示例#1
0
def sep_phot(data, ap, th):
    """
    Preforms photometry by SEP, similar to source extractor
    """

    # Measure a spatially variable background of some image data (np array)
    try:
        bkg = sep.Background(data)  # , mask=mask, bw=64, bh=64, fw=3, fh=3) # optional parameters
    except ValueError:
        data = data.byteswap(True).newbyteorder()
        bkg = sep.Background(data)  # , mask=mask, bw=64, bh=64, fw=3, fh=3) # optional parameters

    # Directly subtract the background from the data in place
    bkg.subfrom(data)

    # for the background subtracted data, detect objects in data given some threshold
    thresh = th * bkg.globalrms  # ensure the threshold is high enough wrt background
    objs = sep.extract(data, thresh)
    # calculate the Kron radius for each object, then we perform elliptical aperture photometry within that radius
    kronrad, krflag = sep.kron_radius(data, objs['x'], objs['y'], objs['a'], objs['b'], objs['theta'], ap)
    flux, fluxerr, flag = sep.sum_ellipse(data, objs['x'], objs['y'], objs['a'], objs['b'], objs['theta'],
                                          2.5 * kronrad, subpix=1)
    flag |= krflag  # combine flags into 'flag'

    r_min = 1.75  # minimum diameter = 3.5
    use_circle = kronrad * np.sqrt(objs['a'] * objs['b']) < r_min
    x = objs['x']
    y = objs['y']
    cflux, cfluxerr, cflag = sep.sum_circle(data, x[use_circle], y[use_circle],
                                            r_min, subpix=1)
    flux[use_circle] = cflux
    fluxerr[use_circle] = cfluxerr
    flag[use_circle] = cflag

    return objs
示例#2
0
def sep_phot(exp_data, asteroid_id, ap=10.0):
    """
    Measure background of postage stamp and the flux_err of the asteroid
    """

    data2 = np.ones(exp_data.shape) * exp_data
    # np.copyto(data2, exp_data)
    try:
        bkg = sep.Background(data2)
    except ValueError:
        data3 = data2.byteswap(True).newbyteorder()
        bkg = sep.Background(data3)

    # Directly subtract the background from the data in place
    bkg.subfrom(data2)

    # calculate the Kron radius for each object, then we perform elliptical aperture photometry within that radius
    kronrad, krflag = sep.kron_radius(data2, asteroid_id[_XMID_HEADER], asteroid_id[_YMID_HEADER],
                                      asteroid_id[_A_HEADER],
                                      asteroid_id['b'], asteroid_id[_THETA_HEADER], ap)
    flux, fluxerr, flag = sep.sum_ellipse(data2, asteroid_id[_XMID_HEADER], asteroid_id[_YMID_HEADER],
                                          asteroid_id[_A_HEADER], asteroid_id[_B_HEADER],
                                          asteroid_id[_THETA_HEADER], 2.5 * kronrad, subpix=1, err=bkg.globalrms)

    return bkg.globalback, flux, fluxerr
示例#3
0
    def AperaturePhoto(self,filter,objs):
        print 'Running Aperature Photometry on %s......'%filter
        kronrad, krflag = sep.kron_radius(self.dataList[filter],
                                          objs['x'], objs['y'],
                                          objs['a'], objs['b'],
                                          objs['theta'],
                                          6.0)

        flux, fluxerr, flag = sep.sum_ellipse(self.dataList[filter],
                                              objs['x'], objs['y'],
                                              objs['a'], objs['b'],
                                              objs['theta'],
                                              2.5*kronrad, subpix=1,
                                              err=self.bkgRMS[filter])
        #use circular aperature photometry if the kronradius is too small. see http://sep.readthedocs.org/en/v0.2.x/apertures.html
        r_min = 1.75 # minimum diameter = 3.5
        use_circle = kronrad * np.sqrt(objs['a']*objs['b']) < r_min
        cflux, cfluxerr, cflag = sep.sum_circle(self.dataList[filter],
                                                objs['x'][use_circle],
                                                objs['y'][use_circle],
                                                r_min, subpix=1,err=self.bkgRMS[filter])
        flux[use_circle] = cflux
        fluxerr[use_circle] = cfluxerr
        flag[use_circle] = cflag
        #convert flux to magnitudes using the appropriate zeropoint
        #absolute flux measurement (AB for Z-PEG)
        mag = -2.5*np.log10(flux)+self.zeroPoints[filter]
        #calculate magerr
        fluxdown = flux - fluxerr
        fluxup = flux + fluxerr
        magup = -2.5*np.log10(fluxdown) + self.zeroPoints[filter]
        magdown = -2.5*np.log10(fluxup) + self.zeroPoints[filter]
        magerr = ((magup - mag) + (mag-magdown))/2.

        return mag, magerr
示例#4
0
文件: core.py 项目: mkelley/robotools
def catalog(ccd, bgf, catf, db, config, logger):
    bg = fits.open(bgf)
    im = ccd.data - bg['background'].data
    ps = ccd.meta['SCALE'] * ccd.meta.get('REBIN', 1)

    bgrms = bg['background'].header['bgrms']
    objects = sep.extract(im, 2, err=bgrms, mask=ccd.mask)
    logger.info('Found {} sources.'.format(len(objects)))

    rap = max(ccd.meta['SEEING'] * 2, 5 / ps)
    flux, fluxerr, flag = sep.sum_circle(im,
                                         objects['x'],
                                         objects['y'],
                                         rap,
                                         err=bgrms)

    # avoid theta rounding error
    theta = np.maximum(np.minimum(objects['theta'], np.pi / 2.00001),
                       -np.pi / 2.00001)
    kronrad, krflag = sep.kron_radius(im, objects['x'], objects['y'],
                                      objects['a'], objects['b'], theta, 6.0)
    krflux, krfluxerr, _flag = sep.sum_ellipse(im,
                                               objects['x'],
                                               objects['y'],
                                               objects['a'],
                                               objects['b'],
                                               theta,
                                               2.5 * kronrad,
                                               subpix=1,
                                               err=bgrms)
    krflag |= _flag

    # an additional background estimate, which should help when there are
    # large extended sources in scene: IN TESTS, THIS DID NOT AFFECT RESULTS
    # for i in range(len(objects)):
    #    krflux[i], krfluxerr[i] = bg_subtract2(im, objects[i], krflux[i],
    #                                           krfluxerr[i])
    #    flux[i], fluxerr[i] = bg_subtract2(im, objects[i], flux[i],
    #                                       fluxerr[i], r=rap)

    if ccd.wcs.wcs.crval[0] == ccd.wcs.wcs.crval[1]:
        ra, dec = np.zeros((2, len(objects)))
    else:
        ra, dec = ccd.wcs.all_pix2world(objects['x'], objects['y'], 0)

    tab = Table(
        (objects['x'], objects['y'], ra, dec, flux, fluxerr, flag,
         objects['a'], objects['b'], theta, kronrad, krflux, krfluxerr,
         krflag),
        names=('x', 'y', 'ra', 'dec', 'flux', 'fluxerr', 'flag', 'a', 'b',
               'theta', 'kronrad', 'krflux', 'krfluxerr', 'krflag'))

    hdu = fits.HDUList()
    hdu.append(fits.BinTableHDU(tab, name='cat'))
    hdu['cat'].header['RADIUS'] = (rap * ps,
                                   'aperture photometry radius, arcsec')
    hdu.writeto(catf, overwrite=True)
示例#5
0
    def _measure(self, img, sources, mask=None):

        logger.info('measuring source parameters')

        # HACK: issues with numerical precision
        # must have pi/2 <= theta <= npi/2
        sources[np.abs(np.abs(sources['theta']) - np.pi/2) < 1e-6] = np.pi/2

        for p in ['x', 'y', 'a', 'b', 'theta']:
            sources = sources[~np.isnan(sources[p])]

        # calculate "AUTO" parameters
        kronrad, krflag = sep.kron_radius(
            img, sources['x'], sources['y'], sources['a'], sources['b'],
            sources['theta'], 6.0, mask=mask)
    
        flux, fluxerr, flag = sep.sum_ellipse(
            img, sources['x'], sources['y'], sources['a'], sources['b'],
            sources['theta'], 2.5*kronrad, subpix=5, mask=mask)
        flag |= krflag  # combine flags into 'flag'

        sources = sources[~np.isnan(flux)]
        flux = flux[~np.isnan(flux)]
        sources = sources[flux > 0]
        flux = flux[flux > 0]

        mag_auto = utils.zpt - 2.5*np.log10(flux)
        r, flag = sep.flux_radius(
            img, sources['x'], sources['y'], 6.*sources['a'], 0.5,
            normflux=flux, subpix=5, mask=mask)

        sources['mag_auto'] = mag_auto
        sources['flux_auto'] = flux
        sources['flux_radius'] = r * utils.pixscale

        # approximate fwhm 
        r_squared = sources['a']**2 + sources['b']**2
        sources['fwhm'] = 2 * np.sqrt(np.log(2) * r_squared) *  utils.pixscale
        
        q = sources['b'] / sources['a']
        area = np.pi * q * sources['flux_radius']**2
        sources['mu_ave_auto'] = sources['mag_auto']  + 2.5 * np.log10(2*area)
        
        area_arcsec = np.pi * (self.psf_fwhm/2)**2 * utils.pixscale**2
        flux, fluxerr, flag = sep.sum_circle(
            img, sources['x'], sources['y'], self.psf_fwhm/2, 
            subpix=5, mask=mask)
        flux[flux<=0] = np.nan
        mu_0 = utils.zpt - 2.5*np.log10(flux / area_arcsec)

        sources['mu_0_aper'] = mu_0

        return sources
示例#6
0
def sextractor(im,err=None,mask=None,nsig=5.0,gain=1.0):

    # Check byte order, SEP needs little endian
    if im.dtype.byteorder == '>':
        data = im.byteswap().newbyteorder()
    else:
        data = im

    # Background estimation and subtraction
    bkg = sep.Background(data, mask, bw=256, bh=256, fw=3, fh=3)
    bkg_image = bkg.back()
    data_sub = data-bkg
    #data_sub[data>50000]=0.0
    # Detect and extract objects
    if err is None:
        objects = sep.extract(data_sub, nsig, err=bkg.globalrms, mask=mask)
    else:
        objects = sep.extract(data_sub, nsig, err=err, mask=mask)
        
    # Get mag_auto in 2 steps
    kronrad, krflag = sep.kron_radius(data_sub, objects['x'], objects['y'], objects['a'], objects['b'],
                                      objects['theta'], 6.0, mask=mask)
    flux, fluxerr, flag = sep.sum_ellipse(data_sub, objects['x'], objects['y'], objects['a'], objects['b'],
                                          objects['theta'], 2.5*kronrad, subpix=1, err=err, mask=mask, gain=gain)
    flag |= krflag  # combine flags into 'flag'

    # Use circular aperture if Kron radius is too small
    r_min = 1.75  # minimum diameter = 3.5
    use_circle = kronrad * np.sqrt(objects['a'] * objects['b']) < r_min
    if np.sum(use_circle)>0:
        cflux, cfluxerr, cflag = sep.sum_circle(data_sub, objects['x'][use_circle], objects['y'][use_circle],
                                                r_min, subpix=1, err=err, mask=mask, gain=gain)
        flux[use_circle] = cflux
        fluxerr[use_circle] = cfluxerr
        flag[use_circle] = cflag
    mag_auto = -2.5*np.log10(flux)+25.0
    magerr_auto = 1.0857*fluxerr/flux
    
    # Make the final catalog
    newdt = np.dtype([('kronrad',float),('flux_auto',float),('fluxerr_auto',float),('mag_auto',float),('magerr_auto',float)])
    cat = dln.addcatcols(objects,newdt)
    cat['flag'] |= flag
    cat['kronrad'] = kronrad
    cat['flux_auto'] = flux
    cat['fluxerr_auto'] = fluxerr
    cat['mag_auto'] = mag_auto
    cat['magerr_auto'] = magerr_auto
    
    return cat
示例#7
0
文件: runner.py 项目: esheldon/sxdes
    def _get_flux_auto(self, objs):
        flux_auto = np.zeros(objs.size) - 9999.0
        fluxerr_auto = np.zeros(objs.size) - 9999.0
        flux_radius = np.zeros(objs.size) - 9999.0
        kron_radius = np.zeros(objs.size) - 9999.0

        w, = np.where((objs['a'] >= 0.0) & (objs['b'] >= 0.0)
                      & (objs['theta'] >= -np.pi / 2.)
                      & (objs['theta'] <= np.pi / 2.))

        if w.size > 0:
            kron_radius[w], krflag = sep.kron_radius(
                self.image,
                objs['x'][w],
                objs['y'][w],
                objs['a'][w],
                objs['b'][w],
                objs['theta'][w],
                6.0,
            )
            objs['flag'][w] |= krflag

            aper_rad = 2.5 * kron_radius
            flux_auto[w], fluxerr_auto[w], flag_auto = \
                sep.sum_ellipse(
                    self.image,
                    objs['x'][w],
                    objs['y'][w],
                    objs['a'][w],
                    objs['b'][w],
                    objs['theta'][w],
                    aper_rad[w],
                    subpix=1,
                )
            objs['flag'][w] |= flag_auto

            flux_radius[w], frflag = sep.flux_radius(
                self.image,
                objs['x'][w],
                objs['y'][w],
                6. * objs['a'][w],
                PHOT_FLUXFRAC,
                normflux=flux_auto[w],
                subpix=5,
            )
            objs['flag'][w] |= frflag  # combine flags into 'flag'

        return flux_auto, fluxerr_auto, flux_radius, kron_radius
示例#8
0
def make_sep_catalog(data,
                     header,
                     options,
                     mask=None,
                     min_sep=10.,
                     do_bgsub=False):

    try:
        bkg = sep.Background(data, mask, bw=32, bh=32, fw=3, fh=3)
    except ValueError:
        data = data.byteswap().newbyteorder()
        bkg = sep.Background(data, mask, bw=32, bh=32, fw=3, fh=3)

    if do_bgsub:
        error = np.sqrt(data)
        data_bgsub = data - bkg
    else:
        error = bkg.globalrms
        data_bgsub = data
    sources = sep.extract(data_bgsub, err=error, mask=mask, **options['sep'])

    dists = ((sources['x'] - sources['x'][:, np.newaxis])**2 +
             (sources['y'] - sources['y'][:, np.newaxis])**2)**0.5
    closest = np.partition(dists, 1)[:, 1]
    sources = sources[closest > min_sep]

    t = table.Table(sources)
    kronrad, krflag = sep.kron_radius(data_bgsub, sources['x'], sources['y'],
                                      sources['a'], sources['b'],
                                      sources['theta'], 6.0)

    flux, fluxerr, flag = sep.sum_ellipse(data_bgsub,
                                          sources['x'],
                                          sources['y'],
                                          sources['a'],
                                          sources['b'],
                                          np.pi / 2.0,
                                          2.5 * kronrad,
                                          subpix=1,
                                          err=error)

    t['mag'] = -2.5 * np.log10(flux)
    t['magerr'] = np.log(10) / 2.5 * fluxerr / flux
    t['ra'], t['dec'] = WCS(header).all_pix2world(t['x'], t['y'], 0)

    t = t['x', 'y', 'mag', 'magerr', 'ra', 'dec']

    return t
示例#9
0
def extract(data):
	bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)
	bkg.subfrom(data)
	objs = sep.extract(data, 1.5*bkg.globalrms)
	flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 5.,
                                         err=bkg.globalrms)
	kr, flag = sep.kron_radius(data, objs['x'], objs['y'], objs['a'],
                               			objs['b'], objs['theta'], 6.0)
	eflux, efluxerr, eflag = sep.sum_ellipse(data, objs['x'], objs['y'],
                                          objs['a'], objs['b'],
                                          objs['theta'], r=2.5 * kr,
                                          err=bkg.globalrms, subpix=1)
	retstr = ""
	for i in range(len(objs['x'])):
		retstr = retstr+(str(objs['x'][i])+"\t"+str(objs['y'][i])+"\t"+str(flux[i])+"\t"+str(fluxerr[i])+"\t"+str(kr[i])+"\t"+str(eflux[i])+"\t"+str(efluxerr[i])+"\t"+str(flag[i])+"\n")
	return retstr
示例#10
0
def findSpot(data, sigma):
    image=data
    #m, s = np.mean(image), np.std(image)
    bkg = sep.Background(image, bw=32, bh=32, fw=3, fh=3)
    objs = sep.extract(image-bkg, sigma, err=bkg.globalrms)
    aper_radius=3
    
    # Calculate the Kron Radius
    kronrad, krflag = sep.kron_radius(image, objs['x'], objs['y'], \
        objs['a'], objs['b'], objs['theta'], aper_radius)

    r_min = 3
    use_circle = kronrad * np.sqrt(objs['a'] * objs['b'])
    cinx=np.where(use_circle <= r_min)
    einx=np.where(use_circle > r_min)

    # Calculate the equivalent of FLUX_AUTO
    flux, fluxerr, flag = sep.sum_ellipse(image, objs['x'][einx], objs['y'][einx], \
        objs['a'][einx], objs['b'][einx], objs['theta'][einx], 2.5*kronrad[einx],subpix=1)		

    cflux, cfluxerr, cflag = sep.sum_circle(image, objs['x'][cinx], objs['y'][cinx],
                                    objs['a'][cinx], subpix=1)

    # Adding half pixel to measured coordinate.  
    objs['x'] =  objs['x']+0.5
    objs['y'] =  objs['y']+0.5

    objs['flux'][einx]=flux
    objs['flux'][cinx]=cflux


    r, flag = sep.flux_radius(image, objs['x'], objs['y'], \
        6*objs['a'], 0.3,normflux=objs['flux'], subpix=5)

    flag |= krflag
 
    objs=rfn.append_fields(objs, 'r', data=r, usemask=False)

    objects=objs[:]
    
    return objects
示例#11
0
def kron_radius(components, observation=None, weight_order=0):
    """
    Determine the Kron Radius 

    Parameters
    ----------
    components: a list of `scarlet.Component` or `scarlet.ComponentTree`
        Component to analyze
    observation

    """
    if not isinstance(components, list):
        components = [components]

    # Determine the centroid, averaged through channels
    _, y_cen, x_cen = centroid(components, observation=observation)
    s = shape(components,
              observation,
              show_fig=False,
              weight_order=weight_order)
    q = s['q']
    theta = np.deg2rad(s['pa'])

    blend = scarlet.Blend(components, observation)
    model = blend.get_model()
    mask = (observation.weights == 0)
    model = model * ~mask

    depth = model.shape[0]
    kron = []

    if depth > 1:
        for i in range(depth):
            r_max = max(model.shape)
            r = sep.kron_radius(model[i], x_cen, y_cen, 1, 1 * q[i], theta[i],
                                r_max)[0]
            kron.append(r)

    return np.array(kron)
示例#12
0
def extract_obj(img,
                b=30,
                f=5,
                sigma=5,
                pixel_scale=0.168,
                minarea=5,
                deblend_nthresh=32,
                deblend_cont=0.005,
                clean_param=1.0,
                sky_subtract=False,
                show_fig=True,
                verbose=True,
                flux_auto=True,
                flux_aper=None):
    '''Extract objects for a given image, using `sep`. This is from `slug`.

