示例#1
0
def main():
    #pdb.set_trace()
    args = get_args()
    names = {}
    temp1 = "{}.temp1".format(args.infile)
    temp2 = "{}.temp2".format(args.infile)
    outf = fasta.FastaWriter(temp1)
    mask_file = os.path.splitext(args.infile)[0] + ".fa.out"
    f = fasta.FastaReader(args.infile)
    for seq in f:
        print seq.identifier
        gb = seq.identifier.split('|')[3]
        newname = seq.identifier.split(',')[0].split(' ')[-1]
        names[gb] = newname
        seq.identifier = ">{}".format(gb)
        outf.write(seq)
    outf.close()
    cmd = ["maskOutFa", "-softAdd", temp1, mask_file, temp2]
    subprocess.Popen(cmd).wait()
    final = "{}.masked".format(args.infile)
    outf = fasta.FastaWriter(final)
    for seq in fasta.FastaReader(temp2):
        iden = seq.identifier.strip('>')
        seq.identifier = "{}".format(names[iden])
        print seq.identifier
        outf.write(seq)
    outf.close()
示例#2
0
def worker(params):
    locus, opts = params
    name, sequences = locus
    sate, cfg = opts
    # create a tempdir to hold all our stuff
    working = tempfile.mkdtemp()
    # write content to outfile
    descriptor, path = tempfile.mkstemp(dir=working, suffix='.mpi.fasta')
    os.close(descriptor)
    tf = fasta.FastaWriter(path)
    [tf.write(seq) for seq in sequences]
    tf.close()
    # run SATe
    cli = [
        'python', sate, '--input', path, '--output-directory', working,
        '--temporaries', working, cfg
    ]
    stderr, stdout = subprocess.Popen(cli,
                                      stderr=subprocess.PIPE,
                                      stdout=subprocess.PIPE).communicate()
    # get contents of output file(s)
    aln_name = "satejob.marker001.{0}.aln".format(
        os.path.splitext(os.path.basename(path))[0])
    aln_file = os.path.join(working, aln_name)
    aln = open(aln_file, 'rU').read()
    # zap working tempdir
    shutil.rmtree(working)
    # return filename and align so we can store resulting alignments reasonably
    return (name, aln)
示例#3
0
def create_locus_specific_fasta(sequences):
    fd, fasta_file = tempfile.mkstemp(suffix='.fasta')
    os.close(fd)
    fasta_writer = fasta.FastaWriter(fasta_file)
    for seq in sequences:
        fasta_writer.write(seq)
    fasta_writer.close()
    return fasta_file
示例#4
0
 def test_fasta_write(self):
     """[fasta] fasta writing"""
     d = tempfile.mkdtemp()
     outf = fasta.FastaWriter(os.path.join(d,'test_write.fasta'))
     for s in self.seq:
         outf.write(s)
     outf.close()
     old = self._read_raw_contents('test-data/sequence.fasta')
     new = self._read_raw_contents(os.path.join(d,'test_write.fasta'))
     assert old == new
     shutil.rmtree(d)
示例#5
0
 def test_fasta_qual_write(self):
     """[fasta] fasta+qual writing"""
     d = tempfile.mkdtemp()
     f = os.path.join(d, 'test_write.fasta')
     q = os.path.join(d, 'test_write.qual')
     outf = fasta.FastaWriter(f,q)
     for s in self.seq:
         outf.write(s)
     outf.close()
     old_s = self._read_raw_contents('test-data/sequence.fasta')
     old_q = self._read_raw_contents('test-data/sequence.qual')
     new_s = self._read_raw_contents(f)
     new_q = self._read_raw_contents(q)
     assert old_s == new_s
     assert old_q == new_q
     shutil.rmtree(d)
def main():
    args = get_args()
    conf = ConfigParser.ConfigParser()
    conf.read(args.conf)
    all_files = get_all_files_from_conf(conf)
    for genome in all_files:
        name, twobit_name = genome
        out_file = os.path.join(args.output, name) + ".fasta"
        out = fasta.FastaWriter(out_file)
        tb = twobit.TwoBitFile(file(twobit_name))
        lz = os.path.join(args.lastz, name) + ".lastz"
        count = 0
        for row in lastz.Reader(lz, long_format=True):
            sequence = slice_and_return_fasta(tb, row, args.flank)
            out.write(sequence)
            count += 1
        print "\t{} sequences written to {}".format(count, out_file)
        out.close()
def main():
    args = get_args()
    conf = ConfigParser.ConfigParser()
    conf.optionxform = str
    conf.read(args.conf)
    all_files = get_all_files_from_conf(conf, args.pattern)
    #pdb.set_trace()
    for genome in all_files:
        short_name, long_name, twobit_name = genome
        if not args.exclude or (short_name not in args.exclude):
            out_file = os.path.join(args.output, short_name) + ".fasta"
            out = fasta.FastaWriter(out_file)
            tb = twobit.TwoBitFile(file(twobit_name))
            lz = os.path.join(args.lastz, long_name)
            count = 0
            for row in lastz.Reader(lz, long_format=True):
                sequence = slice_and_return_fasta(tb, row, args.flank)
                out.write(sequence)
                count += 1
            print "\t{} sequences written to {}".format(count, out_file)
