示例#1
0
def sentiment_analysis(tweet_sample, aggregate=True, mode='trinary'):
    senti = PySentiStr()
    senti.setSentiStrengthPath(sentistrength_jar_full_path)
    senti.setSentiStrengthLanguageFolderPath(sentistrength_lan_full_path_en)

    sentiment_dict = {}

    if type(tweet_sample) is not dict: return 'No matches'
    else:
        for topic in tweet_sample.keys():
            # Scores: scale, dual, binary and trinary
            sentiment = senti.getSentiment(tweet_sample[topic], score=mode)
            if (aggregate == True):
                sentisum = 0
                summary = {}
                for sent in sentiment:
                    sentisum += sent[
                        2]  # The trinary score returns a tuple, unless the others
                summary['value'] = sentisum
                if sentisum > 0: summary['sentiment'] = 'positive'
                else: summary['sentiment'] = 'negative'
                sentiment = summary

            sentiment_dict[topic] = sentiment
        return sentiment_dict
示例#2
0
def main():
    #==========================================================================#
    # criando o objeto do sentistrength e setando os caminhos dos arquivos
    # auxiliares
    #==========================================================================#
    obj_sentistrength = PySentiStr()
    obj_sentistrength.setSentiStrengthPath(SENTISTRENGTH_JAR_PATH)
    obj_sentistrength.setSentiStrengthLanguageFolderPath(
        SENTISTRENGTH_DATA_PATH)

    #===========================================================================#
    # realizando a leitura do arquivo frases.txt e colocando as linhas
    # na lista file_lines (file.readlines() retorna essa lista)
    #===========================================================================#
    with open('frases.txt', 'r') as file:
        file_lines = file.readlines()

    #===========================================================================#
    # iterando sobre a lista file_lines e realizando a análise de sentimentos
    # dos textos obtendo como resultados 3 scores (dual, trinary e scale)
    # similares e proporcionais para um mesmo texto de entrada
    #===========================================================================#
    for line in file_lines:
        text = line.strip()  # para removermos o \n ao final da linha
        result_scale = obj_sentistrength.getSentiment(text, score='scale')
        result_dual = obj_sentistrength.getSentiment(text, score='dual')
        result_trinary = obj_sentistrength.getSentiment(text, score='trinary')
        print(
            'text: {0}\nresult_scale: {1}\nresult_dual: {2}\nresult_trinary: {3}\n'
            .format(text, str(result_scale), str(result_dual),
                    str(result_trinary)))
示例#3
0
def tweet_word_sentiment(data):
    '''
    input: whole corpus
    output: 1 dicts for tweet_word_sentiment, 
            keys: tweet_id, values: dict (keys={"max","min","distance"})
                                    max--highest sentiment score among all words
                                    min--lowest sentiment score among all words
                                    distance-- difference between highest score and lowest score
    '''
    feature_dict = {}
    #     try:
    senti = PySentiStr()
    senti.setSentiStrengthPath('./SentiStrength.jar')
    senti.setSentiStrengthLanguageFolderPath('./SentiStrengthData/')

    for tweet in data:
        tokenized = tweet.tweet_words()
        new_words = [word for word in tokenized if word.isalnum()]
        if not new_words:
            feature_dict[tweet.tweet_id] = {"max": 0, "min": 0, "distance": 0}
            continue
        result = senti.getSentiment(new_words)
        max_, min_ = result[0], result[0]
        for score in result:
            max_ = max(max_, score)
            min_ = min(min_, score)
        #feature_dict[tweet.tweet_id]={"max":max_,"min":min_,"distance":max_-min_}
        feature_dict[tweet.tweet_id] = [max_, min_, max_ - min_]
    return feature_dict
def sentistr(x):
    senti = PySentiStr()
    senti.setSentiStrengthPath("SentiStrength.jar")
    senti.setSentiStrengthLanguageFolderPath("SentStrength_Data")
    result = senti.getSentiment(
        x,
        score='trinary')  #positive rating, negative rating and neutral rating
    return result
    def __initialize_senti(self):
        self.senti = PySentiStr()
        self.senti.setSentiStrengthPath(
            str(Path.cwd() / 'lib' / 'SentiStrengthCom.jar'))
        self.senti.setSentiStrengthLanguageFolderPath(str(Path.cwd() / 'lang'))

