def rl_track_setting(tmp_path): # NOTE: Here instead of loading the `rl_track.yaml`, we create instantiate it # directly, because we want to reduce the length of the task for testing, and it # isn't currently possible to both pass a preset yaml file and also pass kwargs to # the SettingProxy. setting = SettingProxy( IncrementalRLSetting, dataset="monsterkong", train_task_schedule={ 0: {"level": 0}, 1: {"level": 1}, 2: {"level": 10}, 3: {"level": 11}, 4: {"level": 20}, 5: {"level": 21}, 6: {"level": 30}, 7: {"level": 31}, }, steps_per_task=2_000, # Reduced length for testing test_steps_per_task=2_000, monitor_training_performance=True, task_labels_at_train_time=True, ) assert setting.steps_per_phase == 2000 assert sorted(setting.train_task_schedule.keys()) == list(range(0, 16_000, 2000)) return setting
def cartpole_state_setting(): setting = SettingProxy( RLSetting, dataset="cartpole", max_steps=5_000, test_steps=2_000, monitor_training_performance=True, ) return setting
def sl_track_setting(): setting = SettingProxy( ClassIncrementalSetting, "sl_track", # dataset="synbols", # nb_tasks=12, # class_order=class_order, ) return setting
def incremental_cartpole_state_setting(): setting = SettingProxy( IncrementalRLSetting, dataset="cartpole", max_steps=10_000, nb_tasks=2, test_steps=2_000, monitor_training_performance=True, ) return setting
def sl_track_setting(): setting = SettingProxy( ClassIncrementalSetting, "sl_track", # dataset="synbols", # nb_tasks=12, # class_order=class_order, # monitor_training_performance=True, ) return setting
def rl_track_setting(): setting = SettingProxy( IncrementalRLSetting, # "rl_track", # TODO: Levels 0-20 work for now in MonsterKong. "rl_track", steps_per_task=2_000, # just for testing. test_steps_per_task=2_000, # just for testing. # dataset="synbols", # nb_tasks=12, # class_order=class_order, ) return setting
def run_track(method: Method, setting: Setting, yamlfile: str) -> Results: setting = SettingProxy(setting, yamlfile) results = setting.apply(method) print(f"Results summary:\n" f"{results.summary()}") print("=====================") print(results.to_log_dict())
def mnist_setting(): return SettingProxy( ClassIncrementalSetting, dataset="mnist", monitor_training_performance=True, )
def mnist_setting(): return SettingProxy( ClassIncrementalSetting, dataset="mnist", )
def fashion_mnist_setting(): return SettingProxy( ClassIncrementalSetting, dataset="fashionmnist", )