def inference_single(net, path, fname, device): image, im_info = get_image(path, fname) np.set_printoptions(precision=2, suppress=True) net.eval() pred_boxes = net(image, im_info) if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:, None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] else: import det_tools_cuda as dtc nms = dtc.nms keep = nms(pred_boxes[:, :4], pred_boxes[:, 4], 0.5) pred_boxes = pred_boxes[keep] pred_boxes = np.array(pred_boxes) keep = pred_boxes[:, -1] > 0.05 pred_boxes = pred_boxes[keep] result_dict = dict(fname=fname, height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, False)) #rois=misc_utils.boxes_dump(rois[:, 1:], True)) return result_dict
def inference(model_file, device, records, result_queue): torch.set_default_tensor_type('torch.FloatTensor') net = network.Network() net.cuda(device) check_point = torch.load(model_file) net.load_state_dict(check_point['state_dict']) for record in records: np.set_printoptions(precision=2, suppress=True) net.eval() image, gt_boxes, im_info, ID = get_data(record, device) pred_boxes = net(image, im_info) if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:, None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] else: import det_tools_cuda as dtc nms = dtc.nms keep = nms(pred_boxes[:, :4], pred_boxes[:, 4], 0.5) pred_boxes = pred_boxes[keep] pred_boxes = np.array(pred_boxes) keep = pred_boxes[:, -1] > 0.05 pred_boxes = pred_boxes[keep] result_dict = dict(ID=ID, height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, False), gtboxes=boxes_dump(gt_boxes, True)) #rois=misc_utils.boxes_dump(rois[:, 1:], True)) result_queue.put_nowait(result_dict)
def __inference(image, im_info, net): pred_boxes = net(image, im_info) n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:, None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] return pred_boxes
def inference(args): @jit.trace(symbolic=False) def val_func(): pred_boxes = net(net.inputs) return pred_boxes # model path saveDir = config.model_dir evalDir = config.eval_dir misc_utils.ensure_dir(evalDir) model_file = os.path.join(saveDir, 'epoch_{}.pkl'.format(args.resume_weights)) assert os.path.exists(model_file) # load model net = network.Network() net.eval() check_point = mge.load(model_file) net.load_state_dict(check_point['state_dict']) ori_image, image, im_info = get_data(args.img_path) net.inputs["image"].set_value(image.astype(np.float32)) net.inputs["im_info"].set_value(im_info) pred_boxes = val_func().numpy() num_tag = config.num_classes - 1 target_shape = (pred_boxes.shape[0] // num_tag // top_k, top_k) pred_tags = (np.arange(num_tag) + 1).reshape(-1, 1) pred_tags = np.tile(pred_tags, target_shape).reshape(-1, 1) # nms if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // top_k idents = np.tile(np.arange(n)[:, None], (1, top_k)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > args.thresh pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep][:, :-1] pred_tags = pred_tags[keep] else: from set_nms_utils import cpu_nms keep = pred_boxes[:, -1] > args.thresh pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] pred_tags = pred_tags.astype(np.int32).flatten() pred_tags_name = np.array(config.class_names)[pred_tags] visual_utils.draw_boxes(ori_image, pred_boxes[:, :-1], pred_boxes[:, -1], pred_tags_name) name = args.img_path.split('/')[-1].split('.')[-2] fpath = '/data/jupyter/{}.png'.format(name) cv2.imwrite(fpath, ori_image)
def inference(args): @jit.trace(symbolic=False) def val_func(): pred_boxes = net(net.inputs) return pred_boxes # model path saveDir = config.model_dir evalDir = config.eval_dir misc_utils.ensure_dir(evalDir) model_file = os.path.join(saveDir, 'epoch_{}.pkl'.format(args.resume_weights)) assert os.path.exists(model_file) # load model net = network.Network() net.eval() check_point = mge.load(model_file) net.load_state_dict(check_point['state_dict']) image, im_info = get_data(args.img_path) net.inputs["image"].set_value(image.astype(np.float32)) net.inputs["im_info"].set_value(im_info) pred_boxes = val_func().numpy() num_tag = config.num_classes - 1 target_shape = (pred_boxes.shape[0] // num_tag // top_k, top_k) pred_tags = (np.arange(num_tag) + 1).reshape(-1, 1) pred_tags = np.tile(pred_tags, target_shape).reshape(-1, 1) # nms if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // top_k idents = np.tile(np.arange(n)[:, None], (1, top_k)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep][:, :-1] pred_tags = pred_tags[keep].flatten() else: from set_nms_utils import cpu_nms keep = pred_boxes[:, -1] > 0.05 pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep].flatten() result_dict = dict(height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, pred_tags)) name = args.img_path.split('/')[-1].split('.')[-2] misc_utils.save_json_lines([result_dict], '{}.json'.format(name))
def inference_single_simple(image, net, category_id=0): image, im_info = get_image_info(image) np.set_printoptions(precision=2, suppress=True) net.eval() pred_boxes = net(image, im_info) n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:, None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] return boxes_dump(pred_boxes, False, category_id)
def inference(model_file, device, records, result_queue): @jit.trace(symbolic=False) def val_func(): pred_boxes = net(net.inputs) return pred_boxes net = network.Network() net.eval() check_point = mge.load(model_file) net.load_state_dict(check_point['state_dict']) for record in records: np.set_printoptions(precision=2, suppress=True) net.eval() image, gt_boxes, im_info, ID = get_data(record, device) net.inputs["image"].set_value(image.astype(np.float32)) net.inputs["im_info"].set_value(im_info) pred_boxes = val_func().numpy() num_tag = config.num_classes - 1 target_shape = (pred_boxes.shape[0] // num_tag // top_k, top_k) pred_tags = (np.arange(num_tag) + 1).reshape(-1, 1) pred_tags = np.tile(pred_tags, target_shape).reshape(-1, 1) # nms if if_set_nms: from set_nms_utils import set_cpu_nms n = pred_boxes.shape[0] // top_k idents = np.tile(np.arange(n)[:, None], (1, top_k)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep][:, :-1] pred_tags = pred_tags[keep].flatten() else: from set_nms_utils import cpu_nms keep = pred_boxes[:, -1] > 0.05 pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep] keep = cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] pred_tags = pred_tags[keep].flatten() result_dict = dict(ID=ID, height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, pred_tags, False), gtboxes=boxes_dump(gt_boxes, None, True)) result_queue.put_nowait(result_dict)
def inference_single(net, fname, img, device): image, im_info = get_image_info(img) np.set_printoptions(precision=2, suppress=True) net.eval() pred_boxes = net(image, im_info) n = pred_boxes.shape[0] // 2 idents = np.tile(np.arange(n)[:, None], (1, 2)).reshape(-1, 1) pred_boxes = np.hstack((pred_boxes, idents)) keep = pred_boxes[:, -2] > 0.05 pred_boxes = pred_boxes[keep] keep = set_cpu_nms(pred_boxes, 0.5) pred_boxes = pred_boxes[keep] result_dict = dict(fname=fname, height=int(im_info[0, -2]), width=int(im_info[0, -1]), dtboxes=boxes_dump(pred_boxes, False)) return result_dict