        # simple test to make sure senti works
        test = self.senti.getSentiment(['You are beautiful'], 'dual')
        assert type(test) is list
        assert type(test[0]) is tuple
示例#6
0
def get_sentistrength(df):
    senti = PySentiStr()
    senti.setSentiStrengthPath('~/softwares/SentiStrengthCom.jar')
    senti.setSentiStrengthLanguageFolderPath(
        '~/softwares/SentStrength_Data_Sept2011/')
    df["text"] = [t if t != "" else " " for t in df['text']]
    result = senti.getSentiment(df["text"], score='trinary')
    df["sentistrength_pos"] = [r[0] for r in result]
    df["sentistrength_neg"] = [r[1] for r in result]
    df["sentistrength_neutral"] = [r[2] for r in result]
    return df
示例#7
0
def main():
    #mudar entrada
    with open(
            './Comentarios_csv/Test/OPOVOOnline sobre escolha do novo reitor UFC.csv'
    ) as csv_file:
        csv_dict_reader = csv.DictReader(csv_file)
        senti = PySentiStr()
        senti.setSentiStrengthPath(
            "/home/caio/Documentos/Projeto Analise Comentarios Facebook/SentiStrength.jar"
        )
        senti.setSentiStrengthLanguageFolderPath(
            "/home/caio/Documentos/Projeto Analise Comentarios Facebook/SentStrength_Data/portuguese/"
        )

        #mudar saída
        with open('./Comentarios_csv/Test/teste.csv', 'w') as csvfile:
            spamwriter = csv.writer(csvfile)
            spamwriter.writerow(
                ["Comentário", "notaPositiva", "notaNegativa", "Sentimento"])
            for row in csv_dict_reader:
                #colocar nome da coluna que tem o comentario
                if row["message"]:
                    sentence = row["message"]
                    #sentence = RemoveAccent(sentence)
                    sentence = Tokenize(sentence)
                    if sentence:
                        sentence = RemoveStopWords(sentence)
                        if sentence:
                            sentence = Stemming(sentence)
                            sentence = " ".join(sentence)
                            #sentistrength
                            result = senti.getSentiment(sentence,
                                                        score='binary')
                            if result[0][0] + result[0][1] <= -1:
                                sentiment = 'negativo'
                            elif result[0][0] + result[0][1] >= 1:
                                sentiment = 'positivo'
                            else:
                                sentiment = 'neutro'
                            spamwriter.writerow([
                                row["message"], result[0][0], result[0][1],
                                sentiment
                            ])
            print("finish!")
示例#8
0
    if score > 0: return 'positive'
    elif score < 0: return 'negative'
    else: return 'neutral'


afinn = Afinn()


def afinn_polarity(text):
    score = afinn.score(text)
    if score > 0: return 'positive'
    elif score < 0: return 'negative'
    else: return 'neutral'


senti = PySentiStr()
senti.setSentiStrengthPath(senti_strength_jar_filepath)
senti.setSentiStrengthLanguageFolderPath(senti_strength_data_dirname)


def sentistrength_polarity(text):
    score = senti.getSentiment([text])[0]
    if score > 0: return 'positive'
    elif score < 0: return 'negative'
    else: return 'neutral'


mpqa_df = pd.read_csv(mpqa_filepath)


def mpqa_polarity(text):
示例#9
0
def __aggregate(_posts, _media, _comments, session, logger):
    _entries = list()

    # Initialize sentistrength variable
    senti = PySentiStr()
    setup_sentistrength_path(senti)

    for p in _posts:
        try:
            """ Id, name of a post """
            entry = [p.id, p.name]
            """ Number of version of a post """
            version = __extract_version(p.discussion_url)
            entry = entry + [version]
            """ Number of tags for a product """
            tags_number = session.query(func.count(
                Topic.name)).filter(Topic.post_id == p.id).scalar()
            entry = entry + [tags_number]

