class Chatbot_port2(object): def __init__(self): # 分词工具,基于jieba分词,并去除停用词 seg = Seg() self.ss = SentenceSimilarity(seg) self.ss.restore_model() with open("dataset/answer.txt", 'r', encoding='utf-8') as file_answer: self.line = file_answer.readlines() def chat(self, question): question = question.strip() top_10 = self.ss.similarity(question) answer_index = top_10[0][0] answer = self.line[answer_index] return answer, top_10[0][1]
def dictTest(): dict = {} seg = Seg() original_ss = SentenceSimilarity(seg) readDictData(original_ss, dict) original_ss.TfidfModel() # original_ss.LdaModel() # original_ss.LsiModel() total_data_len = len(X_test) success_len = 0 f1 = open('ah_data_lsi.txt', 'w', encoding='utf-8') for i in range(len(X_test)): print("-------------------------------------") text = checkData(X_test[i]) text = "".join(seg.cut_for_search(text)) print("测试内容: " + text) try: sentences = original_ss.similarityArray(text) sentences = sorted(sentences, key=lambda e: e.get_score(), reverse=True) count = 0 for sentence in sentences: if sentence.get_score() > 0.9: print(sentence.get_score()) if sentence.get_score() == 1.0: count = count + 1 sentence = original_ss.similarity(text) if count < 2 and dict.get( sentence.get_origin_sentence()) == Y_test[i]: success_len = success_len + 1 else: y = Y_test[i] f1.writelines("-------------------------------------\n") f1.writelines("测试内容: " + text + "\n") for sentence in sentences: f1.writelines("匹配标签: 【" + dict.get(sentence.get_origin_sentence()) + "】 真实标签:【" + y + "】 评分: " + str(sentence.get_score()) + "\n") except Exception as e: print(e) print(success_len / total_data_len)
def tf(): dt = {} # if __name__ == '__main__': # 读入训练集 file_obj = FileObj(r"train_data.txt") train_sentences = file_obj.read_lines() # 读入测试集 file_obj = FileObj(r"test_data.txt") test1_sentences = file_obj.read_lines() # 分词工具,基于jieba分词,我自己加了一次封装,主要是去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) ss.TfidfModel() # tfidf模型 # ss.LsiModel() # lsi模型 # ss.LdaModel() # lda模型 # 测试集1 right_count = 0 # w=open("result510tf.txt",'w') # w.write(str("source_id") + '\t' + str("target_id") + '\n') for i in range(len(test1_sentences)): print "*********************" print i print test1_sentences[i] test = str(test1_sentences[i].encode("utf-8")) t = test.split(',')[0] dict = ss.similarity(test1_sentences[i]) # dict的key为句子的(序号-1),value为计算出的距离 for k, v in dict: print t, k + 1, v # 如2784 2784 1.0 ind2 = k + 1 if (str(k + 1) == str(t)): print "same" else: # w.write(str(t) + '\t' + str(k+1) + '\n') addtodict2(dt, int(t), int(ind2), v) # w.close() return dt
def run_prediction(input_file_path, output_file_path): # 读入训练集 file_obj = FileObj(r"./TFIDF_baseline/dataSet/trainQuestions.txt") train_sentences = file_obj.read_lines() # 读入测试集 file_obj = FileObj(input_file_path) test_sentences = file_obj.read_lines() # 分词工具,基于jieba分词,并去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) ss.TfidfModel() # tfidf模型 # 测试集 right_count = 0 file_result=open(output_file_path,'w') with open("./TFIDF_baseline/dataSet/trainAnswers.txt",'r',encoding = 'utf-8') as file_answer: line = file_answer.readlines() for i in range(0,len(test_sentences)): top_15 = ss.similarity(test_sentences[i]) ''' for j in range(0,len(top_15)): answer_index=top_15[j][0] answer=line[answer_index] file_result.write(str(top_15[j][1])+'\t'+str(answer)) file_result.write("\n") ''' file_result.write(line[top_15[0][0]]+'\n') file_result.close() file_answer.close()
test2_sentences = file_obj.read_lines() # 分词工具,基于jieba分词,我自己加了一次封装,主要是去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) ss.TfidfModel() # tfidf模型 # ss.LsiModel() # lsi模型 # ss.LdaModel() # lda模型 # 测试集1 right_count = 0 for i in range(0,len(train_sentences)): sentence = ss.similarity(test1_sentences[i]) if i != sentence.id: print (str(i) + " wrong! score: " + str(sentence.score)) else: right_count += 1 print (str(i) + " right! score: " + str(sentence.score)) print ("正确率为: " + str(float(right_count)/len(train_sentences))) # 测试集2 # right_count = 0 # for i in range(0,len(train_sentences)): # sentence = ss.similarity(test2_sentences[i]) # # if i != sentence.id:
file_obj = FileObj(r"dataSet/devQuestions.txt") test_sentences = file_obj.read_lines() # 分词工具,基于jieba分词,并去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) ss.TfidfModel() # tfidf模型 # 测试集 right_count = 0 file_result = open('dataSet/result.txt', 'w') with open("dataSet/trainAnswers.txt", 'r', encoding='utf-8') as file_answer: line = file_answer.readlines() for i in range(0, len(test_sentences)): top_15 = ss.similarity(test_sentences[i]) for j in range(0, len(top_15)): answer_index = top_15[j][0] answer = line[answer_index] file_result.write(str(top_15[j][1]) + '\t' + str(answer)) file_result.write("\n") file_result.close() file_answer.close()
test2_sentences = file_obj.read_lines() # 分词工具,基于jieba分词,我自己加了一次封装,主要是去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) ss.TfidfModel() # tfidf模型 # ss.LsiModel() # lsi模型 # ss.LdaModel() # lda模型 # 测试集1 right_count = 0 for i in range(0,len(train_sentences)): sentence = ss.similarity(test1_sentences[i]) if i != sentence.id: print str(i) + " wrong! score: " + str(sentence.score) else: right_count += 1 print str(i) + " right! score: " + str(sentence.score) print "正确率为: " + str(float(right_count)/len(train_sentences)) # 测试集2 # right_count = 0 # for i in range(0,len(train_sentences)): # sentence = ss.similarity(test2_sentences[i]) # # if i != sentence.id:
file_obj = FileObj(r"testSet/zhenduanxx-utf.txt") test1_sentences = file_obj.read_lines() #test1_sentences = "子宫 肌瘤" # 分词工具,基于jieba分词,主要是去除停用词 seg = Seg() # 训练模型 ss = SentenceSimilarity(seg) ss.set_sentences(train_sentences) #ss.TfidfModel() # tfidf模型 #ss.LsiModel() # lsi模型 ss.LdaModel() # lda模型 #ss.W2Vmodel() for j in range(0, len(test1_sentences)): sentence = ss.similarity(test1_sentences[j], j) ''' # 测试集1 right_count = 0 file = open("result6.txt", "a") for j in range(0,len(test1_sentences)): sentence = ss.similarity(test1_sentences[j]) file.write(str(sentence.origin_sentence)+str(sentence.score)+"\n") file.flush() file.close()''' ''' if i != sentence.id: print (str(i) + " wrong! score: " + str(sentence.score)) else: right_count += 1 print (str(i) + " right! score: " + str(sentence.score))'''