    Parameters:
    ----------
    img: 2-D numpy array
    b: float, size of box
    f: float, size of convolving kernel
    sigma: float, detection threshold
    pixel_scale: float

    Returns:
    -------
    objects: astropy Table, containing the positions,
        shapes and other properties of extracted objects.
    segmap: 2-D numpy array, segmentation map
    '''

    # Subtract a mean sky value to achieve better object detection
    b = 30  # Box size
    f = 5  # Filter width
    bkg = sep.Background(img, bw=b, bh=b, fw=f, fh=f)
    data_sub = img - bkg.back()

    sigma = sigma
    if sky_subtract:
        input_data = data_sub
    else:
        input_data = img
    objects, segmap = sep.extract(input_data,
                                  sigma,
                                  err=bkg.globalrms,
                                  segmentation_map=True,
                                  filter_type='matched',
                                  deblend_nthresh=deblend_nthresh,
                                  deblend_cont=deblend_cont,
                                  clean=True,
                                  clean_param=clean_param,
                                  minarea=minarea)
    if verbose:
        print("# Detect %d objects" % len(objects))
    objects = Table(objects)
    objects.add_column(Column(data=np.arange(len(objects)) + 1, name='index'))
    # Maximum flux, defined as flux within six 'a' in radius.
    objects.add_column(
        Column(data=sep.sum_circle(input_data, objects['x'], objects['y'],
                                   6. * objects['a'])[0],
               name='flux_max'))
    # Add FWHM estimated from 'a' and 'b'.
    # This is suggested here: https://github.com/kbarbary/sep/issues/34
    objects.add_column(
        Column(data=2 *
               np.sqrt(np.log(2) * (objects['a']**2 + objects['b']**2)),
               name='fwhm_custom'))

    # Use Kron radius to calculate FLUX_AUTO in SourceExtractor.
    # Here PHOT_PARAMETER = 2.5, 3.5
    if flux_auto:
        kronrad, krflag = sep.kron_radius(input_data, objects['x'],
                                          objects['y'], objects['a'],
                                          objects['b'], objects['theta'], 6.0)
        flux, fluxerr, flag = sep.sum_circle(input_data,
                                             objects['x'],
                                             objects['y'],
                                             2.5 * (kronrad),
                                             subpix=1)
        flag |= krflag  # combine flags into 'flag'

        r_min = 1.75  # minimum diameter = 3.5
        use_circle = kronrad * np.sqrt(objects['a'] * objects['b']) < r_min
        cflux, cfluxerr, cflag = sep.sum_circle(input_data,
                                                objects['x'][use_circle],
                                                objects['y'][use_circle],
                                                r_min,
                                                subpix=1)
        flux[use_circle] = cflux
        fluxerr[use_circle] = cfluxerr
        flag[use_circle] = cflag
        objects.add_column(Column(data=flux, name='flux_auto'))
        objects.add_column(Column(data=kronrad, name='kron_rad'))

    if flux_aper is not None:
        objects.add_column(
            Column(data=sep.sum_circle(input_data, objects['x'], objects['y'],
                                       flux_aper[0])[0],
                   name='flux_aper_1'))
        objects.add_column(
            Column(data=sep.sum_circle(input_data, objects['x'], objects['y'],
                                       flux_aper[1])[0],
                   name='flux_aper_2'))
        objects.add_column(
            Column(data=sep.sum_circann(input_data, objects['x'], objects['y'],
                                        flux_aper[0], flux_aper[1])[0],
                   name='flux_ann'))
        '''
        objects.add_column(Column(data=sep.sum_circle(input_data, objects['x'], objects['y'], flux_aper[0] * objects['a'])[0], 
                                  name='flux_aper_1'))
        objects.add_column(Column(data=sep.sum_circle(input_data, objects['x'], objects['y'], flux_aper[1] * objects['a'])[0], 
                                  name='flux_aper_2')) 
        objects.add_column(Column(data=sep.sum_circann(input_data, objects['x'], objects['y'], 
                                       flux_aper[0] * objects['a'], flux_aper[1] * objects['a'])[0], name='flux_ann'))
        '''

    # plot background-subtracted image
    if show_fig:
        fig, ax = plt.subplots(1, 2, figsize=(12, 6))

        ax[0] = display_single(data_sub,
                               ax=ax[0],
                               scale_bar=False,
                               pixel_scale=pixel_scale)
        from matplotlib.patches import Ellipse
        # plot an ellipse for each object
        for obj in objects:
            e = Ellipse(xy=(obj['x'], obj['y']),
                        width=8 * obj['a'],
                        height=8 * obj['b'],
                        angle=obj['theta'] * 180. / np.pi)
            e.set_facecolor('none')
            e.set_edgecolor('red')
            ax[0].add_artist(e)
        ax[1] = display_single(segmap, scale='linear', cmap=SEG_CMAP, ax=ax[1])
    return objects, segmap
示例#13
0
    def do_stage(self, images):
        for i, image in enumerate(images):
            try:
                # Set the number of source pixels to be 5% of the total. This keeps us safe from
                # satellites and airplanes.
                sep.set_extract_pixstack(int(image.nx * image.ny * 0.05))

                data = image.data.copy()
                error = (np.abs(data) + image.readnoise**2.0)**0.5
                mask = image.bpm > 0

                # Fits can be backwards byte order, so fix that if need be and subtract
                # the background
                try:
                    bkg = sep.Background(data,
                                         mask=mask,
                                         bw=32,
                                         bh=32,
                                         fw=3,
                                         fh=3)
                except ValueError:
                    data = data.byteswap(True).newbyteorder()
                    bkg = sep.Background(data,
                                         mask=mask,
                                         bw=32,
                                         bh=32,
                                         fw=3,
                                         fh=3)
                bkg.subfrom(data)

                # Do an initial source detection
                # TODO: Add back in masking after we are sure SEP works
                sources = sep.extract(data,
                                      self.threshold,
                                      minarea=self.min_area,
                                      err=error,
                                      deblend_cont=0.005)

                # Convert the detections into a table
                sources = Table(sources)

                # Calculate the ellipticity
                sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

                # Fix any value of theta that are invalid due to floating point rounding
                # -pi / 2 < theta < pi / 2
                sources['theta'][sources['theta'] > (np.pi / 2.0)] -= np.pi
                sources['theta'][sources['theta'] < (-np.pi / 2.0)] += np.pi

                # Calculate the kron radius
                kronrad, krflag = sep.kron_radius(data, sources['x'],
                                                  sources['y'], sources['a'],
                                                  sources['b'],
                                                  sources['theta'], 6.0)
                sources['flag'] |= krflag
                sources['kronrad'] = kronrad

                # Calcuate the equivilent of flux_auto
                flux, fluxerr, flag = sep.sum_ellipse(data,
                                                      sources['x'],
                                                      sources['y'],
                                                      sources['a'],
                                                      sources['b'],
                                                      np.pi / 2.0,
                                                      2.5 * kronrad,
                                                      subpix=1,
                                                      err=error)
                sources['flux'] = flux
                sources['fluxerr'] = fluxerr
                sources['flag'] |= flag

                # Calculate the FWHMs of the stars:
                fwhm = 2.0 * (np.log(2) *
                              (sources['a']**2.0 + sources['b']**2.0))**0.5
                sources['fwhm'] = fwhm

                # Cut individual bright pixels. Often cosmic rays
                sources = sources[fwhm > 1.0]

                # Measure the flux profile
                flux_radii, flag = sep.flux_radius(data,
                                                   sources['x'],
                                                   sources['y'],
                                                   6.0 * sources['a'],
                                                   [0.25, 0.5, 0.75],
                                                   normflux=sources['flux'],
                                                   subpix=5)
                sources['flag'] |= flag
                sources['fluxrad25'] = flux_radii[:, 0]
                sources['fluxrad50'] = flux_radii[:, 1]
                sources['fluxrad75'] = flux_radii[:, 2]

                # Calculate the windowed positions
                sig = 2.0 / 2.35 * sources['fluxrad50']
                xwin, ywin, flag = sep.winpos(data, sources['x'], sources['y'],
                                              sig)
                sources['flag'] |= flag
                sources['xwin'] = xwin
                sources['ywin'] = ywin

                # Calculate the average background at each source
                bkgflux, fluxerr, flag = sep.sum_ellipse(bkg.back(),
                                                         sources['x'],
                                                         sources['y'],
                                                         sources['a'],
                                                         sources['b'],
                                                         np.pi / 2.0,
                                                         2.5 *
                                                         sources['kronrad'],
                                                         subpix=1)
                #masksum, fluxerr, flag = sep.sum_ellipse(mask, sources['x'], sources['y'],
                #                                         sources['a'], sources['b'], np.pi / 2.0,
                #                                         2.5 * kronrad, subpix=1)

                background_area = (
                    2.5 * sources['kronrad']
                )**2.0 * sources['a'] * sources['b'] * np.pi  # - masksum
                sources['background'] = bkgflux
                sources['background'][background_area > 0] /= background_area[
                    background_area > 0]
                # Update the catalog to match fits convention instead of python array convention
                sources['x'] += 1.0
                sources['y'] += 1.0

                sources['xpeak'] += 1
                sources['ypeak'] += 1

                sources['xwin'] += 1.0
                sources['ywin'] += 1.0

                sources['theta'] = np.degrees(sources['theta'])

                image.catalog = sources['x', 'y', 'xwin', 'ywin', 'xpeak',
                                        'ypeak', 'flux', 'fluxerr',
                                        'background', 'fwhm', 'a', 'b',
                                        'theta', 'kronrad', 'ellipticity',
                                        'fluxrad25', 'fluxrad50', 'fluxrad75',
                                        'x2', 'y2', 'xy', 'flag']

                # Add the units and description to the catalogs
                image.catalog['x'].unit = 'pixel'
                image.catalog['x'].description = 'X coordinate of the object'
                image.catalog['y'].unit = 'pixel'
                image.catalog['y'].description = 'Y coordinate of the object'
                image.catalog['xwin'].unit = 'pixel'
                image.catalog[
                    'xwin'].description = 'Windowed X coordinate of the object'
                image.catalog['ywin'].unit = 'pixel'
                image.catalog[
                    'ywin'].description = 'Windowed Y coordinate of the object'
                image.catalog['xpeak'].unit = 'pixel'
                image.catalog['xpeak'].description = 'X coordinate of the peak'
                image.catalog['ypeak'].unit = 'pixel'
                image.catalog[
                    'ypeak'].description = 'Windowed Y coordinate of the peak'
                image.catalog['flux'].unit = 'counts'
                image.catalog[
                    'flux'].description = 'Flux within a Kron-like elliptical aperture'
                image.catalog['fluxerr'].unit = 'counts'
                image.catalog[
                    'fluxerr'].description = 'Erronr on the flux within a Kron-like elliptical aperture'
                image.catalog['background'].unit = 'counts'
                image.catalog[
                    'background'].description = 'Average background value in the aperture'
                image.catalog['fwhm'].unit = 'pixel'
                image.catalog['fwhm'].description = 'FWHM of the object'
                image.catalog['a'].unit = 'pixel'
                image.catalog[
                    'a'].description = 'Semi-major axis of the object'
                image.catalog['b'].unit = 'pixel'
                image.catalog[
                    'b'].description = 'Semi-minor axis of the object'
                image.catalog['theta'].unit = 'degrees'
                image.catalog[
                    'theta'].description = 'Position angle of the object'
                image.catalog['kronrad'].unit = 'pixel'
                image.catalog[
                    'kronrad'].description = 'Kron radius used for extraction'
                image.catalog['ellipticity'].description = 'Ellipticity'
                image.catalog['fluxrad25'].unit = 'pixel'
                image.catalog[
                    'fluxrad25'].description = 'Radius containing 25% of the flux'
                image.catalog['fluxrad50'].unit = 'pixel'
                image.catalog[
                    'fluxrad50'].description = 'Radius containing 50% of the flux'
                image.catalog['fluxrad75'].unit = 'pixel'
                image.catalog[
                    'fluxrad75'].description = 'Radius containing 75% of the flux'
                image.catalog['x2'].unit = 'pixel^2'
                image.catalog[
                    'x2'].description = 'Variance on X coordinate of the object'
                image.catalog['y2'].unit = 'pixel^2'
                image.catalog[
                    'y2'].description = 'Variance on Y coordinate of the object'
                image.catalog['xy'].unit = 'pixel^2'
                image.catalog['xy'].description = 'XY covariance of the object'
                image.catalog[
                    'flag'].description = 'Bit mask combination of extraction and photometry flags'

                image.catalog.sort('flux')
                image.catalog.reverse()

                logging_tags = logs.image_config_to_tags(
                    image, self.group_by_keywords)
                logs.add_tag(logging_tags, 'filename',
                             os.path.basename(image.filename))

                # Save some background statistics in the header
                mean_background = stats.sigma_clipped_mean(bkg.back(), 5.0)
                image.header['L1MEAN'] = (
                    mean_background,
                    '[counts] Sigma clipped mean of frame background')
                logs.add_tag(logging_tags, 'L1MEAN', float(mean_background))

                median_background = np.median(bkg.back())
                image.header['L1MEDIAN'] = (
                    median_background, '[counts] Median of frame background')
                logs.add_tag(logging_tags, 'L1MEDIAN',
                             float(median_background))

                std_background = stats.robust_standard_deviation(bkg.back())
                image.header['L1SIGMA'] = (
                    std_background,
                    '[counts] Robust std dev of frame background')
                logs.add_tag(logging_tags, 'L1SIGMA', float(std_background))

                # Save some image statistics to the header
                good_objects = image.catalog['flag'] == 0

                seeing = np.median(
                    image.catalog['fwhm'][good_objects]) * image.pixel_scale
                image.header['L1FWHM'] = (seeing,
                                          '[arcsec] Frame FWHM in arcsec')
                logs.add_tag(logging_tags, 'L1FWHM', float(seeing))

                mean_ellipticity = stats.sigma_clipped_mean(
                    sources['ellipticity'][good_objects], 3.0)
                image.header['L1ELLIP'] = (mean_ellipticity,
                                           'Mean image ellipticity (1-B/A)')
                logs.add_tag(logging_tags, 'L1ELLIP', float(mean_ellipticity))

                mean_position_angle = stats.sigma_clipped_mean(
                    sources['theta'][good_objects], 3.0)
                image.header['L1ELLIPA'] = (
                    mean_position_angle, '[deg] PA of mean image ellipticity')
                logs.add_tag(logging_tags, 'L1ELLIPA',
                             float(mean_position_angle))

                self.logger.info('Extracted sources', extra=logging_tags)

            except Exception as e:
                logging_tags = logs.image_config_to_tags(
                    image, self.group_by_keywords)
                logs.add_tag(logging_tags, 'filename',
                             os.path.basename(image.filename))
                self.logger.error(e, extra=logging_tags)
        return images
示例#14
0
def detect_with_sep(
    event,
    detect_thresh=2.,
    npixels=8,
    grow_seg=5,
    gauss_fwhm=2.,
    gsize=3,
    im_wcs=None,
):
    """ Run SExtractor on a FITS file contained in the Lambda event

    This function will generate a catalog and a PNG for the FITS file stored in
    the Lambda event. The catalog and PNG will be stored in the s3 output
    bucket specified by the Lambda event.

    Parameters
    ----------
    event : dict
        dict containing the data passed to the Lambda function
    detect_thresh: int,
        detection threshold to use for sextractor
    npixels: int,
        minimum number of pixels comprising an object
    grow_seg: int,

    gauss_fwhm: float,
        FWHM of the kernel to use for filtering prior to source finding

    gsize: float

    im_wcs: astropy.wcs.WCS
        WCS object defining the coordinate system of the observation


    Returns
    -------

    """

    drz_file = event['fits_s3_key']
    drz_file_bucket = event['fits_s3_bucket']
    fname = drz_file.split('/')[-1]

    s3 = boto3.resource('s3')
    bkt = s3.Bucket(drz_file_bucket)
    bkt.download_file(drz_file,
                      f"/tmp/{fname}",
                      ExtraArgs={"RequestPayer": "requester"})

    im = fits.open(f"/tmp/{fname}")
    if im_wcs is None:
        im_wcs = wcs.WCS(im[1].header, relax=True)

    data = im[1].data.byteswap().newbyteorder()
    wht_data = im[2].data.byteswap().newbyteorder()
    data_mask = np.cast[data.dtype](data == 0)

    ## Get AB zeropoint
    try:
        photfnu = im[0].header['PHOTFNU']
    except KeyError as e:
        LOG.warning(e)
        ZP = None
    else:
        ZP = -2.5 * np.log10(photfnu) + 8.90

    try:
        photflam = im[0].header['PHOTFLAM']
    except KeyError as e:
        LOG.warning(e)
        ZP = None
    else:
        ZP = -2.5*np.log10(photflam) - 21.10 - \
             5*np.log10(im[0].header['PHOTPLAM']) + 18.6921

    if ZP is None:
        msg = ("Whoops! No zeropoint information found in primary header, "
               f"skipping file {fname}")
        LOG.warning(msg)

    # Scale fluxes to mico-Jy
    uJy_to_dn = 1 / (3631 * 1e6 * 10**(-0.4 * ZP))

    # set up the error array
    err = 1 / np.sqrt(wht_data)
    err[~np.isfinite(err)] = 0
    mask = (err == 0)

    # get the background
    bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
    bkg_data = bkg.back()

    ratio = bkg.rms() / err
    err_scale = np.median(ratio[(~mask) & np.isfinite(ratio)])

    err *= err_scale

    # Generate a kernel to use for filtering
    gaussian_kernel = kernels.Gaussian2DKernel(
        x_stddev=gauss_fwhm / gaussian_sigma_to_fwhm,
        y_stddev=gauss_fwhm / gaussian_sigma_to_fwhm,
        x_size=7,
        y_size=7)
    # Normalize the kernel
    gaussian_kernel.normalize()

    # Package the inputs for sextractor
    inputs = {
        'err': err,
        'mask': mask,
        'filter_kernel': gaussian_kernel.array,
        'filter_type': 'conv',
        'minarea': npixels,
        'deblend_nthresh': 32,
        'deblend_cont': 0.005,
        'clean': True,
        'clean_param': 1,
        'segmentation_map': False
    }

    objects = sep.extract(data - bkg_data, detect_thresh, **inputs)

    catalog = Table(objects)

    # add things to catalog
    autoparams = [2.5, 3.5]
    catalog['number'] = np.arange(len(catalog), dtype=np.int32) + 1
    catalog['theta'] = np.clip(catalog['theta'], -np.pi / 2, np.pi / 2)