            entry = entry + [p.featured, p.votes_count, p.day, p.created_at]
            """ Time features """
            launch_day = get_day_name_from_date(p.created_at.year,
                                                p.created_at.month,
                                                p.created_at.day)
            best_launch_time = is_best_posted_time(p.created_at.hour,
                                                   p.created_at.minute,
                                                   p.created_at.second)
            best_launch_day = is_best_launched_day(p.created_at.hour,
                                                   p.created_at.minute,
                                                   p.created_at.second,
                                                   launch_day)
            max_follower = session.query(func.max(
                User.followers_count)).scalar()
            maker_id = session.query(
                Apps.maker_id).filter(Apps.post_id == p.id).one()[0]
            maker = session.query(
                User.id, User.name, User.twitter_username, User.website_url,
                User.followers_count).filter(User.id == maker_id).one()
            weekend = is_weekend(maker.followers_count, max_follower,
                                 launch_day)
            entry = entry + [
                launch_day, best_launch_time, best_launch_day, weekend
            ]
            """ Presentation features """
            entry = entry + [p.description]
            if p.description:
                """ Extraction of maker sentiment based on the description of his post """
                maker_description_sentiment = __extract_sentiment(
                    senti, p.description)
                entry = entry + [
                    maker_description_sentiment[0][0],
                    maker_description_sentiment[0][1], '', '', ''
                ]

                # Text length
                entry = entry + [len(p.description)]

                # Sentence length
                sentence = get_sentence(p.description)
                sentence_length_sum = 0
                for i in range(0, len(sentence)):
                    sentence_length_sum = sentence_length_sum + len(
                        sentence[i])
                try:
                    sentence_length_average = sentence_length_sum / len(
                        sentence)
                except ZeroDivisionError:
                    sentence_length_average = 0.0
                entry = entry + [round(sentence_length_average)]

                # Bullet points / Explicit features
                bullet_points_explicit_features = __extract_bullet_points_explicit_features(
                    sentence)
                entry = entry + [bullet_points_explicit_features]

                # Emoji in description
                emoji_description = __extract_emoji(p.description)
                entry = entry + [emoji_description]
            else:
                entry = entry + [1, -1, '', '', '', 0, 0, 'No', 'No']

            entry = entry + [p.tagline]
            if p.tagline:
                # Tagline length
                entry = entry + [len(p.tagline)]

                # Emoji in tagline
                emoji_tagline = __extract_emoji(p.tagline)
                entry = entry + [emoji_tagline]
            else:
                entry = entry + [0, 'No']

            # Video, Tweetable images, Gif and Gif's number for a post
            video = []
            tweetable_images = []
            gif = []
            index_media = 0
            while index_media < len(_media):
                # check if the current post_id is equal to the post_id of the current media
                if p.id == _media[index_media][0]:
                    # check if the media type is 'video'
                    if _media[index_media][1] == 'video':
                        # append to the list the link of the video
                        video = video + [_media[index_media][2]]

                    # calculate the image size passing its width and its height
                    roughly, ratio = calculate_aspect_ratio(
                        _media[index_media][3], _media[index_media][4])
                    # check if the image is a tweetable image
                    if (roughly == 2) and (ratio == 1):
                        # append to the list the image url
                        tweetable_images = tweetable_images + [
                            _media[index_media][5]
                        ]

                    # check if the image is a gif image passing its url
                    found = is_gif(_media[index_media][5])
                    if found:
                        # append to the list the image url
                        gif = gif + [_media[index_media][5]]
                index_media = index_media + 1
            if video:
                entry = entry + ['Yes']
            else:
                entry = entry + ['No']
            if tweetable_images:
                entry = entry + ['Yes']
            else:
                entry = entry + ['No']
            if gif:
                entry = entry + [gif, len(gif)]
            else:
                entry = entry + ['', len(gif)]

            # Offers, Promo/Discount Codes, Questions, Maker_inside, Hunter_inside in comment body for a post
            offers = []
            questions = []
            promo_codes = []
            # maker_follows_up_on_comments = 0
            hunter_follows_up_on_comments = 0
            maker_comments = []
            others_comments = []
            comm_in_thread = []
            hunter_id = session.query(
                Hunts.hunter_id).filter(Hunts.post_id == p.id).one()[0]
            index_comment = 0
            while index_comment < len(_comments):
                # check if the current post_id is equal to the post_id of the current comment
                if p.id == _comments[index_comment][3]:
                    # extract offers passing the comment body
                    offer = __extract_offers(_comments[index_comment][1])
                    if offer:
                        offers = offers + offer

                    # extract questions passing the comment body
                    question = __extract_questions(_comments[index_comment][1])
                    if question:
                        questions = questions + question