            out.close()
def main():
    args = get_args()
    config = ConfigParser.RawConfigParser(allow_no_value=True)
    config.read(args.config)
    conn = sqlite3.connect(args.db)
    c = conn.cursor()
    if args.extend_db:
        query = "ATTACH DATABASE '{0}' AS extended".format(args.extend_db)
        c.execute(query)
    organisms = get_names_from_config(config, 'Organisms')
    uces = get_names_from_config(config, 'Loci')
    #pdb.set_trace()
    uce_fasta_out = fasta.FastaWriter(args.output)
    regex = re.compile("[N,n]{1,21}")
    for organism in organisms:
        print "Getting {0} reads...".format(organism)
        written = []
        # going to need to do something more generic w/ suffixes
        #pdb.set_trace()
        name = organism.replace('_', '-')
        if args.notstrict:
            if not organism.endswith('*'):
                reads = find_file(args.contigs, name)
                node_dict, missing = get_nodes_for_uces(c, organism, uces, extend=False, notstrict=True)
            elif args.extend_dir:
                # remove the asterisk
                name = name.rstrip('*')
                reads = find_file(args.extend_dir, name)
                node_dict, missing = get_nodes_for_uces(c, organism.rstrip('*'), uces, extend=True, notstrict=True)
        else:
            if not name.endswith('*'):
                reads = find_file(args.contigs, name)
                node_dict, missing = get_nodes_for_uces(c, organism, uces)
            elif name.endswith('*') and args.extend_dir:
                # remove the asterisk
                name = name.rstrip('*')
                reads = find_file(args.extend_dir, name)
                node_dict, missing = get_nodes_for_uces(c, organism.rstrip('*'), uces, extend=True)
        for read in fasta.FastaReader(reads):
            name = get_name(read.identifier).lower()
            coverage = get_coverage(read.identifier)
            if name in node_dict.keys():
                uce_seq = fasta.FastaSequence()
                uce_seq.identifier = ">{0}_{1} |{0}|{2}".format(node_dict[name][0], organism, coverage)
                # deal with strandedness because aligners dont, which
                # is annoying
                if node_dict[name][1] == '-':
                    uce_seq.sequence = transform.DNA_reverse_complement(read.sequence)
                else:
                    uce_seq.sequence = read.sequence
                # replace any occurrences of <21 Ns
                if regex.search(uce_seq.sequence):
                    uce_seq.sequence = re.sub(regex, "", uce_seq.sequence)
                    print "\tReplaced < 20 ambiguous bases in {0}".format(uce_seq.identifier.split(' ')[0])
                uce_fasta_out.write(uce_seq)
                written.append(str(node_dict[name][0]))
            else:
                pass
        #pdb.set_trace()
        if args.notstrict and missing:
            args.notstrict.write("[{0}]\n".format(organism))
            for name in missing:
                args.notstrict.write("{0}\n".format(name))
                written.append(name)
        assert set(written) == set(uces), "UCE names do not match"
        #assert set(written) == set(uces), pdb.set_trace()
    uce_fasta_out.close()
def main():
    args = get_args()
    # compile some regular expressions we'll use later
    stripnum = re.compile("s_[0-9]+$")
    manyn = re.compile("[N,n]{20,}")
    # get names of loci and taxa
    uces = get_uce_names_from_probes(args.probes)
    taxa = get_taxa_names_from_fastas(args.fasta)
    print "\n"
    if not args.extend:
        if args.db is None:
            db = os.path.join(args.output, 'probe.matches.sqlite')
        else:
            db = args.db
        # create db to hold results
        conn, c = create_probe_database(
                db,
                taxa,
                uces,
                True
            )
    else:
        conn, c = extend_probe_database(
                args.db,
                taxa
            )
    # get duplicate probe sequences for filtering
    if args.dupefile:
        print "Determining duplicate probes..."
        dupes = get_dupes(args.dupefile, longfile=False)
    else:
        dupes = None
    # iterate over LASTZ files for each taxon
    for lz in glob.glob(os.path.join(args.lastz, '*')):
        # get fasta name from lastz file
        ff = get_fasta_name_from_lastz_pth(lz, args.fasta, args.pattern)
        # get taxon name from lastz file
        taxon = get_taxon_from_filename(ff)
        print "\n{0}\n{1}\n{0}".format('=' * 30, taxon)
        # get lastz matches
        print "\tGetting LASTZ matches from GENOME alignments..."
        matches, probes = get_matches(lz)
        # remove bad loci (dupes)
        print "\tGetting bad (potentially duplicate) GENOME matches..."
