示例#1
0
    def scatterplot(self, enrich, cutoff=0.05, nmax=10, gene_set_size=[]):
        df = self._get_final_df(enrich.results, cutoff=cutoff, nmax=nmax)

        pylab.clf()
        pylab.scatter(-pylab.log10(df['Adjusted P-value']),
                      range(len(df)),
                      s=10 * df['size'],
                      c=df['size'])

        pylab.xlabel("Odd ratio")
        pylab.ylabel("Gene sets")
        pylab.yticks(range(len(df)), df.name)
        a, b = pylab.xlim()
        pylab.xlim([0, b])
        pylab.grid(True)
        ax = pylab.gca()

        M = max(df['size'])
        if M > 100:
            l1, l2, l3 = "10", "100", str(M)
        else:
            l1, l2, l3 = str(round(M / 3)), str(round(M * 2 / 3)), str(M)

        handles = [
            pylab.Line2D([0], [0], marker="o", markersize=5, label=l1, ls=""),
            pylab.Line2D([0], [0], marker="o", markersize=10, label=l2, ls=""),
            pylab.Line2D([0], [0], marker="o", markersize=15, label=l3, ls="")
        ]
        ax.legend(handles=handles, loc="upper left", title="gene-set size")

        pylab.axvline(1.3, lw=2, ls="--", color="r")
        pylab.tight_layout()
        ax = pylab.colorbar(pylab.gci())
        return df
示例#2
0
 def scatter_length_cov_gc(self, min_length=200, min_cov=10):
     pylab.clf()
     pylab.scatter(self.df.length, self.df['cov'], c=self.df.GC)
     pylab.loglog()
     pylab.axvline(min_length, lw=2, c="r", ls='--')
     pylab.axhline(min_cov, lw=2, c="r", ls='--')
     pylab.xlabel("contig length")
     pylab.ylabel("contig coverage")
     pylab.colorbar(label="GC")
     pylab.grid(True)
示例#3
0
    def plot_volcano(self, plotly=False, marker_color='b'):

        if plotly:
            from plotly import express as px
            df = self.df.copy()
            df["log_adj_pvalue"] = self.df['-log10(pvalue)']
            df["log2FoldChange"] = pylab.log2(self.df['fold_enrichment'])
            #df['hover_name'] = df['start']
            hover_name = 'start'

            try:
                df['info'] = df['chr'] + ":" + df['start'].astype(
                    str) + "-" + df['stop'].astype(str)
            except:
                df['info'] = df['chr'] + ":" + df['start'].astype(
                    str) + "-" + df['end'].astype(str)

            fig = px.scatter(
                df,
                x="log2FoldChange",
                y="log_adj_pvalue",
                hover_name="info",
                log_y=False,
                color="length",
                height=600,
                labels={"log2_fold_enrichment": "log10 p-value"},
            )
            """fig.update_layout(
                 shapes=[dict(type='line', 
                               xref='x', x0=df.log2FoldChange.min(), x1=df.log2FoldChange.max(), 
                               yref='y', y0=-pylab.log10(padj), y1=-pylab.log10(padj), 
                             line=dict(
                                  color="black",
                                  width=1,
                                  dash="dash"))
                        ])
            """
            return fig

        pylab.scatter(pylab.log2(self.df['fold_enrichment']),
                      self.df['-log10(pvalue)'],
                      marker="o",
                      alpha=0.5,
                      color=marker_color,
                      lw=0,
                      s=self.df['length'] / self.df['length'].max() * 400)
        pylab.xlabel('Fold enrichment')
        pylab.ylabel('log10 pvalue')
示例#4
0
    def plot_scatter_contig_length_nread_cov(self,
                                             fontsize=16,
                                             vmin=0,
                                             vmax=50,
                                             min_nreads=20,
                                             min_length=50000):

        if self._df is None:
            _ = self.get_df()
        pylab.clf()
        df = self._df

        m1 = df.length.min()
        M1 = df.length.max()

        # least square
        X = df.query("nread>@min_nreads and length>@min_length")['length']
        Y = df.query("nread>@min_nreads and length>@min_length")['nread']
        Z = df.query("nread>@min_nreads and length>@min_length")['covStat']
        print(X)
        print(Y)
        print(Z)

        A = np.vstack([X, np.ones(len(X))]).T
        m, c = np.linalg.lstsq(A, Y.as_matrix())[0]
        x = np.array([m1, M1])