                    # extract promo_codes passing the comment body
                    promo_code = __extract_promo_codes(
                        _comments[index_comment][1])
                    if promo_code:
                        promo_codes = promo_codes + promo_code

                    # # check if the maker follows up on the current comment
                    # if _comments[index_comment][4] == maker_id:
                    #    maker_follows_up_on_comments = 1

                    # put comments in comm list (comment_id, comment_body, created_at, user_id)
                    comm_in_thread.append([
                        _comments[index_comment][0],
                        _comments[index_comment][1],
                        _comments[index_comment][2],
                        _comments[index_comment][4]
                    ])

                    # check if the hunter follows up on the current comment
                    if _comments[index_comment][4] == hunter_id:
                        hunter_follows_up_on_comments = 1
                    """ Extraction of maker sentiment based on his post comments written the day of launch """
                    if _comments[index_comment][4] == maker_id:
                        # date of maker's comment written the day the post was launched
                        comment_date = _comments[index_comment][2]
                        # cut the comments written days after the post was launched
                        if (p.created_at.year == comment_date.year) and (
                                p.created_at.month == comment_date.month) and (
                                    p.created_at.day == comment_date.day):
                            if not maker_comments:
                                maker_comments = [_comments[index_comment][1]]
                            else:
                                maker_comments = maker_comments + [
                                    _comments[index_comment][1]
                                ]
                    """ Extraction of others users sentiment based on their post comments written the day of launch """
                    if (_comments[index_comment][4] !=
                            maker_id) and (maker_id != hunter_id):
                        # date of others comment written the day the post was launched
                        comment_date = _comments[index_comment][2]
                        # cut the comments written days after the post was launched
                        if (p.created_at.year == comment_date.year) and (
                                p.created_at.month == comment_date.month) and (
                                    p.created_at.day == comment_date.day):
                            if not others_comments:
                                others_comments = [_comments[index_comment][1]]
                            else:
                                others_comments = others_comments + [
                                    _comments[index_comment][1]
                                ]

                index_comment = index_comment + 1
            if offers:
                entry = entry + ['Yes']
            else:
                entry = entry + ['No']
            if promo_codes:
                entry = entry + ['Yes']
            else:
                entry = entry + ['No']
            if questions:
                entry = entry + ['Yes']
            else:
                entry = entry + ['No']

            # check if the maker writes the first comment in the thread
            maker_started_comment_thread = 0
            if comm_in_thread:
                if (p.created_at.year == comm_in_thread[0][2].year) and (
                        p.created_at.month == comm_in_thread[0][2].month) and (
                            p.created_at.day == comm_in_thread[0][2].day):
                    if comm_in_thread[0][3] == maker_id:
                        maker_started_comment_thread = 1

            # calculate maker comment ratio ((number of maker comments / number of all comments)*100)
            number_maker_comments = 0
            number_others_comments = 0
            if comm_in_thread:
                for i in range(0, len(comm_in_thread)):
                    if (p.created_at.year == comm_in_thread[i][2].year) and (
                            p.created_at.month == comm_in_thread[i][2].month
                    ) and (p.created_at.day == comm_in_thread[i][2].day):
                        if comm_in_thread[i][3] == maker_id:
                            number_maker_comments = number_maker_comments + 1
                        else:
                            number_others_comments = number_others_comments + 1
            thread_length = number_maker_comments + number_others_comments
            try:
                if maker_started_comment_thread == 1:
                    maker_comment_ratio = (number_maker_comments /
                                           thread_length) * 100
                else:
                    maker_comment_ratio = 0.0
            except ZeroDivisionError:
                maker_comment_ratio = 0.00

            # Hunter reputation
            hunter = session.query(
                User.id, User.name, User.twitter_username, User.website_url,
                User.followers_count,
                User.apps_made_count).filter(User.id == hunter_id).one()
            entry = entry + [
                hunter.id, hunter.name, hunter.twitter_username,
                hunter.website_url, hunter.followers_count,
                hunter.apps_made_count, hunter_follows_up_on_comments
            ]

            # Maker reputation
            entry = entry + [
                maker.id, maker.name, maker.twitter_username,
                maker.website_url, maker.followers_count,
                maker_started_comment_thread,
                round(maker_comment_ratio, 2), thread_length
            ]