    # filter out any NaNs
    for c in ['a', 'b', 'x', 'y', 'theta']:
        catalog = catalog[np.isfinite(catalog[c])]

    catalog['ra'], catalog['dec'] = im_wcs.all_pix2world(
        catalog['x'], catalog['y'], 1)

    catalog['ra'].unit = u.deg
    catalog['dec'].unit = u.deg
    catalog['x_world'], catalog['y_world'] = catalog['ra'], catalog['dec']

    kronrad, krflag = sep.kron_radius(data - bkg_data, catalog['x'],
                                      catalog['y'], catalog['a'], catalog['b'],
                                      catalog['theta'], 6.0)

    kronrad *= autoparams[0]
    kronrad[~np.isfinite(kronrad)] = autoparams[1]
    kronrad = np.maximum(kronrad, autoparams[1])

    kron_out = sep.sum_ellipse(data - bkg_data,
                               catalog['x'],
                               catalog['y'],
                               catalog['a'],
                               catalog['b'],
                               catalog['theta'],
                               kronrad,
                               subpix=5,
                               err=err)

    kron_flux, kron_fluxerr, kron_flag = kron_out
    kron_flux_flag = kron_flag

    catalog['mag_auto_raw'] = ZP - 2.5 * np.log10(kron_flux)
    catalog['magerr_auto_raw'] = 2.5 / np.log(10) * kron_fluxerr / kron_flux

    catalog['mag_auto'] = catalog['mag_auto_raw'] * 1.
    catalog['magerr_auto'] = catalog['magerr_auto_raw'] * 1.

    catalog['kron_radius'] = kronrad * u.pixel
    catalog['kron_flag'] = krflag
    catalog['kron_flux_flag'] = kron_flux_flag

    # Make a plot
    im_data = im[1].data
    im_shape = im_data.shape
    im_data[np.isnan(im_data)] = 0.0

    # Trim the top and bottom 1 percent of pixel values
    top = np.percentile(im_data, 99)
    im_data[im_data > top] = top
    bottom = np.percentile(im_data, 1)
    im_data[im_data < bottom] = bottom

    # Scale the data.
    im_data = im_data - im_data.min()
    im_data = (im_data / im_data.max()) * 255.
    im_data = np.uint8(im_data)

    f, (ax) = plt.subplots(1, 1, sharex=True)
    f.set_figheight(12)
    f.set_figwidth(12)
    ax.imshow(im_data, cmap="Greys", clim=(0, 255), origin='lower')
    ax.plot(catalog['x'],
            catalog['y'],
            'o',
            markeredgewidth=1,
            markeredgecolor='red',
            markerfacecolor='None')
    ax.set_xlim([-0.05 * im_shape[1], 1.05 * im_shape[1]])
    ax.set_ylim([-0.05 * im_shape[0], 1.05 * im_shape[0]])

    basename = fname.split('_')[0]
    f.savefig(f"/tmp/{basename}.png")

    # Write the catalog to local disk
    catalog.write(f"/tmp/{basename}.catalog.fits", format='fits')

    # Write out to S3
    s3 = boto3.resource('s3')
    s3.meta.client.upload_file(f"/tmp/{basename}.catalog.fits",
                               event['s3_output_bucket'],
                               f"{basename}/{basename}.catalog.fits")
    s3.meta.client.upload_file(f"/tmp/{basename}.png",
                               event['s3_output_bucket'],
                               f"{basename}/{basename}.png")
示例#15
0
def sourceExtract(data,
                  thresh=3,
                  bkg=False,
                  bkg_rms=None,
                  err=None,
                  mask=None,
                  min_area=5,
                  deblend_cont=0.05,
                  segment=False,
                  extras=False):
    """
    Extract all sources above a certain threshold in the given image
    
    Parameters
    ----------
    data : array-like
        CCD image frame from which to extract sources
    thresh : float, optional
        Number of sigma a detection must be above the background to 
        be flagged as a source - if err not given, bkg_rms is needed
        Default = 3
    bkg : bool, optional
        Toggle to model spatially varying background and subtract from
        data - by default assumes this has been done separately
        Default = False
    bkg_rms : float, optional
        Estimation of the global background noise - used to determine
        threshold if err is None - can calculate global background
        rms when subtracting background model
        Default = None
    err : array-like, optional
        Error array for the CCD frame - supersedes bkg_rms when
        determining the threshold
        Default = None
    min_area : int, optional
        Minimum number of pixels to be flagged as a source
        Default = 5
    deblend_cont : float, optional
        Minimum contrast ratio used by SEP for deblending
        Default = 0.05
    segment : bool, optional
        Toggle to generate a segmentation map for the given image
        Default = False
    extras : bool, optional
        Toggle to calculate ellipticity, FWHM, Kron radius and 
        flux radius
        Default = False
    
    Returns
    -------
    sources : astropy Table object
        Table containing quantities determined by sep for each source
        detected in the given image
    segmentation_map : array-like, optional
        Array of integers with same shape as data - pixels not 
        belonging to any object have value 0, whilst all pixels 
        belonging to ith object have value (e.g. sources[i]) have
        value i+1 - only returned if seg_map is True
    
    Raises
    ------
    None
    """

    # subtract spatially varying background model if requested
    if bkg:
        data, bkg_rms = subtractBackground(data)

    # determine threshold for extraction
    if err is None:
        thresh *= bkg_rms

    # extract sources
    if not segment:
        sources = sep.extract(data,
                              thresh,
                              err=err,
                              mask=mask,
                              deblend_cont=deblend_cont)
    else:
        sources, seg_map = sep.extract(data,
                                       thresh,
                                       err=err,
                                       mask=mask,
                                       deblend_cont=deblend_cont,
                                       segmentation_map=seg_map)

    sources = Table(sources)

    # remove nans from table
    sources = pruneNansFromTable(sources)

    if extras:
        # calculate ellipticity parameter
        sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

        # calculate full width half maxima
        sources['fwhm'] = calculateFWHM(sources['a'], sources['b'])

        # compute kron radii
        try:
            sources['kronr'], krflag = sep.kron_radius(data, sources['x'],
                                                       sources['y'],
                                                       sources['a'],
                                                       sources['b'],
                                                       sources['theta'], 6.0)
            sources['flag'] |= krflag
        except Exception as e:
            print(e)
            pass

        # compute flux radii
        try:
            sources['fluxr'], frflag = sep.flux_radius(data,
                                                       sources['x'],
                                                       sources['y'],
                                                       6.0 * sources['a'],
                                                       0.5,
                                                       subpix=5)
            sources['flag'] |= frflag
        except Exception as e:
            print(e)
            pass

    if segment:
        return sources, seg_map
    else:
        return sources
示例#16
0
def aperphot(image,objects,aper=[3],gain=None,mag_zeropoint=25.0):
    """
    Aperture photometry using sep.

    Parameters
    ----------
    im : CCDData object
       The image to estimate the background for.
    objects : table
       Table of objects with x/y coordinate.
    aper : float, optional
       Radius of the aperture.  Default is 3.0 pixels.
    gain : float, optional
       The gain.  Default is 1.
    mag_zeropoint : float
       The magnitude zero-point to use. Default is 25.

    Returns
    -------
    phot : astropy table
       Catalog of measured aperture photometry and other SE
        parameters.

    Example
    -------
    
    phot = aperphot(im,objects)

    """

    if isinstance(image,CCDData) is False:
        raise ValueError("Image must be a CCDData object")

    # Get C-continuous data
    data,error,mask,sky = image.ccont
    data_sub = data-sky
    
    # Get gain from image if possible
    gain = image.gain

    # Initialize the output catalog
    outcat = objects.copy()
    
    # Circular aperture photometry
    for i,ap in enumerate(aper):
        apflux, apfluxerr, apflag = sep.sum_circle(data_sub, outcat['x'], outcat['y'],
                                                   ap, err=error, mask=mask, gain=gain)
        # Add to the catalog
        outcat['flux_aper'+str(i+1)] = apflux
        outcat['fluxerr_aper'+str(i+1)] = apfluxerr
        outcat['mag_aper'+str(i+1)] = -2.5*np.log10(apflux)+mag_zeropoint
        outcat['magerr_aper'+str(i+1)] = (2.5/np.log(10))*(apfluxerr/apflux)  
        outcat['flag_aper'+str(i+1)] = apflag

    # Make sure theta's are between -pi/2 and +pi/2 radians
    if 'theta' in objects.columns:
        theta = objects['theta'].copy()
        hi = theta>0.5*np.pi
        if np.sum(hi)>0:
            theta[hi] -= np.pi
        lo = theta<-0.5*np.pi    
        if np.sum(lo)>0:
            theta[lo] += np.pi
    else:
        theta = np.zeros(len(outcat),float)
            
    # We have morphology parameters
    if 'a' in outcat.columns and 'b' in outcat.columns:
        kronrad, krflag = sep.kron_radius(data_sub, outcat['x'], outcat['y'], outcat['a'],
                                          outcat['b'], theta, 6.0, mask=mask)
    else:
        kronrad, krflag = None, None
        
    # Add more columns
    outcat['flux_auto'] = 0.0
    outcat['fluxerr_auto'] = 0.0
    outcat['mag_auto'] = 0.0
    outcat['magerr_auto'] = 0.0
    outcat['kronrad'] = kronrad
    outcat['flag_auto'] = np.int16(0)

    # BACKGROUND ANNULUS???

    # FLUX_AUTO
    
    # Only use elliptical aperture if Kron radius is large enough
    # Use circular aperture photometry if the Kron radius is too small
    r_min = 1.75  # minimum diameter = 3.5    
    if kronrad is not None:
        use_circle = kronrad * np.sqrt(outcat['a'] * outcat['b']) < r_min
    else:
        use_circle = np.ones(len(outcat),bool)
    nuse_ellipse = np.sum(~use_circle)
    nuse_circle = np.sum(use_circle)
        
    # Elliptical aperture
    if nuse_ellipse>0:
        flux, fluxerr, flag = sep.sum_ellipse(data=data_sub, x=outcat['x'][~use_circle], y=outcat['y'][~use_circle],
                                              a=outcat['a'][~use_circle],b=outcat['b'][~use_circle],
                                              theta=outcat['theta'][~use_circle], r=2.5*kronrad[~use_circle],
                                              subpix=1, err=error, mask=mask)
        flag |= krflag[~use_circle]  # combine flags into 'flag'
        outcat['flux_auto'][~use_circle] = flux
        outcat['fluxerr_auto'][~use_circle] = fluxerr
        outcat['mag_auto'][~use_circle] = -2.5*np.log10(flux)+mag_zeropoint
        outcat['magerr_auto'][~use_circle] = (2.5/np.log(10))*(fluxerr/flux) 
        outcat['flag_auto'][~use_circle] = flag
        
    # Use circular aperture photometry if the Kron radius is too small
    if nuse_circle>0:
        cflux, cfluxerr, cflag = sep.sum_circle(data_sub, outcat['x'][use_circle],
                                                outcat['y'][use_circle], r_min, subpix=1,
                                                err=error, mask=mask)
        outcat['flux_auto'][use_circle] = cflux
        outcat['fluxerr_auto'][use_circle] = cfluxerr
        outcat['mag_auto'][use_circle] = -2.5*np.log10(cflux)+mag_zeropoint
        outcat['magerr_auto'][use_circle] = (2.5/np.log(10))*(cfluxerr/cflux) 
        outcat['flag_auto'][use_circle] = cflag
        outcat['kronrad'][use_circle] = r_min

    # Add S/N
    outcat['snr'] = 1.087/outcat['magerr_auto']
        
    return outcat
示例#17
0
文件: test.py 项目: cmccully/sep
def test_vs_sextractor():
    """Test behavior of sep versus sextractor.

    Note: we turn deblending off for this test. This is because the
    deblending algorithm uses a random number generator. Since the sequence
    of random numbers is not the same between sextractor and sep or between
    different platforms, object member pixels (and even the number of objects)
    can differ when deblending is on.

    Deblending is turned off by setting DEBLEND_MINCONT=1.0 in the sextractor
    configuration file and by setting deblend_cont=1.0 in sep.extract().
    """

    data = np.copy(image_data)  # make an explicit copy so we can 'subfrom'
    bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)

    # Test that SExtractor background is same as SEP:
    bkgarr = bkg.back(dtype=np.float32)
    assert_allclose(bkgarr, image_refback, rtol=1.e-5)

    # Extract objects (use deblend_cont=1.0 to disable deblending).
    bkg.subfrom(data)
    objs = sep.extract(data, 1.5*bkg.globalrms, deblend_cont=1.0)
    objs = np.sort(objs, order=['y'])

    # Read SExtractor result
    refobjs = np.loadtxt(IMAGECAT_FNAME, dtype=IMAGECAT_DTYPE)
    refobjs = np.sort(refobjs, order=['y'])

    # Found correct number of sources at the right locations?
    assert_allclose(objs['x'], refobjs['x'] - 1., atol=1.e-3)
    assert_allclose(objs['y'], refobjs['y'] - 1., atol=1.e-3)

    # Test aperture flux
    flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 5.,
                                         err=bkg.globalrms)
    assert_allclose(flux, refobjs['flux_aper'], rtol=2.e-4)
    assert_allclose(fluxerr, refobjs['fluxerr_aper'], rtol=1.0e-5)

    # check if the flags work at all (comparison values 
    assert ((flag & sep.APER_TRUNC) != 0).sum() == 4
    assert ((flag & sep.APER_HASMASKED) != 0).sum() == 0

    # Test "flux_auto"
    kr, flag = sep.kron_radius(data, objs['x'], objs['y'], objs['a'],
                               objs['b'], objs['theta'], 6.0)

    flux, fluxerr, flag = sep.sum_ellipse(data, objs['x'], objs['y'],
                                          objs['a'], objs['b'],
                                          objs['theta'], r=2.5 * kr,
                                          err=bkg.globalrms, subpix=1)

    # For some reason, one object doesn't match. It's very small
    # and kron_radius is set to 0.0 in SExtractor, but 0.08 in sep.
    # Could be due to a change in SExtractor between v2.8.6 (used to
    # generate "truth" catalog) and v2.18.11 (from which sep was forked).
    i = 56  # index is 59 when deblending is on.
    kr[i] = 0.0
    flux[i] = 0.0
    fluxerr[i] = 0.0

    # We use atol for radius because it is reported to nearest 0.01 in
    # reference objects.
    assert_allclose(2.5*kr, refobjs['kron_radius'], atol=0.01, rtol=0.) 
    assert_allclose(flux, refobjs['flux_auto'], rtol=0.0005)
    assert_allclose(fluxerr, refobjs['fluxerr_auto'], rtol=0.0005)

    # Test ellipse representation conversion
    cxx, cyy, cxy = sep.ellipse_coeffs(objs['a'], objs['b'], objs['theta'])
    assert_allclose(cxx, objs['cxx'], rtol=1.e-4)
    assert_allclose(cyy, objs['cyy'], rtol=1.e-4)
    assert_allclose(cxy, objs['cxy'], rtol=1.e-4)

    a, b, theta = sep.ellipse_axes(objs['cxx'], objs['cyy'], objs['cxy'])
    assert_allclose(a, objs['a'], rtol=1.e-4)
    assert_allclose(b, objs['b'], rtol=1.e-4)
    assert_allclose(theta, objs['theta'], rtol=1.e-4)

    #test round trip
    cxx, cyy, cxy = sep.ellipse_coeffs(a, b, theta)
    assert_allclose(cxx, objs['cxx'], rtol=1.e-4)
    assert_allclose(cyy, objs['cyy'], rtol=1.e-4)
    assert_allclose(cxy, objs['cxy'], rtol=1.e-4)

    # test flux_radius
    fr, flags = sep.flux_radius(data, objs['x'], objs['y'], 6.*refobjs['a'],
                                [0.1, 0.5, 0.6], normflux=refobjs['flux_auto'],
                                subpix=5)
    assert_allclose(fr, refobjs["flux_radius"], rtol=0.04, atol=0.01)

    # test winpos
    sig = 2. / 2.35 * fr[:, 1]  # flux_radius = 0.5
    xwin, ywin, flag = sep.winpos(data, objs['x'], objs['y'], sig)
    assert_allclose(xwin, refobjs["xwin"] - 1., rtol=0., atol=0.0025)
    assert_allclose(ywin, refobjs["ywin"] - 1., rtol=0., atol=0.0025)
示例#18
0
文件: pysep.py 项目: pyobs/pyobs-core
    async def __call__(self, image: Image) -> Image:
        """Find stars in given image and append catalog.

        Args:
            image: Image to find stars in.

