_id": dataset_object_id,
            "dcterms:identifier": datsetid,
            "bcube:dateCreated": self.harvest_details.get('harvest_date', ''),
            "bcube:lastUpdated": self.harvest_details.get('harvest_date', ''),
            "dc:description": extract_item(
                self.elem, ['idinfo', 'descript', 'abstract']),
            "dcterms:title": extract_item(
                self.elem, ['idinfo', 'citation', 'citeinfo', 'title']),
            "urls": [],
            "relationships": []
        }

        bbox_elem = extract_elem(self.elem, ['idinfo', 'spdom', 'bounding'])
        if bbox_elem is not None:
            # that's not even valid
            west = extract_item(bbox_elem, ['westbc'])
            east = extract_item(bbox_elem, ['eastbc'])
            north = extract_item(bbox_elem, ['northbc'])
            south = extract_item(bbox_elem, ['southbc'])
            bbox = [west, south, east, north]
            bbox = bbox_to_geom(bbox)
            bbox = to_wkt(bbox)

            dataset.update({
                "dc:spatial": bbox,
                "esip:westBound": west,
                "esip:eastBound": east,
                "esip:northBound": north,
                "esip:southBound": south
            })

        time_elem = extract_elem(self.elem, ['idinfo', 'timeperd', 'timeinfo'])
        if time_elem is not None:
            caldate = extract_item(time_elem, ['sngdate', 'caldate'])
            if caldate:
                # TODO: we should see if it's at least a valid date
                dataset['esip:startDate'] = self._convert_date(caldate)

            rngdate = extract_elem(time_elem, ['rngdates'])
            if rngdate is not None:
                dataset['esip:startDate'] = self._convert_date(
                    extract_item(rngdate, ['begdate']))
                dataset['esip:endDate'] = self._convert_date(
                    extract_item(rngdate, ['enddate']))
            # TODO: add the min/max of the list of dates

        dataset['relationships'] = [
            {
                "relate": "bcube:hasMetadataRecord",
                "object_id": catalog_object_id
            }
        ]

        publisher = {
            "object_id": generate_uuid_urn(),
            "name": extract_item(
                self.elem,
                ['idinfo', 'citation', 'citeinfo', 'pubinfo', 'publish']),
            "location": extract_item(
                self.elem,
                ['idinfo', 'citation', 'citeinfo', 'pubinfo', 'pubplace'])
        }
        output['publisher'] = publisher
        dataset['relationships'].append({
            "relate": "dcterms:publisher",
            "object_id": publisher['object_id']
        })

        distrib_elems = extract_elems(
            self.elem, ['distinfo', 'stdorder', 'digform'])

        for distrib_elem in distrib_elems:
            link = extract_item(
                distrib_elem,
                ['digtopt', 'onlinopt', 'computer', 'networka', 'networkr'])
            # format = extract_item(distrib_elem, ['digtinfo', 'formname'])
            url_sha = generate_sha_urn(link)
            if url_sha not in urls:
                urls.add(url_sha)
                url_id = generate_uuid_urn()
                dist = self._generate_harvest_manifest(**{
                    "bcube:hasUrlSource": "Harvested",
                    "bcube:hasConfidence": "Good",
                    "vcard:hasURL": link,
                    "object_id": url_id,
                    "dc:identifier": url_sha
                })
                dataset['urls'].append(dist)
                # this is a distribution link so
                # we are assuming it is to data
                dataset['relationships'].append({
                    "relate": "dcterms:references",
                    "object_id": url_id
                })

        webpages = []
        onlink_elems = extract_elems(
            self.elem, ['idinfo', 'citation', 'citeinfo', 'onlink'])
        for onlink_elem in onlink_elems:
            link = onlink_elem.text.strip() if onlink_elem.text else ''
            if not link:
                continue
            url_sha = generate_sha_urn(link)
            if url_sha not in urls:
                urls.add(url_sha)
                url_id = generate_uuid_urn()
                dist = self._generate_harvest_manifest(**{
                    "bcube:hasUrlSource": "Harvested",
                    "bcube:hasConfidence": "Good",
                    "vcard:hasURL": link,
                    "object_id": url_id,
                    "dc:identifier": url_sha
                })
                dataset['urls'].append(dist)
                webpages.append({
                    "object_id": generate_uuid_urn(),
                    "relationships": [
                        {
                            "relate": "dcterms:references",
                            "object_id": url_id
                        }
                    ]}
                )

        output['catalog_record']['webpages'] = webpages
        for webpage in webpages:
            dataset['relationships'].append({
                "relate": "dcterms:references",
                "object_id": webpage['object_id']
            })

        # retain the keyword sets with type, thesaurus name and split
        # the terms as best we can
        keywords = []
        key_elem = extract_elem(self.elem, ['idinfo', 'keywords'])
        for child in key_elem.iterchildren():
            key_type = extract_element_tag(child.tag)
            key_tag = 'strat' if key_type == 'stratum' else key_type
            key_tag = 'temp' if key_tag == 'temporal' else key_tag
            thesaurus = extract_item(child, ['%skt' % key_tag])