            # check if the hunter is also the maker and append the variable hunter_is_maker to the list entry
            hunter_is_maker = 0
            if hunter_id == maker_id:
                hunter_is_maker = 1
            entry = entry + [hunter_is_maker]

            # Append to the list the maker comment sentiment
            if maker_comments:
                comment = '\n'.join(maker_comments)
                sentiment = __extract_sentiment(senti, comment)
            else:
                comment = ''
                sentiment = [[1, -1]]
            entry = entry + [
                comment, sentiment[0][0], sentiment[0][1], '', '', ''
            ]

            # Append to the list the others comment sentiment
            if others_comments:
                comment = '\n'.join(others_comments)
                sentiment = __extract_sentiment(senti, comment)
            else:
                comment = ''
                sentiment = [[1, -1]]
            entry = entry + [
                comment, sentiment[0][0], sentiment[0][1], '', '', ''
            ]

            _entries.append(entry)
        except NoResultFound as ex:
            logger.error(str(ex))
            continue
        except MultipleResultsFound as ex:
            logger.error(str(ex))
            continue
    return _entries
def main():
    with open(
            './OPOVOOnline sobre escolha do novo reitor UFC.csv') as csv_file:
        csv_dict_reader = csv.DictReader(csv_file)
        senti = PySentiStr()
        senti.setSentiStrengthPath(
            "/home/caio/Documentos/Projeto Analise Comentarios Facebook/SentiStrength.jar"
        )
        senti.setSentiStrengthLanguageFolderPath(
            "/home/caio/Documentos/Projeto Analise Comentarios Facebook/SentStrength_Data/portuguese/"
        )
        prev_message = ""

        with open(
                '/home/caio/Documentos/Projeto Analise Comentarios Facebook/Frases_Neutras.csv',
                'w') as csvfile:
            spamwriter = csv.writer(csvfile)
            spamwriter.writerow(["Frase", "notaPositiva", "notaNegativa"])
            #sentistrength
            for row in csv_dict_reader:
                if prev_message != row["message"] and row["message"]:
                    sentence = row["message"]
                    #sentence = RemoveAccent(sentence)
                    sentence = Tokenize(sentence)
                    if sentence:
                        sentence = RemoveStopWords(sentence)
                        if sentence:
                            sentence = Stemming(sentence)
                            sentence = " ".join(sentence)
                            result = senti.getSentiment(sentence,
                                                        score='binary')
                            if result[0][0] + result[0][1] == 0:
                                #salvar frase tokenizada
                                #spamwriter.writerow([sentence, result[0][0], result[0][1]])
                                #salvar frase inteira
                                spamwriter.writerow([
                                    row["message"], result[0][0], result[0][1]
                                ])
                #publicacao com resposta de comentários
                if row["object_link.connections.comments.message"] != 'null' and row[
                        "object_link.connections.comments.message"]:
                    sentence = row["object_link.connections.comments.message"]
                    #sentence = RemoveAccent(sentence)
                    sentence = Tokenize(sentence)
                    if sentence:
                        sentence = RemoveStopWords(sentence)
                        if sentence:
                            sentence = Stemming(sentence)
                            sentence = " ".join(sentence)
                            result = senti.getSentiment(sentence,
                                                        score='binary')
                            if result[0][0] + result[0][1] == 0:
                                #mostrar tokenizada
                                #spamwriter.writerow([sentence, result[0][0], result[0][1]])
                                #mostrar frase inteira
                                spamwriter.writerow([
                                    row["object_link.connections.comments.message"],
                                    result[0][0], result[0][1]
                                ])
                prev_message = row["message"]
            print("finish!")
示例#11
0
def pre_process_and_predict(sentence):
    wordnet_lemmatizer = WordNetLemmatizer()
    # # Replacing double quotes with single, within a string
    sentence = sentence.replace("\"", "\'")
    # # Removing unnecessary special characters, keeping only ,  ! ?
    sentence = re.sub(r"[^!?,a-zA-Z0-9\ ]+", '', sentence)
    # # Lemmatization on verbs
    sentence = ' '.join([
        wordnet_lemmatizer.lemmatize(word, pos='v')
        for word in word_tokenize(sentence)
    ])