        Returns:
            Image with attached catalog.
        """
        import sep

        loop = asyncio.get_running_loop()

        # got data?
        if image.data is None:
            log.warning("No data found in image.")
            return image

        # no mask?
        mask = image.mask if image.mask is not None else np.zeros(
            image.data.shape, dtype=bool)

        # remove background
        data, bkg = SepSourceDetection.remove_background(image.data, mask)

        # extract sources
        sources = await loop.run_in_executor(
            None,
            partial(
                sep.extract,
                data,
                self.threshold,
                err=bkg.globalrms,
                minarea=self.minarea,
                deblend_nthresh=self.deblend_nthresh,
                deblend_cont=self.deblend_cont,
                clean=self.clean,
                clean_param=self.clean_param,
                mask=image.mask,
            ),
        )

        # convert to astropy table
        sources = pd.DataFrame(sources)

        # only keep sources with detection flag < 8
        sources = sources[sources["flag"] < 8]
        x, y = sources["x"], sources["y"]

        # Calculate the ellipticity
        sources["ellipticity"] = 1.0 - (sources["b"] / sources["a"])

        # calculate the FWHMs of the stars
        fwhm = 2.0 * (np.log(2) * (sources["a"]**2.0 + sources["b"]**2.0))**0.5
        sources["fwhm"] = fwhm

        # clip theta to [-pi/2,pi/2]
        sources["theta"] = sources["theta"].clip(lower=np.pi / 2,
                                                 upper=np.pi / 2)

        # Kron radius
        kronrad, krflag = sep.kron_radius(data, x, y, sources["a"],
                                          sources["b"], sources["theta"], 6.0)
        sources["flag"] |= krflag
        sources["kronrad"] = kronrad

        # equivalent of FLUX_AUTO
        gain = image.header["DET-GAIN"] if "DET-GAIN" in image.header else None
        flux, fluxerr, flag = await loop.run_in_executor(
            None,
            partial(
                sep.sum_ellipse,
                data,
                x,
                y,
                sources["a"],
                sources["b"],
                sources["theta"],
                2.5 * kronrad,
                subpix=5,
                mask=image.mask,
                gain=gain,
            ),
        )
        sources["flag"] |= flag
        sources["flux"] = flux

        # radii at 0.25, 0.5, and 0.75 flux
        flux_radii, flag = sep.flux_radius(data,
                                           x,
                                           y,
                                           6.0 * sources["a"],
                                           [0.25, 0.5, 0.75],
                                           normflux=sources["flux"],
                                           subpix=5)
        sources["flag"] |= flag
        sources["fluxrad25"] = flux_radii[:, 0]
        sources["fluxrad50"] = flux_radii[:, 1]
        sources["fluxrad75"] = flux_radii[:, 2]

        # xwin/ywin
        sig = 2.0 / 2.35 * sources["fluxrad50"]
        xwin, ywin, flag = sep.winpos(data, x, y, sig)
        sources["flag"] |= flag
        sources["xwin"] = xwin
        sources["ywin"] = ywin

        # theta in degrees
        sources["theta"] = np.degrees(sources["theta"])

        # only keep sources with detection flag < 8
        sources = sources[sources["flag"] < 8]

        # match fits conventions
        sources["x"] += 1
        sources["y"] += 1

        # pick columns for catalog
        cat = sources[[
            "x",
            "y",
            "peak",
            "flux",
            "fwhm",
            "a",
            "b",
            "theta",
            "ellipticity",
            "tnpix",
            "kronrad",
            "fluxrad25",
            "fluxrad50",
            "fluxrad75",
            "xwin",
            "ywin",
        ]]

        # copy image, set catalog and return it
        img = image.copy()
        img.catalog = Table.from_pandas(cat)
        return img
示例#19
0
文件: test.py 项目: kbarbary/sep
def test_masked_segmentation_measurements():
    """Test measurements with segmentation masking"""
    
    NX = 100
    data = np.zeros((NX*2,NX*2))
    yp, xp = np.indices(data.shape)
    
    ####
    # Make two 2D gaussians that slightly overlap
    
    # width of the 2D objects
    gsigma = 10.  
      
    # offset between two gaussians in sigmas
    off = 4 

    for xy in [[NX,NX], [NX+off*gsigma, NX+off*gsigma]]:
        R = np.sqrt((xp-xy[0])**2+(yp-xy[1])**2)
        g_i = np.exp(-R**2/2/gsigma**2)
        data += g_i
    
    # Absolute total
    total_exact = g_i.sum()
    
    # Add some noise
    rms = 0.02
    np.random.seed(1)
    data += np.random.normal(size=data.shape)*rms
    
    # Run source detection
    objs, segmap = sep.extract(data, thresh=1.2, err=rms, mask=None,
                               segmentation_map=True)
    
    seg_id = np.arange(1, len(objs)+1, dtype=np.int32)
    
    # Compute Kron/Auto parameters
    x, y, a, b = objs['x'], objs['y'], objs['a'], objs['b']
    theta = objs['theta']
    
    kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0)
    
    flux_auto, fluxerr, flag = sep.sum_ellipse(data, x, y, a, b, theta,
                                               2.5*kronrad, 
                                               segmap=segmap, seg_id=seg_id, 
                                               subpix=1)
    
    # Test total flux
    assert_allclose(flux_auto, total_exact, rtol=5.e-2)
        
    # Flux_radius
    for flux_fraction in [0.2, 0.5]:
    
        # Exact solution
        rhalf_exact = np.sqrt(-np.log(1-flux_fraction)*gsigma**2*2)
    
        # Masked measurement
        flux_radius, flag = sep.flux_radius(data, x, y, 6.*a, flux_fraction,
                                        seg_id=seg_id, segmap=segmap, 
                                        normflux=flux_auto, subpix=5)
        
        # Test flux fraction
        assert_allclose(flux_radius, rhalf_exact, rtol=5.e-2)
    
    if False:
        print('test_masked_flux_radius')
        print(total_exact, flux_auto)
        print(rhalf_exact, flux_radius)
示例#20
0
def sourcephot(catalogue,image,segmap,detection,instrument='MUSE',dxp=0.,dyp=0.,
               noise=[False],zpab=False, kn=2.5, circap=1.0):

    """ 

    Get a source catalogue from findsources and a fits image with ZP
    and compute magnitudes in that filter 

    catalogue -> source cat from findsources
    image     -> fits image with ZP in header
    segmap    -> fits of segmentation map 
    detection -> the detection image, used to compute Kron radius 

    instrument -> if not MUSE, map positions from detection to image

    dxp,dyp    -> shifts in pixel of image to register MUSE and image astrometry   
   
    noise      -> if set to a noise model, use equation noise[0]*noise[1]*npix**noise[2]
                  to compute the error

    zpab  -> if ZPAB (zeropoint AB) not stored in header, must be supplied

    kn   -> factor to be used when scaling Kron apertures [sextractor default 2.5]
  
    circap -> radius in arcsec for aperture photmetry to be used when Kron aperture fails 

    """  

    from astropy.io import fits
    import numpy as np
    import sep
    import matplotlib.pyplot as plt
    from astropy.table import Table
    from astropy import wcs 


    #grab root name 
    rname=((image.split('/')[-1]).split('.fits'))[0]
    print ('Working on {}'.format(rname))

    #open the catalogue/fits 
    cat=fits.open(catalogue)
    img=fits.open(image)
    seg=fits.open(segmap)
    det=fits.open(detection)

    #grab reference wcs from detection image 
    wref=wcs.WCS(det[0].header)
    psref=wref.pixel_scale_matrix[1,1]*3600.
    print ('Reference pixel size {}'.format(psref))


    #if not handling MUSE, special cases for format of data
    if('MUSE' not in instrument):
        #handle instrument cases
        if('LRIS' in instrument):
            #data 
            imgdata=img[1].data
            #place holder for varaince as will use noise model below
            vardata=imgdata*0+1
            vardata=vardata.byteswap(True).newbyteorder()
            #grab wcs image
            wimg=wcs.WCS(img[1].header)
            psimg=wimg.pixel_scale_matrix[1,1]*3600.
            #store the ZP 
            if(zpab):
                img[0].header['ZPAB']=zpab
        else:
            print 'Instrument not supported!!'
            exit()
    else:
        #for muse, keep eveything the same
        imgdata=img[0].data
        vardata=img[1].data
        psimg=psref

    #grab flux and var
    dataflx=np.nan_to_num(imgdata.byteswap(True).newbyteorder())
    datavar=np.nan_to_num(vardata.byteswap(True).newbyteorder())
    #grab detection and seg mask 
    detflx=np.nan_to_num(det[0].data.byteswap(True).newbyteorder())
    #go back to 1d
    segmask=(np.nan_to_num(seg[0].data.byteswap(True).newbyteorder()))[0,:,:]

    #if needed, map the segmap to new image with transformation
    if('MUSE' not in instrument):
        #allocate space for transformed segmentation map
        segmasktrans=np.zeros(dataflx.shape)
        print "Remapping segmentation map to new image..."

        #loop over original segmap and map to trasformed one
        #Just use nearest pixel, and keep only 1 when multiple choices 
        for xx in range(segmask.shape[0]):
            for yy in range(segmask.shape[1]):
                #go to world
                radec=wref.wcs_pix2world([[yy,xx]],0)
                #back to new instrument pixel 
                newxy=wimg.wcs_world2pix(radec,0)
                #apply shift to register WCS
                newxy[0][1]=newxy[0][1]+dyp
                newxy[0][0]=newxy[0][0]+dxp
                segmasktrans[newxy[0][1],newxy[0][0]]=segmask[xx,yy]
                
                #grow buffer as needed by individual instruments
                #This accounts for resampling to finer pixel size
                if('LRIS' in instrument):
                    segmasktrans[newxy[0][1]+1,newxy[0][0]+1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]+1,newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]+1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]+1,newxy[0][0]]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]]=segmask[xx,yy]
                    segmasktrans[newxy[0][1],newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1],newxy[0][0]+1]=segmask[xx,yy]
                 
        #dump the transformed segmap for checking 
        hdumain  = fits.PrimaryHDU(segmasktrans,header=img[1].header)
        hdulist = fits.HDUList(hdumain)
        hdulist.writeto("{}_segremap.fits".format(rname),clobber=True)
    else:
        #no transformation needed
        segmasktrans=segmask

    #source to extract
    nsrc=len(cat[1].data)
    print('Extract photometry for {} sources'.format(nsrc))
    phot = Table(names=('ID', 'MAGAP', 'MAGAP_ERR','FXAP', 'FXAP_ERR', 
                        'RAD', 'MAGSEG', 'MAGSEG_ERR', 'FXSEG', 'FXSEG_ERR','ZP'), 
                 dtype=('i4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4'))
    
   
    #create check aperture mask 
    checkaperture=np.zeros(dataflx.shape)
    print('Computing photometry for objects...')

    #loop over each source
    for idobj in range(nsrc):
        
        #########
        #Find positions etc and transform as appropriate
        #########
                
        #extract MUSE source paramaters 
        x= cat[1].data['x'][idobj]
        y= cat[1].data['y'][idobj]
        a= cat[1].data['a'][idobj]
        b= cat[1].data['b'][idobj]
        theta= cat[1].data['theta'][idobj]

        #compute kron radius on MUSE detection image 
        #Kron rad in units of a,b
        tmpdata=np.copy(detflx)
        tmpmask=np.copy(segmask)
        #mask all other sources to avoid overlaps but keep desired one
        pixels=np.where(tmpmask == idobj+1) 
        tmpmask[pixels]=0

        #compute kron radius [pixel of reference image]
        kronrad, flg = sep.kron_radius(tmpdata,x,y,a,b,theta,6.0,mask=tmpmask)

        #plt.imshow(np.log10(tmpdata+1),origin='low')
        #plt.show()
        #exit()

        #now check if size is sensible in units of MUSE data 
        rmin = 2.0  #MUSE pix 
        use_circle = kronrad * np.sqrt(a*b) < rmin
      
        #use circular aperture of 2" in muse pixel unit
        rcircap = circap/psref
        
        #now use info to compute photometry and apply 
        #spatial transformation if needed
        if('MUSE' not in instrument):
            #map centre of aperture - +1 reference
            #go to world
            radec=wref.wcs_pix2world([[x,y]],1)
            #back to new instrument pixel 
            newxy=wimg.wcs_world2pix(radec,1)
            #apply shift to register WCS
            xphot=newxy[0][0]+dxp
            yphot=newxy[0][1]+dyp
                      
            #scale radii to new pixel size 
            rminphot=rcircap*psref/psimg
            aphot=a*psref/psimg
            bphot=b*psref/psimg
            #Kron radius in units of a,b

        else:
            #for muse, transfer to same units
            xphot=x
            yphot=y
            rminphot=rcircap
            aphot=a
            bphot=b     
            
        #####
        #Compute local sky 
        #####
        skyreg=kn*kronrad*np.sqrt(aphot*bphot)+15
        cutskymask=segmasktrans[yphot-skyreg:yphot+skyreg,xphot-skyreg:xphot+skyreg]
        cutskydata=dataflx[yphot-skyreg:yphot+skyreg,xphot-skyreg:xphot+skyreg]
        skymedian=np.nan_to_num(np.median(cutskydata[np.where(cutskymask < 1.0)]))

        #print skymedian    
        #plt.imshow(cutskymask,origin='low')
        #plt.show()
        #if(idobj > 30):
        #    exit()


        #########
        #Now grab the Kron mag computed using detection image
        #########
   
        #mask all other objects to avoid blending   
        tmpdata=np.copy(dataflx)
        #apply local sky subtraction 
        tmpdata=tmpdata-skymedian
        tmpvar=np.copy(datavar)
        tmpmask=np.copy(segmasktrans)
        pixels=np.where(tmpmask == idobj+1) 
        tmpmask[pixels]=0

        #plt.imshow(tmpmask,origin='low')
        #plt.show()
        #exit()

        #circular aperture
        if(use_circle):        
           
            #flux in circular aperture
            flux_kron, err, flg = sep.sum_circle(tmpdata,xphot,yphot,rminphot,mask=tmpmask)
            #propagate variance
            fluxvar, err, flg = sep.sum_circle(tmpvar,xphot,yphot,rminphot,mask=tmpmask)
            #store Rused in arcsec
            rused=rminphot*psimg

            #update check aperture
            tmpcheckaper=np.zeros(dataflx.shape,dtype=bool)
            sep.mask_ellipse(tmpcheckaper,xphot,yphot,1.,1.,0.,r=rminphot)
            checkaperture=checkaperture+tmpcheckaper*(idobj+1)

        #kron apertures 
        else:
            #kron flux 
            flux_kron, err, flg = sep.sum_ellipse(tmpdata,xphot, yphot, aphot, bphot, theta, kn*kronrad,
                                                  mask=tmpmask)            
            #propagate variance 
            fluxvar, err, flg = sep.sum_ellipse(tmpvar,xphot,yphot, aphot, bphot, theta, kn*kronrad,
                                                mask=tmpmask)
            #translate in radius
            rused=kn*kronrad*psimg*np.sqrt(aphot*bphot)

            #update check aperture
            tmpcheckaper=np.zeros(dataflx.shape,dtype=bool)
            sep.mask_ellipse(tmpcheckaper,xphot,yphot,aphot,bphot,theta,r=kn*kronrad)
            checkaperture=checkaperture+tmpcheckaper*(idobj+1)

        #compute error for aperture
        if(noise[0]):
            #use model 
            appix=np.where(tmpcheckaper > 0)
            errflux_kron=noise[0]*noise[1]*len(appix[0])**noise[2]
        else:
            #propagate variance 
            errflux_kron=np.sqrt(fluxvar)

        #go to mag 
        if(flux_kron > 0):
            mag_aper=-2.5*np.log10(flux_kron)+img[0].header['ZPAB']
            errmg_aper=2.5*np.log10(1.+errflux_kron/flux_kron)
        else:
            mag_aper=99.0
            errmg_aper=99.0
        
        #find out if non detections
        if(errflux_kron >= flux_kron):
            errmg_aper=9
            mag_aper=-2.5*np.log10(2.*errflux_kron)+img[0].header['ZPAB']
          
        #######
        #grab the photometry in the segmentation map 
        #####

        #This may not work well for other instruments 
        #if images are not well aligned
        pixels=np.where(segmasktrans == idobj+1) 
        #add flux in pixels
        tmpdata=np.copy(dataflx)
        #apply sky sub
        tmpdata=tmpdata-skymedian
        flux_seg=np.sum(tmpdata[pixels])
        
        #compute noise from model or adding variance 
        if(noise[0]):
            #from model 
            errfx_seg=noise[0]*noise[1]*len(pixels[0])**noise[2]
        else:
            #add variance in pixels to compute error
            errfx_seg=np.sqrt(np.sum(datavar[pixels]))
  
        #go to mag with calibrations 
        if(flux_seg > 0):
            mag_seg=-2.5*np.log10(flux_seg)+img[0].header['ZPAB']
            errmg_seg=2.5*np.log10(1.+errfx_seg/flux_seg)     
        else:
            mag_seg=99.0
            errmg_seg=99.0
      
        #find out if non detections
        if(errfx_seg >= flux_seg):
            errmg_seg=9
            mag_seg=-2.5*np.log10(2.*errfx_seg)+img[0].header['ZPAB']
        
        #stash by id
        phot.add_row((idobj+1,mag_aper,errmg_aper,flux_kron,errflux_kron,rused,mag_seg,errmg_seg,
                      flux_seg,errfx_seg,img[0].header['ZPAB']))

    #dump the aperture check image 
    hdumain  = fits.PrimaryHDU(checkaperture,header=img[1].header)
    hdulist = fits.HDUList(hdumain)
    hdulist.writeto("{}_aper.fits".format(rname),clobber=True)

    #close
    cat.close()
    img.close()
    seg.close()
    det.close()

    return phot
示例#21
0
    def do_stage(self, images):
        for i, image in enumerate(images):
            try:
                # Set the number of source pixels to be 5% of the total. This keeps us safe from
                # satellites and airplanes.
                sep.set_extract_pixstack(int(image.nx * image.ny * 0.05))

                data = image.data.copy()
                error = (np.abs(data) + image.readnoise ** 2.0) ** 0.5
                mask = image.bpm > 0

                # Fits can be backwards byte order, so fix that if need be and subtract
                # the background
                try:
                    bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
                except ValueError:
                    data = data.byteswap(True).newbyteorder()
                    bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
                bkg.subfrom(data)

                # Do an initial source detection
                # TODO: Add back in masking after we are sure SEP works
                sources = sep.extract(data, self.threshold, minarea=self.min_area,
                                      err=error, deblend_cont=0.005)

                # Convert the detections into a table
                sources = Table(sources)

                # Calculate the ellipticity
                sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

                # Fix any value of theta that are invalid due to floating point rounding
                # -pi / 2 < theta < pi / 2
                sources['theta'][sources['theta'] > (np.pi / 2.0)] -= np.pi
                sources['theta'][sources['theta'] < (-np.pi / 2.0)] += np.pi

                # Calculate the kron radius
                kronrad, krflag = sep.kron_radius(data, sources['x'], sources['y'],
                                                  sources['a'], sources['b'],
                                                  sources['theta'], 6.0)
                sources['flag'] |= krflag
                sources['kronrad'] = kronrad

                # Calcuate the equivilent of flux_auto
                flux, fluxerr, flag = sep.sum_ellipse(data, sources['x'], sources['y'],
                                                      sources['a'], sources['b'],
                                                      np.pi / 2.0, 2.5 * kronrad,
                                                      subpix=1, err=error)
                sources['flux'] = flux
                sources['fluxerr'] = fluxerr
                sources['flag'] |= flag

                # Calculate the FWHMs of the stars:
                fwhm = 2.0 * (np.log(2) * (sources['a'] ** 2.0 + sources['b'] ** 2.0)) ** 0.5
                sources['fwhm'] = fwhm

                # Cut individual bright pixels. Often cosmic rays
                sources = sources[fwhm > 1.0]

                # Measure the flux profile
                flux_radii, flag = sep.flux_radius(data, sources['x'], sources['y'],
                                                   6.0 * sources['a'], [0.25, 0.5, 0.75],
                                                   normflux=sources['flux'], subpix=5)
                sources['flag'] |= flag
                sources['fluxrad25'] = flux_radii[:, 0]
                sources['fluxrad50'] = flux_radii[:, 1]
                sources['fluxrad75'] = flux_radii[:, 2]

                # Calculate the windowed positions
                sig = 2.0 / 2.35 * sources['fluxrad50']
                xwin, ywin, flag = sep.winpos(data, sources['x'], sources['y'], sig)
                sources['flag'] |= flag
                sources['xwin'] = xwin
                sources['ywin'] = ywin

                # Calculate the average background at each source
                bkgflux, fluxerr, flag = sep.sum_ellipse(bkg.back(), sources['x'], sources['y'],
                                                         sources['a'], sources['b'], np.pi / 2.0,
                                                         2.5 * sources['kronrad'], subpix=1)
                #masksum, fluxerr, flag = sep.sum_ellipse(mask, sources['x'], sources['y'],
                #                                         sources['a'], sources['b'], np.pi / 2.0,
                #                                         2.5 * kronrad, subpix=1)

                background_area = (2.5 * sources['kronrad']) ** 2.0 * sources['a'] * sources['b'] * np.pi # - masksum
                sources['background'] = bkgflux
                sources['background'][background_area > 0] /= background_area[background_area > 0]
                # Update the catalog to match fits convention instead of python array convention
                sources['x'] += 1.0
                sources['y'] += 1.0

                sources['xpeak'] += 1
                sources['ypeak'] += 1

                sources['xwin'] += 1.0
                sources['ywin'] += 1.0

                sources['theta'] = np.degrees(sources['theta'])

                image.catalog = sources['x', 'y', 'xwin', 'ywin', 'xpeak', 'ypeak',
                                        'flux', 'fluxerr', 'background', 'fwhm',
                                        'a', 'b', 'theta', 'kronrad', 'ellipticity',
                                        'fluxrad25', 'fluxrad50', 'fluxrad75',
                                        'x2', 'y2', 'xy', 'flag']