        X = df['length']
        Y = df['nread']
        Z = df['covStat']
        pylab.scatter(X, Y, c=Z, vmin=vmin, vmax=vmax)
        pylab.colorbar()
        pylab.xlabel("Contig length", fontsize=fontsize)
        pylab.ylabel("Contig reads", fontsize=fontsize)
        pylab.title("coverage function of contig length and reads used")
        pylab.grid()
        pylab.plot(x, m * x + c, "o-r")
        pylab.loglog()
        pylab.tight_layout()
示例#5
0
    def _plot(self, Xr, pca=None, pc1=0, pc2=1, colors=None, show_labels=True):
        if colors is None:
            colors = [self.colors[k] for k in self.labels]
            if len(colors) != len(Xr):
                colors = ["r"] * len(Xr[:,0])
        else:
            for k in self.labels:
                if k not in colors.keys():
                    logger.warning("No key color for this sample: {}. Set to red".format(k))
                    colors[k] = "r"
            colors = [colors[k] for k in self.labels]

        pylab.scatter(Xr[:,pc1], Xr[:,pc2], c=colors)
        ax = pylab.gca()
        X1, X2 = pylab.xlim()
        dX = X2 - X1
        pylab.xlim([X1 + X1*0.05, X2 + X2*0.05])

        Y1, Y2 = pylab.ylim()
        dY = Y2 - Y1
        pylab.ylim([Y1 + Y1*0.05, Y2 + Y2*0.05])

        count = 0
        if show_labels:
            for x,y in zip(Xr[:,pc1], Xr[:,pc2]):
                x += dX / 40
                y += dY / 40
                ax.annotate(self.labels[count], (x,y))
                count += 1
                if count > 100: 
                    break
        if pca:
            pylab.xlabel("PC{} ({}%)".format(pc1+1,
                round(pca.explained_variance_ratio_[pc1]*100, 2)))
            pylab.ylabel("PC{} ({}%)".format(pc2+1,
                round(pca.explained_variance_ratio_[pc2]*100, 2)))
        pylab.grid(True)
示例#6
0
    def plot_go_terms(self,
                      ontologies,
                      max_features=50,
                      log=False,
                      fontsize=8,
                      minimum_genes=0,
                      pvalue=0.05,
                      cmap="summer_r",
                      sort_by="fold_enrichment",
                      show_pvalues=False,
                      include_negative_enrichment=False,
                      fdr_threshold=0.05,
                      compute_levels=True,
                      progress=True):

        assert sort_by in ['pValue', 'fold_enrichment', 'fdr']

        # FIXME: pvalue and fold_enrichment not sorted in same order
        pylab.clf()

        df = self.get_data(
            ontologies,
            include_negative_enrichment=include_negative_enrichment,
            fdr=fdr_threshold)

        if len(df) == 0:
            return df

        df = df.query("pValue<=@pvalue")
        logger.info("Filtering out pvalue>{}. Kept {} GO terms".format(
            pvalue, len(df)))
        df = df.reset_index(drop=True)

        # Select a subset of the data to keep the best max_features in terms of
        # pValue
        subdf = df.query("number_in_list>@minimum_genes").copy()
        logger.info(
            "Filtering out GO terms with less than {} genes: Kept {} GO terms".
            format(minimum_genes, len(subdf)))

        logger.info("Filtering out the 3 parent terms")
        subdf = subdf.query("id not in @self.ontologies")

        # Keeping only a part of the data, sorting by pValue
        if sort_by == "pValue":
            subdf = subdf.sort_values(by="pValue",
                                      ascending=False).iloc[-max_features:]
            df = df.sort_values(by="pValue", ascending=False)
        elif sort_by == "fold_enrichment":
            subdf = subdf.sort_values(by="abs_log2_fold_enrichment",
                                      ascending=True).iloc[-max_features:]
            df = df.sort_values(by="abs_log2_fold_enrichment", ascending=False)
        elif sort_by == "fdr":
            subdf = subdf.sort_values(by="fdr",
                                      ascending=False).iloc[-max_features:]
            df = df.sort_values(by="fdr", ascending=False)

        subdf = subdf.reset_index(drop=True)

        # We get all levels for each go id.
        # They are stored by MF, CC or BP
        if compute_levels:
            paths = self.get_graph(list(subdf['id'].values), progress=progress)
            levels = []
            keys = list(paths.keys())
            goid_levels = paths[keys[0]]
            if len(keys) > 1:
                for k in keys[1:]:
                    goid_levels.update(paths[k])
            levels = [goid_levels[ID] for ID in subdf['id'].values]
            subdf["level"] = levels
        else:
            subdf['level'] = ""
        N = len(subdf)

        size_factor = 12000 / len(subdf)
        max_size = subdf.number_in_list.max()
        min_size = subdf.number_in_list.min()
        sizes = [
            max(max_size * 0.2, x) for x in size_factor *
            subdf.number_in_list.values / subdf.number_in_list.max()
        ]