        loci_to_skip = []
        for k, v in matches.iteritems():
            # check matches to makes sure all is well - keep names lc
            loci_to_skip.extend(quality_control_matches(matches, probes, dupes, k, v, False))
        #pdb.set_trace()
        # convert to set, to keep only uniques
        loci_to_skip = set(loci_to_skip)
        print "\tSkipping {} bad (duplicate hit) loci...".format(len(loci_to_skip))
        # get (and possibly assemble) non-skipped
        seqdict = defaultdict(list)
        # determine those contigs to skip and group those to assemble
        for contig in fasta.FastaReader(ff):
            # make sure all names are lowercase
            contig.identifier = contig.identifier.lower()
            name = contig.identifier.split('|')[-4].strip()
            locus = name.split('_')[0]
            # skip what we identified as bad loci
            if locus not in loci_to_skip:
                seqdict[locus].append(contig)
        output_name = "{}.fasta".format(taxon.replace('_', '-'))
        fout_name = os.path.join(args.output, output_name)
        print "\tOutput filename is {}".format(output_name)
        fout = fasta.FastaWriter(fout_name)
        # this tracks "fake" contig number
        count = 0
        # this tracks loci kept
        kept = 0
        # when > 1 contig, assemble contigs across matches
        sys.stdout.write("\tWriting and Aligning/Assembling UCE loci with multiple probes (dot/1000 loci)")
        for k, v in seqdict.iteritems():
            bad = False
            contig_names = []
            if count % 1000 == 0:
                sys.stdout.write('.')
                sys.stdout.flush()
            if len(v) == 1:
                # trim ambiguous bases on flanks
                record = v[0]
                orient = [matches[k][0][1]]
                if args.flank:
                    record = trim_uce_reads(record, args.flank)
                contig_names.append(record.identifier)
                record.sequence = record.sequence.strip('N')
                # trim many ambiguous bases within contig
                result = manyn.search(record.sequence)
                if result:
                    uce_start, uce_end = get_probe_positions(record)
                    uce = record.sequence[uce_start:uce_end]
                    record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False)
                # change header
                record.identifier = ">Node_{0}_length_{1}_cov_1000".format(
                        count,
                        len(record.sequence)
                    )
                fout.write(v[0])
            else:
                orient = list(set([m[1] for m in matches[k]]))
                # skip any loci having matches of mixed orientation
                # ['+', '-']
                if len(orient) == 1:
                    # create tempfile for the reads
                    fd, temp = tempfile.mkstemp(suffix='.fasta')
                    os.close(fd)
                    temp_out = fasta.FastaWriter(temp)
                    # write all slices to outfile, trimming if we want
                    #pdb.set_trace()
                    for record in v:
                        if args.flank:
                            record = trim_uce_reads(record, args.flank)
                        # keep names of contigs we assembled to store in db assoc
                        # w/ resulting assembled contig name
                        contig_names.append(record.identifier)
                        record.sequence = record.sequence.strip('N')
                        # trim many ambiguous bases within contig
                        result = manyn.search(record.sequence)
                        if result:
                            uce_start, uce_end = get_probe_positions(record)
                            uce = record.sequence[uce_start:uce_end]
                            record.sequence = snip_if_many_N_bases(manyn, k, record.sequence, uce, verbose=False)
                        temp_out.write(record)
                    # make sure to close the file
                    temp_out.close()
                    # assemble
                    aln = Align(temp)
                    aln.run_alignment()
                    record = fasta.FastaSequence()
                    record.sequence = aln.alignment_consensus.tostring()
                    record.identifier = ">Node_{0}_length_{1}_cov_1000".format(
                            count,
                            len(record.sequence)
                        )
                    fout.write(record)
                else:
                    bad = True
            if not bad:
                # track contig assembly and renaming data in db
                q = "UPDATE matches SET {0} = 1 WHERE uce = '{1}'".format(taxon, k)
                c.execute(q)
                # generate db match and match map tables for data
                orient_key = "node_{0}({1})".format(count, orient[0])
                q = "UPDATE match_map SET {0} = '{1}' WHERE uce = '{2}'".format(taxon, orient_key, k)
                c.execute(q)
                # keep track of new name :: old name mapping
                for old_name in contig_names:
                    q = "INSERT INTO contig_map VALUES ('{0}', '{1}', '{2}', '{3}')".format(taxon, k, old_name, record.identifier)
                    c.execute(q)
                kept += 1
            # tracking "fake" contig number
            count += 1
        conn.commit()
        print "\n\t{0} loci of {1} matched ({2:.0f}%), {3} dupes dropped ({4:.0f}%), {5} ({6:.0f}%) kept".format(
            count,
            len(uces),
            float(count) / len(uces) * 100,
            len(loci_to_skip),
            float(len(loci_to_skip)) / len(uces) * 100,
            kept,
            float(kept) / len(uces) * 100
            )
    #conn.commit()
    c.close()
    conn.close()