def do_test_set_naive_bayes_sent_pos_bt(utterances, utterances_unprocessed, filename, lex, file, column, sentimentfile_train, sentimentfile_test): # annotation using naive_bayes will be saved in a new file with open(filename, 'w') as f: writer = csv.writer(f, delimiter=';') writer.writerow(["Utterance", "Cyberbullying"]) # header sentimentlist = senti_strength.estimate_sentiment_probabilities( sentimentfile_train, file, column) list_of_sentiments = machine_learning_processing.make_list_of_column( sentimentfile_test, 1) utterance_id = 0 for utterance in utterances: utterance_unprocessed = utterances_unprocessed[utterance_id] class_cb = do_naive_bayes_sent_pos_bt( utterance, utterance_unprocessed, lex, list_of_sentiments[utterance_id], sentimentlist ) # determine class of the utterance using do_naive_bayes() # write utterance and its assigned class into the file utterance_string = "" for word in utterance: utterance_string = utterance_string + word + " " writer.writerow([utterance_string, class_cb]) if utterance_id == 100: print(100) elif utterance_id == 200: print(200) elif utterance_id == 300: print(300) elif utterance_id == 400: print(400) elif utterance_id == 500: print(500) elif utterance_id == 600: print(600) elif utterance_id == 700: print(700) elif utterance_id == 800: print(800) elif utterance_id == 900: print(900) utterance_id += 1
def do_test_set_naive_bayes_sent_hs(utterances, filename, lex, file, column, sentimentfile_train, sentimentfile_test): # annotation using naive_bayes will be saved in a new file with open(filename, 'w') as f: writer = csv.writer(f, delimiter=';') writer.writerow(["Utterance", "Hate Speech"]) # header sentimentlist = senti_strength.estimate_sentiment_probabilities( sentimentfile_train, file, column) list_of_sentiments = machine_learning_processing.make_list_of_column( sentimentfile_test, 1) utterance_id = 0 for utterance in utterances: class_hs = do_sentiment_naive_bayes_hs( utterance, lex, list_of_sentiments[utterance_id], sentimentlist ) # determine class of the utterance using do_sentiment_naive_bayes_hs() # write utterance and its assigned class into the file utterance_string = "" for word in utterance: utterance_string = utterance_string + word + " " writer.writerow([utterance_string, class_hs]) utterance_id += 1