    sn = SenticNet()
    senti = PySentiStr()
    senti.setSentiStrengthPath(CODE_PATH + '/sentistrength/SentiStrength.jar')
    senti.setSentiStrengthLanguageFolderPath(
        CODE_PATH + '/sentistrength/SentStrength_Data/')

    sentiment_score = []

    for sen in sent_tokenize(sentence):
        senti_pos, senti_neg = senti.getSentiment(sen, score='dual')[0]
        senti_pos -= 1
        if senti_neg == -1:
            senti_neg = 0
        sum_pos_score = 0
        sum_neg_score = 0
        for word in word_tokenize(sen):
            try:
                w_score = float(sn.polarity_intense(word)) * 5
            except KeyError:
                w_score = 0
            if w_score > 0:
                sum_pos_score = sum_pos_score + w_score
            elif w_score < 0:
                sum_neg_score = sum_neg_score + w_score
        sum_pos_score = (sum_pos_score + senti_pos) / 2
        sum_neg_score = (sum_neg_score + senti_neg) / 2
        sentiment_score.append((sum_pos_score, sum_neg_score))
    additional_features_s = []
    additional_features_ns = []

    contra = []
    pos_low = []
    pos_medium = []
    pos_high = []
    neg_low = []
    neg_medium = []
    neg_high = []

    for sum_pos_score, sum_neg_score in sentiment_score:
        contra.append(int(sum_pos_score > 0 and abs(sum_neg_score) > 0))
        pos_low.append(int(sum_pos_score < 0))
        pos_medium.append(int(sum_pos_score >= 0 and sum_pos_score <= 1))
        pos_high.append(int(sum_pos_score >= 2))
        neg_low.append(int(sum_neg_score < 0))
        neg_medium.append(int(sum_neg_score >= 0 and sum_neg_score <= 1))
        neg_high.append(int(sum_neg_score >= 2))
    additional_features_s = additional_features_s + [
        max(pos_medium),
        max(pos_high),
        max(neg_medium),
        max(neg_high)
    ]
    additional_features_ns = additional_features_ns + [
        max(pos_low), max(neg_low)
    ]

    tweet = sentence
    punctuation_count = SequencePunctuationCount(tweet)
    character_count = SequenceCharacterCount(tweet)
    capitalized_count = CapitalizedCount(tweet)
    exclamation_count = ExclamationCount(tweet)
    #     emoji_count       = EmojiCount(tweet)
    f_count = [
        punctuation_count, character_count, capitalized_count,
        exclamation_count
    ]
    for count in f_count:
        f_low = int(count == 0)
        f_medium = int(count >= 1 and count <= 3)
        f_high = int(count >= 4)
        additional_features_s = additional_features_s + [f_medium, f_high]
        additional_features_ns = additional_features_ns + [f_low]
    X = [sentence]

    in_file = open(os.path.join(PICKLES_PATH, "vocab.pickle"), "rb")
    vocab = pickle.load(in_file)
    in_file.close()

    in_file = open(os.path.join(PICKLES_PATH, "model.pickle"), "rb")
    model = pickle.load(in_file)
    in_file.close()

    vectorizer = TfidfVectorizer(vocabulary=vocab)
    X = vectorizer.fit_transform(X)
    ans = int(sum(model.predict(X)))
    print('Sentence : ', sentence)
    print('Sarcastic features : ', additional_features_s)
    print('Not Sarcastic features : ', additional_features_ns)
    print('Contradict : ', max(contra))
    print('Model Predict : ', ans)
    print(
        'My obs : ',
        int((sum(additional_features_s) >= sum(additional_features_ns))
            and max(contra) == 1))
    print('Final Prd : ', end='')

    if ans == 1 or ((sum(additional_features_s) >= sum(additional_features_ns))
                    and max(contra) == 1):
        return True
    else:
        return False
示例#12
0
import xml.etree.ElementTree as xml
from sentistrength import PySentiStr

#inicializando sentistrength
sstrength = PySentiStr()
sstrength.setSentiStrengthPath("SentiStrength.jar")
sstrength.setSentiStrengthLanguageFolderPath("SentiStrength_Data")


# Dada uma lista com as respostas, retorna uma lista com os valores de sentimento
# gerados pelo SentiStr
def analise_sentistr(respostas):
    return sstrength.getSentiment(respostas)