        m1 = min(sizes)
        m3 = max(sizes)
        m2 = m1 + (m3 - m1) / 2

        if log:
            pylab.scatter(pylab.log2(subdf.fold_enrichment),
                          range(len(subdf)),
                          c=subdf.fdr,
                          s=sizes,
                          cmap=cmap,
                          alpha=0.8,
                          ec="k",
                          vmin=0,
                          vmax=fdr_threshold,
                          zorder=10)
            #pylab.barh(range(N), pylab.log2(subdf.fold_enrichment), color="r",
            #    label="pvalue>0.05; FDR>0.05")
            #pylab.axvline(1, color="gray", ls="--")
            #pylab.axvline(-1, color="gray", ls="--")
        else:
            pylab.scatter(subdf.fold_enrichment,
                          range(len(subdf)),
                          c=subdf.fdr,
                          cmap=cmap,
                          s=sizes,
                          ec="k",
                          alpha=.8,
                          vmin=0,
                          vmax=fdr_threshold,
                          zorder=10)
        #    pylab.barh(range(N), subdf.fold_enrichment, color="r",
        #    label="not significant")
        pylab.grid(zorder=-10)
        ax2 = pylab.colorbar(shrink=0.5)
        ax2.ax.set_ylabel('FDR')

        labels = [
            x if len(x) < 50 else x[0:47] + "..." for x in list(subdf.label)
        ]
        ticks = [
            "{} ({}) {}".format(ID, level, "; " + label.title())
            for level, ID, label in zip(subdf['level'], subdf.id, labels)
        ]

        pylab.yticks(range(N), ticks, fontsize=fontsize, ha='left')

        yax = pylab.gca().get_yaxis()
        try:
            pad = [x.label.get_window_extent().width for x in yax.majorTicks]
            yax.set_tick_params(pad=max(pad))
        except:
            yax.set_tick_params(pad=60 * fontsize * 0.7)
        yax.set_tick_params(pad=60 * fontsize * 0.6)

        fc_max = subdf.fold_enrichment.max(skipna=True)
        fc_min = subdf.fold_enrichment.min(skipna=True)
        # go into log2 space
        fc_max = pylab.log2(fc_max)
        fc_min = pylab.log2(fc_min)
        abs_max = max(fc_max, abs(fc_min), 1)

        if log:
            fc_max = abs_max * 1.5
        else:
            fc_max = 2**abs_max * 1.2

        pylab.axvline(0, color="k", lw=2)
        if log:
            pylab.xlabel("Fold Enrichment (log2)")
        else:
            pylab.xlabel("Fold Enrichment")
        if include_negative_enrichment:
            pylab.xlim([-fc_max, fc_max])
        else:
            pylab.xlim([0, fc_max])
        pylab.tight_layout()

        # The pvalue:
        if show_pvalues:
            ax = pylab.gca().twiny()
            ax.set_xlim([0, max(-pylab.log10(subdf.pValue)) * 1.2])
            ax.set_xlabel("p-values (log10)", fontsize=12)
            ax.plot(-pylab.log10(subdf.pValue),
                    range(len(subdf)),
                    label="pvalue",
                    lw=2,
                    color="k")
            ax.axvline(1.33, lw=1, ls="--", color="grey", label="pvalue=0.05")
            pylab.tight_layout()
            pylab.legend(loc="lower right")
        s1 = pylab.scatter([], [], s=m1, marker='o', color='#555555', ec="k")
        s2 = pylab.scatter([], [], s=m2, marker='o', color='#555555', ec="k")
        s3 = pylab.scatter([], [], s=m3, marker='o', color='#555555', ec="k")

        if len(subdf) < 10:
            labelspacing = 1.5 * 4
            borderpad = 4
            handletextpad = 2
        elif len(subdf) < 20:
            labelspacing = 1.5 * 2
            borderpad = 1
            handletextpad = 2
        else:
            labelspacing = 1.5
            borderpad = 2
            handletextpad = 2

        if len(subdf) >= 3:
            leg = pylab.legend(
                (s1, s2, s3),
                (str(int(min_size)),
                 str(int(min_size +
                         (max_size - min_size) / 2)), str(int(max_size))),
                scatterpoints=1,
                loc='lower right',
                ncol=1,
                frameon=True,
                title="gene-set size",
                labelspacing=labelspacing,
                borderpad=borderpad,
                handletextpad=handletextpad,
                fontsize=8)
        else:
            leg = pylab.legend((s1, ), (str(int(min_size)), ),
                               scatterpoints=1,
                               loc='lower right',
                               ncol=1,
                               frameon=True,
                               title="gene-set size",
                               labelspacing=labelspacing,
                               borderpad=borderpad,
                               handletextpad=handletextpad,
                               fontsize=8)

        frame = leg.get_frame()
        frame.set_facecolor('#b4aeae')
        frame.set_edgecolor('black')
        frame.set_alpha(1)

        self.subdf = subdf
        self.df = df
        return df