def main(argv): """ :param argv: """ directory = util.get_directory_from_command_line(argv, os.path.basename(__file__)) for filename in util.gen_img_paths(directory): path = os.path.join(directory, filename) # Open with Bioformats im = pims.Bioformats(path + '.tif') # Set scale micron_per_pixel = im.calibration # Calculate size range min_size = max(0.3 / micron_per_pixel, 3) max_size = min(2.0 / micron_per_pixel, im.frame_shape[0] * 0.5) im = im[0][:-64] im = np.flipud(im) # Locate and refine circles finder = pf.ParticleFinder(im) f = finder.locate_particles(size_range=(min_size, max_size)) # Save fit images plot.save_fits(f, im, path) # Generate data files and save report.save_circles_to_csv(f, path, micron_per_pixel) report.save_circles_to_csv_grouped(f, path, micron_per_pixel)
def main(argv): """ :param argv: """ directory = util.get_directory_from_command_line(argv, os.path.basename(__file__)) # Open all .tif's in the directory for filename in util.gen_img_paths(directory): path = os.path.join(directory, filename) # Open with Bioformats im = pims.Bioformats(path + '.tif') # Set scale micron_per_pixel = im.calibration im = im[0][:-64] im = np.flipud(im) # Report filename report_file = os.path.abspath( os.path.normpath(directory + os.path.sep + 'report' + os.path.sep + filename + '_frame.csv')) if not os.path.isfile(report_file): continue checker = usercheckfits.UserCheckFits(report_file, micron_per_pixel) f = checker.user_check_fits(im) # Remove old csv files summary_file = os.path.abspath( os.path.normpath(directory + os.path.sep + 'report' + os.path.sep + filename + '_summary.csv')) if os.path.isfile(summary_file): os.remove(summary_file) os.remove(report_file) # Remove old grouped files file_path_grouped = os.path.abspath( os.path.normpath(directory + os.path.sep + 'report' + os.path.sep + re.sub("_\d+$", "", filename))) report_file_grouped = file_path_grouped + '_grouped_report.csv' summary_file_grouped = file_path_grouped + '_grouped_summary.csv' if os.path.isfile(report_file_grouped): os.remove(report_file_grouped) if os.path.isfile(summary_file_grouped): os.remove(summary_file_grouped) # Remove old fit .tif file fits_directory = os.path.abspath(os.path.normpath(directory + os.path.sep + 'fits')) fit_file = os.path.abspath(os.path.normpath(fits_directory + os.path.sep + filename)) + '_fit.tif' if os.path.isfile(fit_file): os.remove(fit_file) # Save fit images plot.save_fits(f, im, path) # Generate data files and save report.save_circles_to_csv(f, path, micron_per_pixel) report.save_circles_to_csv_grouped(f, path, micron_per_pixel, suffix='_grouped_checked')