                # Add the units and description to the catalogs
                image.catalog['x'].unit = 'pixel'
                image.catalog['x'].description = 'X coordinate of the object'
                image.catalog['y'].unit = 'pixel'
                image.catalog['y'].description = 'Y coordinate of the object'
                image.catalog['xwin'].unit = 'pixel'
                image.catalog['xwin'].description = 'Windowed X coordinate of the object'
                image.catalog['ywin'].unit = 'pixel'
                image.catalog['ywin'].description = 'Windowed Y coordinate of the object'
                image.catalog['xpeak'].unit = 'pixel'
                image.catalog['xpeak'].description = 'X coordinate of the peak'
                image.catalog['ypeak'].unit = 'pixel'
                image.catalog['ypeak'].description = 'Windowed Y coordinate of the peak'
                image.catalog['flux'].unit = 'counts'
                image.catalog['flux'].description = 'Flux within a Kron-like elliptical aperture'
                image.catalog['fluxerr'].unit = 'counts'
                image.catalog['fluxerr'].description = 'Erronr on the flux within a Kron-like elliptical aperture'
                image.catalog['background'].unit = 'counts'
                image.catalog['background'].description = 'Average background value in the aperture'
                image.catalog['fwhm'].unit = 'pixel'
                image.catalog['fwhm'].description = 'FWHM of the object'
                image.catalog['a'].unit = 'pixel'
                image.catalog['a'].description = 'Semi-major axis of the object'
                image.catalog['b'].unit = 'pixel'
                image.catalog['b'].description = 'Semi-minor axis of the object'
                image.catalog['theta'].unit = 'degrees'
                image.catalog['theta'].description = 'Position angle of the object'
                image.catalog['kronrad'].unit = 'pixel'
                image.catalog['kronrad'].description = 'Kron radius used for extraction'
                image.catalog['ellipticity'].description = 'Ellipticity'
                image.catalog['fluxrad25'].unit = 'pixel'
                image.catalog['fluxrad25'].description = 'Radius containing 25% of the flux'
                image.catalog['fluxrad50'].unit = 'pixel'
                image.catalog['fluxrad50'].description = 'Radius containing 50% of the flux'
                image.catalog['fluxrad75'].unit = 'pixel'
                image.catalog['fluxrad75'].description = 'Radius containing 75% of the flux'
                image.catalog['x2'].unit = 'pixel^2'
                image.catalog['x2'].description = 'Variance on X coordinate of the object'
                image.catalog['y2'].unit = 'pixel^2'
                image.catalog['y2'].description = 'Variance on Y coordinate of the object'
                image.catalog['xy'].unit = 'pixel^2'
                image.catalog['xy'].description = 'XY covariance of the object'
                image.catalog['flag'].description = 'Bit mask combination of extraction and photometry flags'

                image.catalog.sort('flux')
                image.catalog.reverse()

                logging_tags = logs.image_config_to_tags(image, self.group_by_keywords)
                logs.add_tag(logging_tags, 'filename', os.path.basename(image.filename))

                # Save some background statistics in the header
                mean_background = stats.sigma_clipped_mean(bkg.back(), 5.0)
                image.header['L1MEAN'] = (mean_background,
                                          '[counts] Sigma clipped mean of frame background')
                logs.add_tag(logging_tags, 'L1MEAN', float(mean_background))

                median_background = np.median(bkg.back())
                image.header['L1MEDIAN'] = (median_background,
                                            '[counts] Median of frame background')
                logs.add_tag(logging_tags, 'L1MEDIAN', float(median_background))

                std_background = stats.robust_standard_deviation(bkg.back())
                image.header['L1SIGMA'] = (std_background,
                                           '[counts] Robust std dev of frame background')
                logs.add_tag(logging_tags, 'L1SIGMA', float(std_background))

                # Save some image statistics to the header
                good_objects = image.catalog['flag'] == 0

                seeing = np.median(image.catalog['fwhm'][good_objects]) * image.pixel_scale
                image.header['L1FWHM'] = (seeing, '[arcsec] Frame FWHM in arcsec')
                logs.add_tag(logging_tags, 'L1FWHM', float(seeing))

                mean_ellipticity = stats.sigma_clipped_mean(sources['ellipticity'][good_objects],
                                                            3.0)
                image.header['L1ELLIP'] = (mean_ellipticity, 'Mean image ellipticity (1-B/A)')
                logs.add_tag(logging_tags, 'L1ELLIP', float(mean_ellipticity))

                mean_position_angle = stats.sigma_clipped_mean(sources['theta'][good_objects], 3.0)
                image.header['L1ELLIPA'] = (mean_position_angle,
                                            '[deg] PA of mean image ellipticity')
                logs.add_tag(logging_tags, 'L1ELLIPA', float(mean_position_angle))

                self.logger.info('Extracted sources', extra=logging_tags)

            except Exception as e:
                logging_tags = logs.image_config_to_tags(image, self.group_by_keywords)
                logs.add_tag(logging_tags, 'filename', os.path.basename(image.filename))
                self.logger.error(e, extra=logging_tags)
        return images
示例#22
0
    def _run_sep(self):
        import sep
        # THRESH=1.2 # in sky sigma
        # DETECT_THRESH=1.6 # in sky sigma
        # DEBLEND_MINCONT=0.005
        # DETECT_MINAREA  = 6 # minimum number of pixels above threshold
        objs, seg = sep.extract(
            self.detim,
            self.detect_thresh,
            err=self.detnoise,
            segmentation_map=True,
            **self.sx_config
        )

        logger.debug('found %d objects' % objs.size)
        if objs.size == 0:
            self.cat = objs
            return None

        flux_auto = np.zeros(objs.size)-9999.0
        fluxerr_auto = np.zeros(objs.size)-9999.0
        flux_radius = np.zeros(objs.size)-9999.0
        kron_radius = np.zeros(objs.size)-9999.0

        w, = np.where(
            (objs['a'] >= 0.0) &
            (objs['b'] >= 0.0) &
            between(objs['theta'], -pi/2., pi/2., type='[]')
        )

        if w.size > 0:
            kron_radius[w], krflag = sep.kron_radius(
                self.detim,
                objs['x'][w],
                objs['y'][w],
                objs['a'][w],
                objs['b'][w],
                objs['theta'][w],
                6.0,
            )
            objs['flag'][w] |= krflag

            aper_rad = 2.5*kron_radius
            flux_auto[w], fluxerr_auto[w], flag_auto = \
                sep.sum_ellipse(
                    self.detim,
                    objs['x'][w],
                    objs['y'][w],
                    objs['a'][w],
                    objs['b'][w],
                    objs['theta'][w],
                    aper_rad[w],
                    subpix=1,
                )
            objs['flag'][w] |= flag_auto

            # what we did in DES, but note threshold above
            # is 1 as opposed to wide survey. deep survey
            # was even lower, 0.8?

            # used half light radius
            PHOT_FLUXFRAC = 0.5

            flux_radius[w], frflag = sep.flux_radius(
                self.detim,
                objs['x'][w],
                objs['y'][w],
                6.*objs['a'][w],
                PHOT_FLUXFRAC,
                normflux=flux_auto[w],
                subpix=5,
            )
            objs['flag'][w] |= frflag  # combine flags into 'flag'

        ncut = 2  # need this to make sure array
        new_dt = [
            ('id', 'i8'),
            ('number', 'i4'),
            ('ncutout', 'i4'),
            ('kron_radius', 'f4'),
            ('flux_auto', 'f4'),
            ('fluxerr_auto', 'f4'),
            ('flux_radius', 'f4'),
            ('isoarea_image', 'f4'),
            ('iso_radius', 'f4'),
            ('box_size', 'i4'),
            ('file_id', 'i8', ncut),
            ('orig_row', 'f4', ncut),
            ('orig_col', 'f4', ncut),
            ('orig_start_row', 'i8', ncut),
            ('orig_start_col', 'i8', ncut),
            ('orig_end_row', 'i8', ncut),
            ('orig_end_col', 'i8', ncut),
            ('cutout_row', 'f4', ncut),
            ('cutout_col', 'f4', ncut),
            ('dudrow', 'f8', ncut),
            ('dudcol', 'f8', ncut),
            ('dvdrow', 'f8', ncut),
            ('dvdcol', 'f8', ncut),
        ]

        cat = eu.numpy_util.add_fields(objs, new_dt)
        cat['id'] = np.arange(cat.size)
        cat['number'] = np.arange(1, cat.size+1)
        cat['ncutout'] = 1
        cat['flux_auto'] = flux_auto
        cat['fluxerr_auto'] = fluxerr_auto
        cat['flux_radius'] = flux_radius
        wcs = self.datalist[0]['wcs']
        cat['dudrow'][:, 0] = wcs.dudy
        cat['dudcol'][:, 0] = wcs.dudx
        cat['dvdrow'][:, 0] = wcs.dvdy
        cat['dvdcol'][:, 0] = wcs.dvdx

        # use the number of pixels in the seg map as the iso area
        for i in range(objs.size):
            w = np.where(seg == (i+1))
            cat['isoarea_image'][i] = w[0].size

        cat['iso_radius'] = np.sqrt(cat['isoarea_image'].clip(min=1)/np.pi)

        box_size = self._get_box_sizes(cat)

        half_box_size = box_size//2

        maxrow, maxcol = self.detim.shape

        cat['box_size'] = box_size

        cat['orig_row'][:, 0] = cat['y']
        cat['orig_col'][:, 0] = cat['x']

        orow = cat['orig_row'][:, 0].astype('i4')
        ocol = cat['orig_col'][:, 0].astype('i4')

        ostart_row = orow - half_box_size + 1
        ostart_col = ocol - half_box_size + 1
        oend_row = orow + half_box_size + 1  # plus one for slices
        oend_col = ocol + half_box_size + 1

        ostart_row.clip(min=0, out=ostart_row)
        ostart_col.clip(min=0, out=ostart_col)
        oend_row.clip(max=maxrow, out=oend_row)
        oend_col.clip(max=maxcol, out=oend_col)

        # could result in smaller than box_size above
        cat['orig_start_row'][:, 0] = ostart_row
        cat['orig_start_col'][:, 0] = ostart_col
        cat['orig_end_row'][:, 0] = oend_row
        cat['orig_end_col'][:, 0] = oend_col
        cat['cutout_row'][:, 0] = \
            cat['orig_row'][:, 0] - cat['orig_start_row'][:, 0]
        cat['cutout_col'][:, 0] = \
            cat['orig_col'][:, 0] - cat['orig_start_col'][:, 0]

        self.seg = seg
        self.bmask = np.zeros(seg.shape, dtype='i4')
        self.cat = cat
示例#23
0
def detect_with_sep(event,
                    detect_thresh=2.,
                    npixels=8,
                    grow_seg=5,
                    gauss_fwhm=2.,
                    gsize=3,
                    im_wcs=None,
                    root='mycat'):

    drz_file = event['fits_s3_key']
    drz_file_bucket = event['fits_s3_bucket']
    root = drz_file.split('/')[-1].split('_')[0]

    s3 = boto3.resource('s3')
    s3_client = boto3.client('s3')
    bkt = s3.Bucket(drz_file_bucket)
    bkt.download_file(drz_file,
                      '/tmp/{0}'.format(root),
                      ExtraArgs={"RequestPayer": "requester"})

    im = fits.open('/tmp/{0}'.format(root))
    im_wcs = wcs.WCS(im[1].header, relax=True)

    data = im[1].data.byteswap().newbyteorder()
    wht_data = im[2].data.byteswap().newbyteorder()
    data_mask = np.cast[data.dtype](data == 0)

    ## Get AB zeropoint
    if 'PHOTFNU' in im[0].header:
        ZP = -2.5 * np.log10(im[0].header['PHOTFNU']) + 8.90
    elif 'PHOTFLAM' in im[0].header:
        ZP = (-2.5 * np.log10(im[0].header['PHOTFLAM']) - 21.10 -
              5 * np.log10(im[0].header['PHOTPLAM']) + 18.6921)
    else:
        print(
            'Couldn\'t find PHOTFNU or PHOTPLAM/PHOTFLAM keywords, use ZP=25')
        return None

    # Scale fluxes to mico-Jy
    uJy_to_dn = 1 / (3631 * 1e6 * 10**(-0.4 * ZP))

    err = 1 / np.sqrt(wht_data)

    # set up the error array
    err = 1 / np.sqrt(wht_data)
    err[~np.isfinite(err)] = 0
    mask = (err == 0)

    # get the background
    bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
    bkg_data = bkg.back()

    ratio = bkg.rms() / err
    err_scale = np.median(ratio[(~mask) & np.isfinite(ratio)])

    err *= err_scale

    objects = sep.extract(data - bkg_data,
                          detect_thresh,
                          err=err,
                          mask=mask,
                          minarea=14,
                          filter_kernel=GAUSS_3_7x7,
                          filter_type='conv',
                          deblend_nthresh=32,
                          deblend_cont=0.005,
                          clean=True,
                          clean_param=1.,
                          segmentation_map=False)

    catalog = Table(objects)

    # add things to catalog

    autoparams = [2.5, 3.5]

    catalog['number'] = np.arange(len(catalog), dtype=np.int32) + 1
    catalog['theta'] = np.clip(catalog['theta'], -np.pi / 2, np.pi / 2)
    for c in ['a', 'b', 'x', 'y', 'theta']:
        catalog = catalog[np.isfinite(catalog[c])]

    catalog['ra'], catalog['dec'] = im_wcs.all_pix2world(
        catalog['x'], catalog['y'], 1)
    catalog['ra'].unit = u.deg
    catalog['dec'].unit = u.deg
    catalog['x_world'], catalog['y_world'] = catalog['ra'], catalog['dec']

    kronrad, krflag = sep.kron_radius(data - bkg_data, catalog['x'],
                                      catalog['y'], catalog['a'], catalog['b'],
                                      catalog['theta'], 6.0)

    kronrad *= autoparams[0]
    kronrad[~np.isfinite(kronrad)] = autoparams[1]
    kronrad = np.maximum(kronrad, autoparams[1])

    kron_out = sep.sum_ellipse(data - bkg_data,
                               catalog['x'],
                               catalog['y'],
                               catalog['a'],
                               catalog['b'],
                               catalog['theta'],
                               kronrad,
                               subpix=5,
                               err=err)

    kron_flux, kron_fluxerr, kron_flag = kron_out
    kron_flux_flag = kron_flag

    catalog['mag_auto_raw'] = ZP - 2.5 * np.log10(kron_flux)
    catalog['magerr_auto_raw'] = 2.5 / np.log(10) * kron_fluxerr / kron_flux

    catalog['mag_auto'] = catalog['mag_auto_raw'] * 1.
    catalog['magerr_auto'] = catalog['magerr_auto_raw'] * 1.

    catalog['kron_radius'] = kronrad * u.pixel
    catalog['kron_flag'] = krflag
    catalog['kron_flux_flag'] = kron_flux_flag

    # Make a plot
    im_data = im[1].data
    im_shape = im_data.shape
    im_data[np.isnan(im_data)] = 0.0

    # Trim the top and bottom 1 percent of pixel values
    top = np.percentile(im_data, 99)
    im_data[im_data > top] = top
    bottom = np.percentile(im_data, 1)
    im_data[im_data < bottom] = bottom

    # Scale the data.
    im_data = im_data - im_data.min()
    im_data = (im_data / im_data.max()) * 255.
    im_data = np.uint8(im_data)

    f, (ax) = plt.subplots(1, 1, sharex=True)
    f.set_figheight(12)
    f.set_figwidth(12)
    ax.imshow(im_data, cmap="Greys", clim=(0, 255), origin='lower')
    ax.plot(catalog['x'],
            catalog['y'],
            'o',
            markeredgewidth=1,
            markeredgecolor='red',
            markerfacecolor='None')
    ax.set_xlim([-0.05 * im_shape[1], 1.05 * im_shape[1]])
    ax.set_ylim([-0.05 * im_shape[0], 1.05 * im_shape[0]])
    f.savefig('/tmp/{0}.png'.format(root))

    # Write the catalog to local disk
    catalog.write('/tmp/{0}.catalog.fits'.format(root), format='fits')

    # Write out to S3
    s3 = boto3.resource('s3')
    s3.meta.client.upload_file('/tmp/{0}.catalog.fits'.format(root),
                               event['s3_output_bucket'],
                               '{0}/{1}.catalog.fits'.format(root, root))
    s3.meta.client.upload_file('/tmp/{0}.png'.format(root),
                               event['s3_output_bucket'],
                               'PNG/{0}.png'.format(root))
示例#24
0
    def run(self):
        """ Runs the calibrating algorithm. The calibrated data is
            returned in self.dataout
        """
        ### Preparation
        binning = self.datain.getheadval('XBIN')
        ### Run Source Extractor
        # Make sure input data exists as file
        if not os.path.exists(self.datain.filename):
            self.datain.save()
        '''
        # Make catalog filename
        catfilename = self.datain.filenamebegin
        if catfilename[-1] in '._-': catfilename += 'sex_cat.fits'
        else: catfilename += '.sex_cat.fits'
        # Make background filename (may not be used - see below)
        bkgdfilename = self.datain.filenamebegin
        if bkgdfilename[-1] in '._-': bkgdfilename += 'SxBkgd.fits'
        else: bkgdfilename += '_SxBkgd.fits'
        self.log.debug('Sextractor catalog filename = %s' % catfilename)
		'''
        #Open data out of fits file for use in SEP
        image = self.datain.image

        #Set values for variables used later
        #These variables are used for the background analysis. bw and bh I found just testing various numbers
        maskthresh = 0.0
        bw, bh = 10, 10
        fw, fh = 3, 3
        fthresh = 0.0

        #Create the background image and it's error
        bkg = sep.Background(
            image,
            maskthresh=maskthresh,
            bw=bw,
            bh=bh,
            fw=fw,
            fh=fh,
            fthresh=fthresh)  #have sep determine the background of the image

        bkg_image = bkg.back()

        bkg_rms = bkg.rms()
        #Subtract the background from the image
        image_sub = image - bkg_image

        imsubmed = np.nanmedian(image_sub)
        imsubmad = mad_std(image_sub)

        #Create variables that are used during source Extraction
        extract_thresh = 5
        extract_err = bkg_rms

        #Extract sources from the subtracted image
        objects = sep.extract(image_sub, extract_thresh, err=extract_err)

        #Define variables used later during flux calculation
        sum_c = np.zeroes(len(objects))
        sum_c_err = np.zeroes(len(objects))
        sum_c_flags = np.zeroes(len(objects))
        ratio = np.zeroes(len(objects))
        rmax = np.zeroes(len(objects))
        dx = np.zeros(len(objects))
        dy = np.zeros(len(objects))

        #Do basic uncalibrated measurments of flux for use in step astrometry.