            # TODO: split these up
            terms = extract_items(child, ['%skey' % key_tag])

            if terms:
                # if there's a parsing error (bad cdata, etc) may not have
                # TODO: add something for a set without a thesaurus name
                keywords.append(
                    tidy_dict({
                        "object_id": generate_uuid_urn(),
                        "dc:partOf": thesaurus,
                        "bcube:hasType": key_type,
                        "bcube:hasValue": terms
                    })
                )
        output['keywords'] = keywords
        for keyword in keywords:
            dataset['relationships'].append(
                {
                    "relate": "dc:conformsTo",
                    "object_id": keyword['object_id']
                }
            )

        output['datasets'] = [dataset]

        # add the metadata relate
        output['catalog_record']['relationships'].append(
            {
                "relate": "foaf:primaryTopic",
                "object_id": dataset_object_id
            }
        )

        output['catalog_records'] = [output['catalog_record']]
        del output['catalog_record']
        self.description = tidy_dict(output)
示例#17
0
    def parse(self):
        '''
        from the root node, parse:
            identification (title, abstract, point of contact, keywords,
            extent) if identificationInfo contains SV_ServiceIdentification,
            add as child distribution info
        '''
        # set up the url set
        urls = set()
        urls.add(self.output['catalog_record']['urls'][0]['object_id'])

        for id_elem in extract_elems(
                self.elem,
            ['//*', 'identificationInfo', 'MD_DataIdentification']):
            dataset, keywords = self._parse_identification_info(id_elem)
            dataset['relationships'].append({
                "relate":
                "bcube:hasMetadataRecord",
                "object_id":
                self.output['catalog_record']['object_id']
            })
            dataset.update({
                "bcube:dateCreated":
                self.harvest_details.get('harvest_date', ''),
                "bcube:lastUpdated":
                self.harvest_details.get('harvest_date', '')
            })
            self.output['catalog_record']['relationships'].append({
                "relate":
                "foaf:primaryTopic",
                "object_id":
                dataset['object_id']
            })

            # point of contact from the root node and this might be an issue
            # in things like the -1/-3 from ngdc so try for an idinfo blob
            poc_elem = extract_elem(id_elem, [
                'identificationInfo', 'MD_DataIdentification',
                'pointOfContact', 'CI_ResponsibleParty'
            ])
            # if poc_elem is None:
            #     # and if that fails try for the root-level contact
            #     poc_elem = extract_elem(
            #         self.elem,
            #         ['contact', 'CI_ResponsibleParty'])

            # TODO: point of contact is not necessarily the publisher
            if poc_elem is not None:
                poc = self._parse_responsibleparty(poc_elem)
                location = (' '.join([
                    poc['contact'].get('city', ''), poc['contact'].get(
                        'country', '')
                ])).strip() if poc.get('contact', {}) else ''

                self.output['publishers'].append(
                    tidy_dict({
                        "object_id": generate_uuid_urn(),
                        "name": poc.get('organization', ''),
                        "location": location
                    }))
                dataset['relationships'].append({
                    "relate":
                    "dcterms:publisher",
                    "object_id":
                    self.output['publisher']['object_id']
                })

            dataset['urls'] = []
            dist_elems = extract_elems(self.elem, ['distributionInfo'])
            for dist_elem in dist_elems:
                for d in self._parse_distribution(dist_elem):
                    if not d:
                        continue
                    url_sha = generate_sha_urn(d)
                    if url_sha not in urls:
                        urls.add(url_sha)
                        url_id = generate_uuid_urn()
                        dist = self._generate_harvest_manifest(
                            **{
                                "bcube:hasUrlSource": "Harvested",
                                "bcube:hasConfidence": "Good",
                                "vcard:hasURL": d,
                                "object_id": url_id,
                                "dc:identifier": url_sha
                            })
                        dataset['urls'].append(dist)
                        dataset['relationships'].append({
                            "relate": "dcterms:references",
                            "object_id": url_id
                        })

            self.output['datasets'].append(dataset)
            self.output['keywords'] += keywords

        # TODO: removing this until we have a definition for SERVICE
        # # check for the service elements
        # service_elems = extract_elems(self.elem,
        #     ['identificationInfo', 'SV_ServiceIdentification'])
        # self.description['services'] = []
        # for service_elem in service_elems:
        #     sv = SrvParser(service_elem)
        #     self.description['services'].append(sv.parse())

        # switch the catalog record to a list for conformity. eep.
        self.output['catalog_records'] = [self.output['catalog_record']]
        del self.output['catalog_record']
        self.description = tidy_dict(self.output)
    def _parse_results_set_info(self):
        result_elem = extract_elem(self.parser.xml, ['SearchResults'])

        self.total = extract_attrib(result_elem, ['@numberOfRecordsMatched'])
        self.subtotal = extract_attrib(result_elem, ['@numberOfRecordsReturned'])
        self.schema = extract_attrib(result_elem, ['@recordSchema'])