        #First we calculate flux using Ellipses. In order to do this we need to calculate the Kron Radius
        #For the ellipses Extract identified using the ellipse parameters it gives
        #R is equal to 6 as that is the default used in Source Extractor
        kronrad, krflag = sep.kron_radius(image_sub,
                                          objects['x'],
                                          objects['y'],
                                          objects['a'],
                                          objects['b'],
                                          objects['theta'],
                                          r=6)

        #Using this Kron radius we calculate the flux, this is equivallent to FLUX_AUTO in SExtractor
        flux_elip, fluxerr_elip, flag = sep.sum_ellipse(image_sub,
                                                        objects['x'],
                                                        objects['y'],
                                                        objects['a'],
                                                        objects['b'],
                                                        objects['theta'],
                                                        2.5 * kronrad,
                                                        err=bkg_rms,
                                                        subpix=1)

        #Then we calculate it using Circular Apetures, this will be used to remove sources that are too elipitical
        flux_circ, fluxerr_circ, flag = sep.sum_circle(image_sub,
                                                       objects['x'],
                                                       objects['y'],
                                                       r=2.5,
                                                       err=bkg_rms,
                                                       subpix=1)

        ### Extract catalog from source extractor and clean up dataset
        # Use catalog from sourse extrator (test.cat)
        #seo_catalog = astropy.table.Table.read(catfilename, format="fits", hdu='LDAC_OBJECTS')
        seo_Mag = -2.5 * np.log10(flux_elip)
        seo_MagErr = (2.5 / np.log(10) * (fluxerr_elip / flux_elip))

        # Select only the stars in the image: circular image and S/N > 10
        elongation = (flux_circ - flux_elip) < 250
        seo_SN = ((flux_elip / fluxerr_elip) > 10)
        seo_SN = (seo_SN) & (elongation) & (
            (flux_elip / fluxerr_elip) < 1000) & (fluxerr_elip != 0)
        self.log.debug('Selected %d stars from Source Extrator catalog' %
                       np.count_nonzero(seo_SN))

        ### Query and extract data from Guide Star Catalog
        # Get RA / Dec
        '''
        ra_center =  self.datain.getheadval('RA' ).split(':')
        dec_center = self.datain.getheadval('DEC').split(':')
        ra_cent =  ' '.join([str(s) for s in ra_center])
        dec_cent = ' '.join([str(s) for s in dec_center])
        center_coordinates = SkyCoord(ra_cent + ' ' + dec_cent, unit=(u.hourangle, u.deg) )
        self.log.debug('Using RA/Dec = %s / %s' % (center_coordinates.ra, center_coordinates.dec) )
        # Querry guide star catalog2 with center coordinates
        gsc2_query = 'http://gsss.stsci.edu/webservices/vo/CatalogSearch.aspx?'
        gsc2_query += 'RA='+str(center_coordinates.ra.value)
        gsc2_query += '&DEC='+str(center_coordinates.dec.value)
        gsc2_query += '&DSN=+&FORMAT=CSV&CAT=GSC241&SR=0.5&'
        self.log.debug('Running URL = %s' % gsc2_query)
        gsc2_result = requests.get(gsc2_query)
        # Get data from result
        filter_map = self.getarg('filtermap').split('|')
        filter_name = filter_tel = self.datain.getheadval('FILTER')
        for fil in filter_map:
            entry = fil.split('=')
            if entry[0] == filter_tel:
                try:
                    filter_name = entry[1]
                except:
                    self.log.error("Badly formatted filter mapping. No '=' after %s"
                                   % filter_tel)
        query_table = astropy.io.ascii.read(gsc2_result.text)
        table_filter = 'SDSS'+filter_name+'Mag'
        table_filter_err = 'SDSS'+filter_name+'MagErr'
        GSC_RA = query_table['ra'][(query_table[table_filter]<22) & (query_table[table_filter]>0)]
        GSC_DEC = query_table['dec'][(query_table[table_filter]<22) & (query_table[table_filter]>0)]
        GSC_Mag = query_table[table_filter][(query_table[table_filter]<22) & (query_table[table_filter]>0)]
        GSC_MagErr = query_table[table_filter_err][(query_table[table_filter]<22) & (query_table[table_filter]>0)]
        self.log.debug('Received %d entries from Guide Star Catalog' % len(GSC_RA))
        ### Mach Guide Star Catalog data with data from Source Extractor
        # Do the matching
        seo_radec = SkyCoord(ra=seo_catalog['ALPHA_J2000'], dec=seo_catalog['DELTA_J2000'])
        GSC_radec = SkyCoord(ra=GSC_RA*u.deg, dec=GSC_DEC*u.deg)
        idx, d2d, d3d = GSC_radec.match_to_catalog_sky(seo_radec[seo_SN])
        # only select objects less than 0.025 away in distance, get distance value
        dist_value = 1*0.76*binning/3600. #Maximum distance is 1 pixel
        mask = d2d.value<dist_value
        if(np.sum(mask) < 2):
            self.log.warn('Only %d sources match between image and guide star catalog, fit may not work' %
                          np.sum(mask) )
        self.log.debug('Distance_Value = %f, Min(distances) = %f, Mask length = %d' %
                       ( dist_value, np.min(d2d.value), np.sum(mask) ) )
        ### Calculate the fit correction between the guide star and the extracted values
        # Make lambda function to be minimized
        # The fit finds m_ml and b_ml where
        #     seo_Mag = b_ml + m_ml * GSC_Mag
        nll = lambda *args: -residual(*args)
        # Get errors
        eps_data = np.sqrt(GSC_MagErr**2+seo_MagErr[seo_SN][idx]**2)
        # Make estimate for intercept to give as initial guess
        b_ml0 = np.median(seo_Mag[seo_SN][idx][mask]-GSC_Mag[mask])
        self.log.debug('Offset guess is %f mag' % b_ml0)
        # Calculate distance from that guess and get StdDev of distances
        guessdistances = np.abs( b_ml0 - ( seo_Mag[seo_SN][idx] - GSC_Mag ) )
        guessdistmed = np.median(guessdistances[mask])
        # Update mask to ignore values with large STDEVS
        mask = np.logical_and( d2d.value < dist_value, guessdistances < 5 * guessdistmed )
        self.log.debug('Median of distance to guess = %f, Mask length = %d' %
                       ( guessdistmed, np.sum(mask) ) )
        # Solve linear equation
        result = scipy.optimize.minimize(nll, [1, b_ml0],
                                         args=(GSC_Mag[mask],
                                               seo_Mag[seo_SN][idx][mask],
                                               eps_data[mask]))
        m_ml, b_ml = result["x"]
        self.log.info('Fitted offset is %f mag, fitted slope is %f' % (b_ml, m_ml) )
        b_ml_corr = b_ml + (m_ml-1) * np.median(GSC_Mag[mask])
        self.log.info('Corrected offset is %f mag' % b_ml_corr)
        '''
        ### Make table with all data from source extractor
        # Collect data columns
        cols = []
        num = np.arange(1, len(objects['x']) + 1)
        cols.append(fits.Column(name='ID', format='D', array=num))
        cols.append(
            fits.Column(name='X',
                        format='D',
                        array=objects['x'][seo_SN],
                        unit='pixel'))
        cols.append(
            fits.Column(name='Y',
                        format='D',
                        array=objects['y'][seo_SN],
                        unit='pixel'))
        cols.append(
            fits.Column(name='Uncalibrated Magnitude',
                        format='D',
                        array=seo_Mag,
                        unit='magnitude'))
        cols.append(
            fits.Column(name='Uncalibrated Magnitude_Err',
                        format='D',
                        array=seo_MagErr,
                        unit='magnitude'))
        # Make table
        c = fits.ColDefs(cols)
        sources_table = fits.BinTableHDU.from_columns(c)
        '''
        ### Make table with data which was fit
        # Collect data columns
        cols = []
        cols.append(fits.Column(name='RA', format='D', array=GSC_RA[mask],
                                unit='deg'))
        cols.append(fits.Column(name='Dec', format='D', array=GSC_DEC[mask],
                                unit='deg'))
        cols.append(fits.Column(name='Diff_Deg', format='D', array=d2d[mask],
                                unit='deg'))
        cols.append(fits.Column(name='GSC_Mag', format='D',
                                array=GSC_Mag[mask], unit='magnitude'))
        cols.append(fits.Column(name='Img_Mag', format='D',
                                array=seo_Mag[seo_SN][idx][mask],
                                unit='magnitude'))
        cols.append(fits.Column(name='Error', format='D', array=eps_data[mask],
                                unit='magnitude'))
        # Make table
        c = fits.ColDefs(cols)
        fitdata_table = fits.BinTableHDU.from_columns(c)
        '''
        ### Make output data
        # Copy data from datain
        self.dataout = self.datain
        '''
        # Add Photometric Zero point magnitude
        self.dataout.setheadval('PHTZPRAW', -b_ml_corr, 'Photometric zeropoint for RAW data')
        self.dataout.setheadval('PTZRAWER', 0.0, 'Uncertainty of the RAW photometric zeropoint')
        self.dataout.setheadval('PHOTZP', 8.9,  'Photometric zeropoint MAG=-2.5*log(data)+PHOTZP')
        self.dataout.setheadval('BUNIT', 'Jy/pixel', 'Units for the data')
        '''
        # Scale the image using calculated b_ml_corr
        #image_background = fits.open(bkgdfilename)[0].data
        #bzero = np.nanpercentile(self.dataout.image,self.getarg('zeropercent'))
        #bzero = image_background
        #-- Alternative bzero idea:
        #-mask = image_array < np.percentile(image,90)
        #-bzero = np.median(image_array[mask])
        #bscale = 3631. * 10 ** (b_ml_corr/2.5)
        #self.dataout.image = bscale * (self.dataout.image - bzero)
        # Add sources and fitdata table
        self.dataout.tableset(sources_table.data, 'Sources',
                              sources_table.header)

        #self.dataout.tableset(fitdata_table.data,'Fit Data',fitdata_table.header)
        '''
        ### If requested make a plot of the fit and save as png
        if self.getarg('fitplot'):
            # Set up plot
            plt.figure(figsize=(10,7))
            # Plot 5sigma error range
            gmin = min(GSC_Mag[mask])
            gmax = max(GSC_Mag[mask])
            plt.fill([gmin,gmin,gmax,gmax],[gmin+b_ml0-guessdistmed, gmin+b_ml0+guessdistmed,
                                            gmax+b_ml0+guessdistmed, gmax+b_ml0-guessdistmed],'c')
            # Plot fits
            plt.plot(GSC_Mag[mask],m_ml*GSC_Mag[mask]+b_ml)
            plt.plot(GSC_Mag[mask],GSC_Mag[mask]+b_ml0)
            # Plot the datapoints
            plt.errorbar(GSC_Mag[d2d.value<dist_value],seo_Mag[seo_SN][idx][d2d.value<dist_value],
                         yerr=np.sqrt(eps_data[d2d.value<dist_value]**2),fmt='o',linestyle='none')
            plt.errorbar(GSC_Mag[mask],seo_Mag[seo_SN][idx][mask],
                         yerr=np.sqrt(eps_data[mask]**2),fmt='o',linestyle='none')
            #plt.plot(GSC_Mag[d2d.value<dist_value],m_ml*GSC_Mag[d2d.value<dist_value]+zeropoint_fit[1])
            plt.legend(['LM-fit','Fit-Guess','GuessDistMed Range','d<distval Data','Good Data'])
            plt.ylabel('Source extrator magnitude')
            plt.xlabel('Star catalog magnitude')
            plt.title('Calibration Fit for file\n' + os.path.split(self.dataout.filename)[1])
            # Plot the fit
            # Axis and labels
            # Save the image
            pngname = self.dataout.filenamebegin + 'FCALplot.png'
            plt.savefig(pngname)
            self.log.debug('Saved fit plot under %s' % pngname)
            '''
        ### If requested make a text file with the sources list
        if self.getarg('sourcetable'):

            # Save region file

            filename = self.dataout.filenamebegin + 'FCALsources.reg'
            with open(filename, 'w+') as f:
                f.write("# Region file format: DS9 version 4.1\n")
                f.write(
                    """global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1 image\n"""
                )
                for i in range(len(seo_catalog['x'][seo_SN])):
                    f.write("circle(%.7f,%.7f,0.005) # text={%i}\n" %
                            (seo_catalog['x'][seo_SN][i],
                             seo_catalog['y'][seo_SN][i], num[i]))

            # Save the table
            txtname = self.dataout.filenamebegin + 'FCALsources.txt'
            ascii.write(self.dataout.tableget('Sources'),
                        txtname,
                        format=self.getarg('sourcetableformat'))
            self.log.debug('Saved sources table under %s' % txtname)
示例#25
0
    def find_stars(self, image: Image) -> Table:
        """Find stars in given image and append catalog.

        Args:
            image: Image to find stars in.

        Returns:
            Full table with results.
        """
        import sep

        # get data and make it continuous
        data = image.data.copy()

        # mask?
        mask = image.mask.data if image.mask is not None else None

        # estimate background, probably we need to byte swap, and subtract it
        try:
            bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
        except ValueError as e:
            data = data.byteswap(True).newbyteorder()
            bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
        bkg.subfrom(data)

        # extract sources
        try:
            sources = sep.extract(data, self.threshold, err=bkg.globalrms, minarea=self.minarea,
                                  deblend_nthresh=self.deblend_nthresh, deblend_cont=self.deblend_cont,
                                  clean=self.clean, clean_param=self.clean_param, mask=mask)
        except:
            log.exception('An error has occured.')
            return Table()

        # convert to astropy table
        sources = Table(sources)

        # only keep sources with detection flag < 8
        sources = sources[sources['flag'] < 8]

        # Calculate the ellipticity
        sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

        # calculate the FWHMs of the stars
        fwhm = 2.0 * (np.log(2) * (sources['a'] ** 2.0 + sources['b'] ** 2.0)) ** 0.5
        sources['fwhm'] = fwhm

        # get gain
        gain = image.header['DET-GAIN'] if 'DET-GAIN' in image.header else None

        # Kron radius
        kronrad, krflag = sep.kron_radius(data, sources['x'], sources['y'], sources['a'], sources['b'],
                                          sources['theta'], 6.0)
        sources['flag'] |= krflag
        sources['kronrad'] = kronrad

        # equivalent of FLUX_AUTO
        flux, fluxerr, flag = sep.sum_ellipse(data, sources['x'], sources['y'], sources['a'], sources['b'],
                                              sources['theta'], 2.5 * kronrad, subpix=1, mask=mask,
                                              err=bkg.rms(), gain=gain)
        sources['flag'] |= flag
        sources['flux'] = flux
        sources['fluxerr'] = fluxerr

        # radii at 0.25, 0.5, and 0.75 flux
        flux_radii, flag = sep.flux_radius(data, sources['x'], sources['y'], 6.0 * sources['a'], [0.25, 0.5, 0.75],
                                           normflux=sources['flux'], subpix=5)
        sources['flag'] |= flag
        sources['fluxrad25'] = flux_radii[:, 0]
        sources['fluxrad50'] = flux_radii[:, 1]
        sources['fluxrad75'] = flux_radii[:, 2]

        # xwin/ywin
        sig = 2. / 2.35 * sources['fluxrad50']
        xwin, ywin, flag = sep.winpos(data, sources['x'], sources['y'], sig)
        sources['flag'] |= flag
        sources['xwin'] = xwin
        sources['ywin'] = ywin

        # perform aperture photometry for diameters of 1" to 8"
        for diameter in [1, 2, 3, 4, 5, 6, 7, 8]:
            flux, fluxerr, flag = sep.sum_circle(data, sources['x'], sources['y'],
                                                 diameter / 2. / image.pixel_scale,
                                                 mask=mask, err=bkg.rms(), gain=gain)
            sources['fluxaper{0}'.format(diameter)] = flux
            sources['fluxerr{0}'.format(diameter)] = fluxerr
            sources['flag'] |= flag

        # average background at each source
        # since SEP sums up whole pixels, we need to do the same on an image of ones for the background_area
        bkgflux, fluxerr, flag = sep.sum_ellipse(bkg.back(), sources['x'], sources['y'],
                                                 sources['a'], sources['b'], np.pi / 2.0,
                                                 2.5 * sources['kronrad'], subpix=1)
        background_area, _, _ = sep.sum_ellipse(np.ones(shape=bkg.back().shape), sources['x'], sources['y'],
                                                sources['a'], sources['b'], np.pi / 2.0,
                                                2.5 * sources['kronrad'], subpix=1)
        sources['background'] = bkgflux
        sources['background'][background_area > 0] /= background_area[background_area > 0]

        # match fits conventions
        sources['x'] += 1.0
        sources['xpeak'] += 1
        sources['xwin'] += 1.0
        sources['xmin'] += 1
        sources['xmax'] += 1
        sources['y'] += 1.0
        sources['ypeak'] += 1
        sources['ywin'] += 1.0
        sources['ymin'] += 1
        sources['ymax'] += 1
        sources['theta'] = np.degrees(sources['theta'])

        # pick columns for catalog
        cat = sources['x', 'y', 'xwin', 'ywin', 'xpeak', 'ypeak',
                      'flux', 'fluxerr', 'peak', 'fluxaper1', 'fluxerr1',
                      'fluxaper2', 'fluxerr2', 'fluxaper3', 'fluxerr3',
                      'fluxaper4', 'fluxerr4', 'fluxaper5', 'fluxerr5',
                      'fluxaper6', 'fluxerr6', 'fluxaper7', 'fluxerr7',
                      'fluxaper8', 'fluxerr8', 'background', 'fwhm',
                      'a', 'b', 'theta', 'kronrad', 'ellipticity',
                      'fluxrad25', 'fluxrad50', 'fluxrad75',
                      'x2', 'y2', 'xy', 'flag']

        # set it
        image.catalog = cat

        # return full catalog
        return sources
示例#26
0
    def do_stage(self, image):
        try:
            # Set the number of source pixels to be 5% of the total. This keeps us safe from
            # satellites and airplanes.
            sep.set_extract_pixstack(int(image.nx * image.ny * 0.05))

            data = image.data.copy()
            error = (np.abs(data) + image.readnoise**2.0)**0.5
            mask = image.bpm > 0

            # Fits can be backwards byte order, so fix that if need be and subtract
            # the background
            try:
                bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
            except ValueError:
                data = data.byteswap(True).newbyteorder()
                bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
            bkg.subfrom(data)

            # Do an initial source detection
            # TODO: Add back in masking after we are sure SEP works
            sources = sep.extract(data,
                                  self.threshold,
                                  minarea=self.min_area,
                                  err=error,
                                  deblend_cont=0.005)

            # Convert the detections into a table
            sources = Table(sources)

            # We remove anything with a detection flag >= 8
            # This includes memory overflows and objects that are too close the edge
            sources = sources[sources['flag'] < 8]

            sources = array_utils.prune_nans_from_table(sources)

            # Calculate the ellipticity
            sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

            # Fix any value of theta that are invalid due to floating point rounding
            # -pi / 2 < theta < pi / 2
            sources['theta'][sources['theta'] > (np.pi / 2.0)] -= np.pi
            sources['theta'][sources['theta'] < (-np.pi / 2.0)] += np.pi

            # Calculate the kron radius
            kronrad, krflag = sep.kron_radius(data, sources['x'], sources['y'],
                                              sources['a'], sources['b'],
                                              sources['theta'], 6.0)
            sources['flag'] |= krflag
            sources['kronrad'] = kronrad

            # Calcuate the equivilent of flux_auto
            flux, fluxerr, flag = sep.sum_ellipse(data,
                                                  sources['x'],
                                                  sources['y'],
                                                  sources['a'],
                                                  sources['b'],
                                                  np.pi / 2.0,
                                                  2.5 * kronrad,
                                                  subpix=1,
                                                  err=error)
            sources['flux'] = flux
            sources['fluxerr'] = fluxerr
            sources['flag'] |= flag

            # Do circular aperture photometry for diameters of 1" to 6"
            for diameter in [1, 2, 3, 4, 5, 6]:
                flux, fluxerr, flag = sep.sum_circle(data,
                                                     sources['x'],
                                                     sources['y'],
                                                     diameter / 2.0 /
                                                     image.pixel_scale,
                                                     gain=1.0,
                                                     err=error)
                sources['fluxaper{0}'.format(diameter)] = flux
                sources['fluxerr{0}'.format(diameter)] = fluxerr
                sources['flag'] |= flag

            # Calculate the FWHMs of the stars:
            fwhm = 2.0 * (np.log(2) *
                          (sources['a']**2.0 + sources['b']**2.0))**0.5
            sources['fwhm'] = fwhm

            # Cut individual bright pixels. Often cosmic rays
            sources = sources[fwhm > 1.0]

            # Measure the flux profile
            flux_radii, flag = sep.flux_radius(data,
                                               sources['x'],
                                               sources['y'],
                                               6.0 * sources['a'],
                                               [0.25, 0.5, 0.75],
                                               normflux=sources['flux'],
                                               subpix=5)
            sources['flag'] |= flag
            sources['fluxrad25'] = flux_radii[:, 0]
            sources['fluxrad50'] = flux_radii[:, 1]
            sources['fluxrad75'] = flux_radii[:, 2]

            # Calculate the windowed positions
            sig = 2.0 / 2.35 * sources['fluxrad50']
            xwin, ywin, flag = sep.winpos(data, sources['x'], sources['y'],
                                          sig)
            sources['flag'] |= flag
            sources['xwin'] = xwin
            sources['ywin'] = ywin

            # Calculate the average background at each source
            bkgflux, fluxerr, flag = sep.sum_ellipse(bkg.back(),
                                                     sources['x'],
                                                     sources['y'],
                                                     sources['a'],
                                                     sources['b'],
                                                     np.pi / 2.0,
                                                     2.5 * sources['kronrad'],
                                                     subpix=1)
            # masksum, fluxerr, flag = sep.sum_ellipse(mask, sources['x'], sources['y'],
            #                                         sources['a'], sources['b'], np.pi / 2.0,
            #                                         2.5 * kronrad, subpix=1)

            background_area = (
                2.5 * sources['kronrad']
            )**2.0 * sources['a'] * sources['b'] * np.pi  # - masksum
            sources['background'] = bkgflux
            sources['background'][background_area > 0] /= background_area[
                background_area > 0]
            # Update the catalog to match fits convention instead of python array convention
            sources['x'] += 1.0
            sources['y'] += 1.0

            sources['xpeak'] += 1
            sources['ypeak'] += 1

            sources['xwin'] += 1.0
            sources['ywin'] += 1.0

            sources['theta'] = np.degrees(sources['theta'])

            catalog = sources['x', 'y', 'xwin', 'ywin', 'xpeak', 'ypeak',
                              'flux', 'fluxerr', 'peak', 'fluxaper1',
                              'fluxerr1', 'fluxaper2', 'fluxerr2', 'fluxaper3',
                              'fluxerr3', 'fluxaper4', 'fluxerr4', 'fluxaper5',
                              'fluxerr5', 'fluxaper6', 'fluxerr6',
                              'background', 'fwhm', 'a', 'b', 'theta',
                              'kronrad', 'ellipticity', 'fluxrad25',
                              'fluxrad50', 'fluxrad75', 'x2', 'y2', 'xy',
                              'flag']

            # Add the units and description to the catalogs
            catalog['x'].unit = 'pixel'
            catalog['x'].description = 'X coordinate of the object'
            catalog['y'].unit = 'pixel'
            catalog['y'].description = 'Y coordinate of the object'
            catalog['xwin'].unit = 'pixel'
            catalog['xwin'].description = 'Windowed X coordinate of the object'
            catalog['ywin'].unit = 'pixel'
            catalog['ywin'].description = 'Windowed Y coordinate of the object'
            catalog['xpeak'].unit = 'pixel'
            catalog['xpeak'].description = 'X coordinate of the peak'
            catalog['ypeak'].unit = 'pixel'
            catalog['ypeak'].description = 'Windowed Y coordinate of the peak'
            catalog['flux'].unit = 'count'
            catalog[
                'flux'].description = 'Flux within a Kron-like elliptical aperture'
            catalog['fluxerr'].unit = 'count'
            catalog[
                'fluxerr'].description = 'Error on the flux within Kron aperture'
            catalog['peak'].unit = 'count'
            catalog['peak'].description = 'Peak flux (flux at xpeak, ypeak)'
            for diameter in [1, 2, 3, 4, 5, 6]:
                catalog['fluxaper{0}'.format(diameter)].unit = 'count'
                catalog['fluxaper{0}'.format(
                    diameter
                )].description = 'Flux from fixed circular aperture: {0}" diameter'.format(
                    diameter)
                catalog['fluxerr{0}'.format(diameter)].unit = 'count'
                catalog['fluxerr{0}'.format(
                    diameter
                )].description = 'Error on Flux from circular aperture: {0}"'.format(
                    diameter)

            catalog['background'].unit = 'count'
            catalog[
                'background'].description = 'Average background value in the aperture'
            catalog['fwhm'].unit = 'pixel'
            catalog['fwhm'].description = 'FWHM of the object'
            catalog['a'].unit = 'pixel'
            catalog['a'].description = 'Semi-major axis of the object'
            catalog['b'].unit = 'pixel'
            catalog['b'].description = 'Semi-minor axis of the object'
            catalog['theta'].unit = 'degree'
            catalog['theta'].description = 'Position angle of the object'
            catalog['kronrad'].unit = 'pixel'
            catalog['kronrad'].description = 'Kron radius used for extraction'
            catalog['ellipticity'].description = 'Ellipticity'
            catalog['fluxrad25'].unit = 'pixel'
            catalog[
                'fluxrad25'].description = 'Radius containing 25% of the flux'
            catalog['fluxrad50'].unit = 'pixel'
            catalog[
                'fluxrad50'].description = 'Radius containing 50% of the flux'
            catalog['fluxrad75'].unit = 'pixel'
            catalog[
                'fluxrad75'].description = 'Radius containing 75% of the flux'
            catalog['x2'].unit = 'pixel^2'
            catalog[
                'x2'].description = 'Variance on X coordinate of the object'
            catalog['y2'].unit = 'pixel^2'
            catalog[
                'y2'].description = 'Variance on Y coordinate of the object'
            catalog['xy'].unit = 'pixel^2'
            catalog['xy'].description = 'XY covariance of the object'
            catalog[
                'flag'].description = 'Bit mask of extraction/photometry flags'

            catalog.sort('flux')
            catalog.reverse()

            # Save some background statistics in the header
            mean_background = stats.sigma_clipped_mean(bkg.back(), 5.0)
            image.header['L1MEAN'] = (
                mean_background,
                '[counts] Sigma clipped mean of frame background')

            median_background = np.median(bkg.back())
            image.header['L1MEDIAN'] = (median_background,
                                        '[counts] Median of frame background')

            std_background = stats.robust_standard_deviation(bkg.back())
            image.header['L1SIGMA'] = (
                std_background, '[counts] Robust std dev of frame background')

            # Save some image statistics to the header
            good_objects = catalog['flag'] == 0
            for quantity in ['fwhm', 'ellipticity', 'theta']:
                good_objects = np.logical_and(
                    good_objects, np.logical_not(np.isnan(catalog[quantity])))
            if good_objects.sum() == 0:
                image.header['L1FWHM'] = ('NaN',
                                          '[arcsec] Frame FWHM in arcsec')
                image.header['L1ELLIP'] = ('NaN',
                                           'Mean image ellipticity (1-B/A)')
                image.header['L1ELLIPA'] = (
                    'NaN', '[deg] PA of mean image ellipticity')
            else:
                seeing = np.median(
                    catalog['fwhm'][good_objects]) * image.pixel_scale
                image.header['L1FWHM'] = (seeing,
                                          '[arcsec] Frame FWHM in arcsec')

                mean_ellipticity = stats.sigma_clipped_mean(
                    catalog['ellipticity'][good_objects], 3.0)
                image.header['L1ELLIP'] = (mean_ellipticity,
                                           'Mean image ellipticity (1-B/A)')

                mean_position_angle = stats.sigma_clipped_mean(
                    catalog['theta'][good_objects], 3.0)
                image.header['L1ELLIPA'] = (
                    mean_position_angle, '[deg] PA of mean image ellipticity')

            logging_tags = {
                key: float(image.header[key])
                for key in [
                    'L1MEAN', 'L1MEDIAN', 'L1SIGMA', 'L1FWHM', 'L1ELLIP',
                    'L1ELLIPA'
                ]
            }

            logger.info('Extracted sources',
                        image=image,
                        extra_tags=logging_tags)
            # adding catalog (a data table) to the appropriate images attribute.
            image.data_tables['catalog'] = DataTable(data_table=catalog,
                                                     name='CAT')
        except Exception:
            logger.error(logs.format_exception(), image=image)
        return image
示例#27
0
    def AutoPhot(self, Kron_fact=2.5, min_diameter=3.5, write=True):
        kronrad, krflag = sep.kron_radius(self.dat, self.src['x'],
                                          self.src['y'], self.src['a'],
                                          self.src['b'], self.src['theta'], 6.)
        kronrad[np.isnan(kronrad) == True] = 0.
        flux, fluxerr, flag = sep.sum_ellipse(self.dat,
                                              self.src['x'],
                                              self.src['y'],
                                              self.src['a'],
                                              self.src['b'],
                                              self.src['theta'],
                                              Kron_fact * kronrad,
                                              err=self.skysigma,
                                              gain=self.gain,
                                              subpix=0)
        flag |= krflag  # Combining flags
        r_min = 0.5 * min_diameter

        use_circle = kronrad * np.sqrt(self.src['a'] * self.src['b']) < r_min
        cflux, cfluxerr, cflag = sep.sum_circle(self.dat,
                                                self.src['x'][use_circle],
                                                self.src['y'][use_circle],
                                                r_min,
                                                err=self.skysigma,
                                                gain=self.gain,
                                                subpix=0)
        flux[use_circle] = cflux
        fluxerr[use_circle] = cfluxerr
        flag[use_circle] = cflag

        mag = self.zmag - 2.5 * np.log10(flux)
        magerr = (2.5 / np.log(10.0)) * (fluxerr / flux)

        r, flag = sep.flux_radius(self.dat,
                                  self.src['x'],
                                  self.src['y'],
                                  6.0 * self.src['a'],
                                  0.5,
                                  normflux=flux,
                                  subpix=5)

        ra, dec = self.wcs.all_pix2world(self.src['x'] + 1, self.src['y'] + 1,
                                         1)

        df = pd.DataFrame(
            data={
                'x': self.src['x'],
                'y': self.src['y'],
                'ra': ra,
                'dec': dec,
                'a': self.src['a'],
                'b': self.src['b'],
                'theta': self.src['theta'],
                'flux': flux,
                'e_flux': fluxerr,
                'mag': mag,
                'e_mag': magerr,
                'kronrad': kronrad,
                'flxrad': r,
                'flag': flag
            })

        if write:
            df.to_csv(ip.tmp_dir + 'auto_' + self.img.split('.fits')[0] +
                      '.csv')

            f = open(ip.tmp_dir + 'src_' + self.img.split('.fits')[0] + '.reg',
                     'w')
            for i in np.arange(self.nsrc):
                f.write('{0:.3f}  {1:.3f}\n'.format(self.src['x'][i] + 1,
                                                    self.src['y'][i] + 1))
            f.close()

        return df
示例#28
0
def sourcephot(catalogue,image,segmap,detection,instrument='MUSE',dxp=0.,dyp=0.,
               noise=[False],zpab=False, kn=2.5, circap=1.0):

    """ 

    Get a source catalogue from findsources and a fits image with ZP
    and compute magnitudes in that filter 

    catalogue -> source cat from findsources
    image     -> fits image with ZP in header
    segmap    -> fits of segmentation map 
    detection -> the detection image, used to compute Kron radius 

    instrument -> if not MUSE, map positions from detection to image

    dxp,dyp    -> shifts in pixel of image to register MUSE and image astrometry   
   
    noise      -> if set to a noise model, use equation noise[0]*noise[1]*npix**noise[2]
                  to compute the error

    zpab  -> if ZPAB (zeropoint AB) not stored in header, must be supplied

    kn   -> factor to be used when scaling Kron apertures [sextractor default 2.5]
  
    circap -> radius in arcsec for aperture photmetry to be used when Kron aperture fails 

    """  

    from astropy.io import fits
    import numpy as np
    import sep
    import matplotlib.pyplot as plt
    from astropy.table import Table
    from astropy import wcs 


    #grab root name 
    rname=((image.split('/')[-1]).split('.fits'))[0]
    print ('Working on {}'.format(rname))

    #open the catalogue/fits 
    cat=fits.open(catalogue)
    img=fits.open(image)
    seg=fits.open(segmap)
    det=fits.open(detection)

    #grab reference wcs from detection image 
    try:
        wref=wcs.WCS(det[1].header)
    except:
        wref = wcs.WCS(det[0].header)
    psref=wref.pixel_scale_matrix[1,1]*3600.
    print ('Reference pixel size {}'.format(psref))


    #if not handling MUSE, special cases for format of data
    if('MUSE' not in instrument):
        #handle instrument cases
        if('LRIS' in instrument):
            #data 
            imgdata=img[1].data
            #place holder for varaince as will use noise model below
            vardata=imgdata*0+1
            vardata=vardata.byteswap(True).newbyteorder()
            #grab wcs image
            wimg=wcs.WCS(img[1].header)
            psimg=wimg.pixel_scale_matrix[1,1]*3600.
            #store the ZP 
            if(zpab):
                img[0].header['ZPAB']=zpab
        else:
            print('Instrument not supported!!')
            exit()
    else:
        #for muse, keep eveything the same
        imgdata=img[0].data
        vardata=img[1].data
        psimg=psref

    #grab flux and var
    dataflx=np.nan_to_num(imgdata.byteswap(True).newbyteorder())
    datavar=np.nan_to_num(vardata.byteswap(True).newbyteorder())
    # import pdb; pdb.set_trace()
    #grab detection and seg mask
    try:
        detflx=np.nan_to_num(det[1].data.byteswap(True).newbyteorder())
    except:
        detflx = np.nan_to_num(det[0].data.byteswap(True).newbyteorder())

    #go back to 1d
    if(len(seg[0].data.shape)>2):
        segmask=(np.nan_to_num(seg[0].data.byteswap(True).newbyteorder()))[0,:,:]
    else:
        segmask=(np.nan_to_num(seg[0].data.byteswap(True).newbyteorder()))


    #if needed, map the segmap to new image with transformation
    if('MUSE' not in instrument):
        #allocate space for transformed segmentation map
        segmasktrans=np.zeros(dataflx.shape)
        print("Remapping segmentation map to new image...")

        #loop over original segmap and map to trasformed one
        #Just use nearest pixel, and keep only 1 when multiple choices 
        for xx in range(segmask.shape[0]):
            for yy in range(segmask.shape[1]):
                #go to world
                radec=wref.wcs_pix2world([[yy,xx]],0)
                #back to new instrument pixel 
                newxy=wimg.wcs_world2pix(radec,0)
                #apply shift to register WCS
                newxy[0][1]=newxy[0][1]+dyp
                newxy[0][0]=newxy[0][0]+dxp
                segmasktrans[newxy[0][1],newxy[0][0]]=segmask[xx,yy]
                
                #grow buffer as needed by individual instruments
                #This accounts for resampling to finer pixel size
                if('LRIS' in instrument):
                    segmasktrans[newxy[0][1]+1,newxy[0][0]+1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]+1,newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]+1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]+1,newxy[0][0]]=segmask[xx,yy]
                    segmasktrans[newxy[0][1]-1,newxy[0][0]]=segmask[xx,yy]
                    segmasktrans[newxy[0][1],newxy[0][0]-1]=segmask[xx,yy]
                    segmasktrans[newxy[0][1],newxy[0][0]+1]=segmask[xx,yy]
                 
        #dump the transformed segmap for checking 
        hdumain  = fits.PrimaryHDU(segmasktrans,header=img[1].header)
        hdulist = fits.HDUList(hdumain)
        hdulist.writeto("{}_segremap.fits".format(rname),clobber=True)
    else:
        #no transformation needed
        segmasktrans=segmask

    #source to extract
    nsrc=len(cat[1].data)
    print('Extract photometry for {} sources'.format(nsrc))
    phot = Table(names=('ID', 'MAGAP', 'MAGAP_ERR','FXAP', 'FXAP_ERR', 
                        'RAD', 'MAGSEG', 'MAGSEG_ERR', 'FXSEG', 'FXSEG_ERR','ZP'), 
                 dtype=('i4','f4','f4','f4','f4','f4','f4','f4','f4','f4','f4'))
    
   
    #create check aperture mask 
    checkaperture=np.zeros(dataflx.shape)
    print('Computing photometry for objects...')

    #loop over each source
    for idobj in range(nsrc):
        
        #########
        #Find positions etc and transform as appropriate
        #########
                
        #extract MUSE source paramaters 
        x= cat[1].data['x'][idobj]
        y= cat[1].data['y'][idobj]
        a= cat[1].data['a'][idobj]
        b= cat[1].data['b'][idobj]
        theta= cat[1].data['theta'][idobj]

        #compute kron radius on MUSE detection image 
        #Kron rad in units of a,b
        tmpdata=np.copy(detflx)
        tmpmask=np.copy(segmask)
        #mask all other sources to avoid overlaps but keep desired one
        pixels=np.where(tmpmask == idobj+1) 
        tmpmask[pixels]=0

        #compute kron radius [pixel of reference image]
        kronrad, flg = sep.kron_radius(tmpdata,x,y,a,b,theta,6.0,mask=tmpmask)

        #plt.imshow(np.log10(tmpdata+1),origin='low')
        #plt.show()
        #exit()

        #now check if size is sensible in units of MUSE data 
        rmin = 2.0  #MUSE pix 
        use_circle = kronrad * np.sqrt(a*b) < rmin
      
        #use circular aperture of 2" in muse pixel unit
        rcircap = circap/psref
        
        #now use info to compute photometry and apply 
        #spatial transformation if needed
        if('MUSE' not in instrument):
            #map centre of aperture - +1 reference
            #go to world
            radec=wref.wcs_pix2world([[x,y]],1)
            #back to new instrument pixel 
            newxy=wimg.wcs_world2pix(radec,1)
            #apply shift to register WCS
            xphot=newxy[0][0]+dxp
            yphot=newxy[0][1]+dyp
                      
            #scale radii to new pixel size 
            rminphot=rcircap*psref/psimg
            aphot=a*psref/psimg
            bphot=b*psref/psimg
            #Kron radius in units of a,b

        else:
            #for muse, transfer to same units
            xphot=x
            yphot=y
            rminphot=rcircap
            aphot=a
            bphot=b     
            
        #####
        #Compute local sky 
        #####
        skyreg=kn*kronrad*np.sqrt(aphot*bphot)+15
        if (yphot-skyreg < 0.0): yphot=skyreg
        if (xphot-skyreg < 0.0): xphot=skyreg
        if (yphot+skyreg > segmasktrans.shape[0]-1): yphot=segmasktrans.shape[0]-1-skyreg
        if (xphot+skyreg > segmasktrans.shape[1]-1): xphot=segmasktrans.shape[1]-1-skyreg
        #print(int(yphot-skyreg),int(yphot+skyreg),int(xphot-skyreg),int(xphot+skyreg))
        cutskymask=segmasktrans[int(yphot-skyreg):int(yphot+skyreg),int(xphot-skyreg):int(xphot+skyreg)]
        cutskydata=dataflx[int(yphot-skyreg):int(yphot+skyreg),int(xphot-skyreg):int(xphot+skyreg)]
        skymedian=np.nan_to_num(np.median(cutskydata[np.where(cutskymask < 1.0)]))

        #print skymedian    

        #plt.imshow(cutskymask,origin='low')
        #plt.show()
        #if(idobj > 30):
        #    exit()


        #########
        #Now grab the Kron mag computed using detection image
        #########
   
        #mask all other objects to avoid blending   
        tmpdata=np.copy(dataflx)
        #apply local sky subtraction 
        tmpdata=tmpdata-skymedian
        tmpvar=np.copy(datavar)
        tmpmask=np.copy(segmasktrans)
        pixels=np.where(tmpmask == idobj+1) 
        tmpmask[pixels]=0

        #plt.imshow(tmpmask,origin='low')
        #plt.show()
        #exit()

        #circular aperture
        if(use_circle):        
           
            #flux in circular aperture
            flux_kron, err, flg = sep.sum_circle(tmpdata,xphot,yphot,rminphot,mask=tmpmask)
            #propagate variance
            fluxvar, err, flg = sep.sum_circle(tmpvar,xphot,yphot,rminphot,mask=tmpmask)
            #store Rused in arcsec
            rused=rminphot*psimg

            #update check aperture
            tmpcheckaper=np.zeros(dataflx.shape,dtype=bool)
            sep.mask_ellipse(tmpcheckaper,xphot,yphot,1.,1.,0.,r=rminphot)
            checkaperture=checkaperture+tmpcheckaper*(idobj+1)

        #kron apertures 
        else:
            #kron flux 
            flux_kron, err, flg = sep.sum_ellipse(tmpdata,xphot, yphot, aphot, bphot, theta, kn*kronrad,
                                                  mask=tmpmask)            
            #propagate variance 
            fluxvar, err, flg = sep.sum_ellipse(tmpvar,xphot,yphot, aphot, bphot, theta, kn*kronrad,
                                                mask=tmpmask)
            #translate in radius
            rused=kn*kronrad*psimg*np.sqrt(aphot*bphot)

            #update check aperture
            tmpcheckaper=np.zeros(dataflx.shape,dtype=bool)
            sep.mask_ellipse(tmpcheckaper,xphot,yphot,aphot,bphot,theta,r=kn*kronrad)
            checkaperture=checkaperture+tmpcheckaper*(idobj+1)

        #compute error for aperture
        if(noise[0]):
            #use model 
            appix=np.where(tmpcheckaper > 0)
            errflux_kron=noise[0]*noise[1]*len(appix[0])**noise[2]
        else:
            #propagate variance 
            errflux_kron=np.sqrt(fluxvar)

        #go to mag 
        if(flux_kron > 0):
            mag_aper=-2.5*np.log10(flux_kron)+img[0].header['ZPAB']
            errmg_aper=2.5*np.log10(1.+errflux_kron/flux_kron)
        else:
            mag_aper=99.0
            errmg_aper=99.0
        
        #find out if non detections
        if(errflux_kron >= flux_kron):
            errmg_aper=9
            mag_aper=-2.5*np.log10(2.*errflux_kron)+img[0].header['ZPAB']
          
        #######
        #grab the photometry in the segmentation map 
        #####

        #This may not work well for other instruments 
        #if images are not well aligned
        pixels=np.where(segmasktrans == idobj+1) 
        #add flux in pixels
        tmpdata=np.copy(dataflx)
        #apply sky sub
        tmpdata=tmpdata-skymedian
        flux_seg=np.sum(tmpdata[pixels])
        
        #compute noise from model or adding variance 
        if(noise[0]):
            #from model 
            errfx_seg=noise[0]*noise[1]*len(pixels[0])**noise[2]
        else:
            #add variance in pixels to compute error
            errfx_seg=np.sqrt(np.sum(datavar[pixels]))
  
        #go to mag with calibrations 
        if(flux_seg > 0):
            mag_seg=-2.5*np.log10(flux_seg)+img[0].header['ZPAB']
            errmg_seg=2.5*np.log10(1.+errfx_seg/flux_seg)     
        else:
            mag_seg=99.0
            errmg_seg=99.0
      
        #find out if non detections
        if(errfx_seg >= flux_seg):
            errmg_seg=9
            mag_seg=-2.5*np.log10(2.*errfx_seg)+img[0].header['ZPAB']
        
        #stash by id
        phot.add_row((idobj+1,mag_aper,errmg_aper,flux_kron,errflux_kron,rused,mag_seg,errmg_seg,
                      flux_seg,errfx_seg,img[0].header['ZPAB']))

    #dump the aperture check image 
    hdumain  = fits.PrimaryHDU(checkaperture,header=img[1].header)
    hdulist = fits.HDUList(hdumain)
    hdulist.writeto("{}_aper.fits".format(rname),clobber=True)

    #close
    cat.close()
    img.close()
    seg.close()
    det.close()

    return phot
示例#29
0
文件: test.py 项目: RReverser/sep
def test_masked_segmentation_measurements():
    """Test measurements with segmentation masking"""

    NX = 100
    data = np.zeros((NX * 2, NX * 2))
    yp, xp = np.indices(data.shape)

    ####
    # Make two 2D gaussians that slightly overlap

    # width of the 2D objects
    gsigma = 10.

    # offset between two gaussians in sigmas
    off = 4

    for xy in [[NX, NX], [NX + off * gsigma, NX + off * gsigma]]:
        R = np.sqrt((xp - xy[0])**2 + (yp - xy[1])**2)
        g_i = np.exp(-R**2 / 2 / gsigma**2)
        data += g_i

    # Absolute total
    total_exact = g_i.sum()

    # Add some noise
    rms = 0.02
    np.random.seed(1)
    data += np.random.normal(size=data.shape) * rms

    # Run source detection
    objs, segmap = sep.extract(data,
                               thresh=1.2,
                               err=rms,
                               mask=None,
                               segmentation_map=True)

    seg_id = np.arange(1, len(objs) + 1, dtype=np.int32)

    # Compute Kron/Auto parameters
    x, y, a, b = objs['x'], objs['y'], objs['a'], objs['b']
    theta = objs['theta']

    kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0)

    flux_auto, fluxerr, flag = sep.sum_ellipse(data,
                                               x,
                                               y,
                                               a,
                                               b,
                                               theta,
                                               2.5 * kronrad,
                                               segmap=segmap,
                                               seg_id=seg_id,
                                               subpix=1)

    # Test total flux
    assert_allclose(flux_auto, total_exact, rtol=5.e-2)

    # Flux_radius
    for flux_fraction in [0.2, 0.5]:

        # Exact solution
        rhalf_exact = np.sqrt(-np.log(1 - flux_fraction) * gsigma**2 * 2)

        # Masked measurement
        flux_radius, flag = sep.flux_radius(data,
                                            x,
                                            y,
                                            6. * a,
                                            flux_fraction,
                                            seg_id=seg_id,
                                            segmap=segmap,
                                            normflux=flux_auto,
                                            subpix=5)

        # Test flux fraction
        assert_allclose(flux_radius, rhalf_exact, rtol=5.e-2)

    if False:
        print('test_masked_flux_radius')
        print(total_exact, flux_auto)
        print(rhalf_exact, flux_radius)
示例#30
0
    def _measure(self, img, sources, mask=None):

        logger.info('measuring source parameters')

        # HACK: issues with numerical precision
        # must have pi/2 <= theta <= npi/2
        sources[np.abs(np.abs(sources['theta']) -
                       np.pi / 2) < 1e-6] = np.pi / 2

        for p in ['x', 'y', 'a', 'b', 'theta']:
            sources = sources[~np.isnan(sources[p])]

        # calculate "AUTO" parameters
        kronrad, krflag = sep.kron_radius(img,
                                          sources['x'],
                                          sources['y'],
                                          sources['a'],
                                          sources['b'],
                                          sources['theta'],
                                          6.0,
                                          mask=mask)

        flux, fluxerr, flag = sep.sum_ellipse(img,
                                              sources['x'],
                                              sources['y'],
                                              sources['a'],
                                              sources['b'],
                                              sources['theta'],
                                              2.5 * kronrad,
                                              subpix=5,
                                              mask=mask)
        flag |= krflag  # combine flags into 'flag'

        sources = sources[~np.isnan(flux)]
        flux = flux[~np.isnan(flux)]
        sources = sources[flux > 0]
        flux = flux[flux > 0]

        mag_auto = self.zpt - 2.5 * np.log10(flux)
        r, flag = sep.flux_radius(img,
                                  sources['x'],
                                  sources['y'],
                                  6. * sources['a'],
                                  0.5,
                                  normflux=flux,
                                  subpix=5,
                                  mask=mask)

        sources['mag_auto'] = mag_auto
        sources['flux_auto'] = flux
        sources['flux_radius'] = r * self.pixscale

        # approximate fwhm
        r_squared = sources['a']**2 + sources['b']**2
        sources['fwhm'] = 2 * np.sqrt(np.log(2) * r_squared) * self.pixscale

        q = sources['b'] / sources['a']
        area = np.pi * q * sources['flux_radius']**2
        sources['mu_ave_auto'] = sources['mag_auto'] + 2.5 * np.log10(2 * area)

        area_arcsec = np.pi * (self.psf_fwhm / 2)**2 * self.pixscale**2
        flux, fluxerr, flag = sep.sum_circle(img,
                                             sources['x'],
                                             sources['y'],
                                             self.psf_fwhm / 2,
                                             subpix=5,
                                             mask=mask)
        flux[flux <= 0] = np.nan
        mu_0 = self.zpt - 2.5 * np.log10(flux / area_arcsec)

        sources['mu_0_aper'] = mu_0

        return sources
示例#31
0
def test_vs_sextractor():
    data = np.copy(image_data)  # make an explicit copy so we can 'subfrom'
    bkg = sep.Background(data, bw=64, bh=64, fw=3, fh=3)

    # Test that SExtractor background is same as SEP:
    bkgarr = bkg.back(dtype=np.float32)
    assert_allclose(bkgarr, image_refback, rtol=1.e-5)

    # Extract objects
    bkg.subfrom(data)
    objs = sep.extract(data, 1.5*bkg.globalrms)
    objs = np.sort(objs, order=['y'])

    # Read SExtractor result
    refobjs = np.loadtxt(IMAGECAT_FNAME, dtype=IMAGECAT_DTYPE)
    refobjs = np.sort(refobjs, order=['y'])

    # Found correct number of sources at the right locations?
    assert_allclose(objs['x'], refobjs['x'] - 1., atol=1.e-3)
    assert_allclose(objs['y'], refobjs['y'] - 1., atol=1.e-3)

    # Test aperture flux
    flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 5.,
                                         err=bkg.globalrms)
    assert_allclose(flux, refobjs['flux_aper'], rtol=2.e-4)
    assert_allclose(fluxerr, refobjs['fluxerr_aper'], rtol=1.0e-5)

    # check if the flags work at all (comparison values 
    assert ((flag & sep.APER_TRUNC) != 0).sum() == 4
    assert ((flag & sep.APER_HASMASKED) != 0).sum() == 0

    # Test "flux_auto"
    kr, flag = sep.kron_radius(data, objs['x'], objs['y'], objs['a'],
                               objs['b'], objs['theta'], 6.0)

    flux, fluxerr, flag = sep.sum_ellipse(data, objs['x'], objs['y'],
                                          objs['a'], objs['b'],
                                          objs['theta'], r=2.5 * kr,
                                          err=bkg.globalrms, subpix=1)

    # For some reason, object at index 59 doesn't match. It's very small
    # and kron_radius is set to 0.0 in SExtractor, but 0.08 in sep.
    # Most of the other values are within 1e-4 except one which is only
    # within 0.01. This might be due to a change in SExtractor between
    # v2.8.6 (used to generate "truth" catalog) and v2.18.11.
    kr[59] = 0.0
    flux[59] = 0.0
    fluxerr[59] = 0.0
    assert_allclose(2.5*kr, refobjs['kron_radius'], rtol=0.01)
    assert_allclose(flux, refobjs['flux_auto'], rtol=0.01)
    assert_allclose(fluxerr, refobjs['fluxerr_auto'], rtol=0.01)

    # Test ellipse representation conversion
    cxx, cyy, cxy = sep.ellipse_coeffs(objs['a'], objs['b'], objs['theta'])
    assert_allclose(cxx, objs['cxx'], rtol=1.e-4)
    assert_allclose(cyy, objs['cyy'], rtol=1.e-4)
    assert_allclose(cxy, objs['cxy'], rtol=1.e-4)

    a, b, theta = sep.ellipse_axes(objs['cxx'], objs['cyy'], objs['cxy'])
    assert_allclose(a, objs['a'], rtol=1.e-4)
    assert_allclose(b, objs['b'], rtol=1.e-4)
    assert_allclose(theta, objs['theta'], rtol=1.e-4)

    #test round trip
    cxx, cyy, cxy = sep.ellipse_coeffs(a, b, theta)
    assert_allclose(cxx, objs['cxx'], rtol=1.e-4)
    assert_allclose(cyy, objs['cyy'], rtol=1.e-4)
    assert_allclose(cxy, objs['cxy'], rtol=1.e-4)

    # test flux_radius
    fr, flags = sep.flux_radius(data, objs['x'], objs['y'], 6.*refobjs['a'],
                                [0.1, 0.5, 0.6], normflux=refobjs['flux_auto'],
                                subpix=5)
    assert_allclose(fr, refobjs["flux_radius"], rtol=0.04, atol=0.01)

    # test winpos
    sig = 2. / 2.35 * fr[:, 1]  # flux_radius = 0.5
    xwin, ywin, flag = sep.winpos(data, objs['x'], objs['y'], sig)
    assert_allclose(xwin, refobjs["xwin"] - 1., rtol=0., atol=0.0025)
    assert_allclose(ywin, refobjs["ywin"] - 1., rtol=0., atol=0.0025)
示例#32
0
def kron_info(objects, tbdat_sub):
	kronrad, kronflag = sep.kron_radius(tbdat_sub, objects['x'], objects['y'], objects['a'], objects['b'], objects['theta'], r=6.0)
	return kronrad, kronflag
示例#33
0
def make_catalog(data, header):
    # Set the number of source pixels to be 5% of the total. This keeps us safe from
    # satellites and airplanes.
    sep.set_extract_pixstack(int(data.shape[1] * data.shape[0] * 0.05))

    data = data.copy()
    error = (np.abs(data) + header['RDNOISE']**2.0)**0.5
    mask = data > 0.9 * header['SATURATE']

    # Fits can be backwards byte order, so fix that if need be and subtract
    # the background
    try:
        bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
    except ValueError:
        data = data.byteswap(True).newbyteorder()
        bkg = sep.Background(data, mask=mask, bw=32, bh=32, fw=3, fh=3)
    bkg.subfrom(data)

    # Do an initial source detection
    sources = sep.extract(data,
                          THRESHOLD,
                          mask=mask,
                          minarea=MIN_AREA,
                          err=error,
                          deblend_cont=0.005)

    # Convert the detections into a table
    sources = Table(sources)

    # We remove anything with a detection flag >= 8
    # This includes memory overflows and objects that are too close the edge
    sources = sources[sources['flag'] < 8]

    sources = prune_nans_from_table(sources)

    # Calculate the ellipticity
    sources['ellipticity'] = 1.0 - (sources['b'] / sources['a'])

    # Fix any value of theta that are invalid due to floating point rounding
    # -pi / 2 < theta < pi / 2
    sources['theta'][sources['theta'] > (np.pi / 2.0)] -= np.pi
    sources['theta'][sources['theta'] < (-np.pi / 2.0)] += np.pi

    # Calculate the kron radius
    kronrad, krflag = sep.kron_radius(data, sources['x'], sources['y'],
                                      sources['a'], sources['b'],
                                      sources['theta'], 6.0)
    sources['flag'] |= krflag
    sources['kronrad'] = kronrad

    # Calcuate the equivilent of flux_auto
    flux, fluxerr, flag = sep.sum_ellipse(data,
                                          sources['x'],
                                          sources['y'],
                                          sources['a'],
                                          sources['b'],
                                          np.pi / 2.0,
                                          2.5 * kronrad,
                                          subpix=1,
                                          err=error)
    sources['flux'] = flux
    sources['fluxerr'] = fluxerr
    sources['flag'] |= flag

    # Calculate the FWHMs of the stars:
    fwhm = 2.0 * (np.log(2) * (sources['a']**2.0 + sources['b']**2.0))**0.5
    sources['fwhm'] = fwhm

    # Cut individual bright pixels. Often cosmic rays
    sources = sources[fwhm > 1.0]

    # Update the catalog to match fits convention instead of python array convention
    sources['x'] += 1.0
    sources['y'] += 1.0

    sources['xpeak'] += 1
    sources['ypeak'] += 1

    sources['theta'] = np.degrees(sources['theta'])

    return save_catalog_meta_data(sources)