示例#1
0
    def using_rf_model():
        start = collect_date + '0000'
        end = collect_date + '2359'

        sql = f"""
    SELECT    *
    FROM      AH_USE_LOG_BYMINUTE
    WHERE      1=1
       AND   GATEWAY_ID = '{gateway_id}'
       AND   DEVICE_ID = '{device_id}'
       AND   CONCAT( COLLECT_DATE, COLLECT_TIME) >= DATE_FORMAT( DATE_ADD( STR_TO_DATE( '{start}', '%Y%m%d%H%i'),INTERVAL -20 MINUTE), '%Y%m%d%H%i')
         AND   CONCAT( COLLECT_DATE, COLLECT_TIME) <= DATE_FORMAT( DATE_ADD( STR_TO_DATE( '{end}', '%Y%m%d%H%i'),INTERVAL 10 MINUTE), '%Y%m%d%H%i')
    ORDER BY COLLECT_DATE, COLLECT_TIME"""
        pyperclip.copy(sql)

        with settings.open_db_connection() as conn:
            df = pd.read_sql(sql, con=conn)
            print(df.columns)

            x, y = split_x_y(df, x_col='ENERGY_DIFF')

            pre = 20
            post = 10
            length = post + pre

            x = [x[i:i + length] for i in range(len(x) - (pre + post))]

            model = load(f'./joblib/status/{device_id}_labeling.joblib')

            y = model.predict(x)

            y = [int(x) for x in y]
            return y
示例#2
0
def cbl_info(house_no, request_dr_no):
    sql = f"""
SELECT sum(s)/4
from (	SELECT *
        FROM (	SELECT 
                    sum(ENERGY_DIFF) s
                FROM AH_USE_LOG_BYMINUTE
                WHERE 1=1
                AND GATEWAY_ID = (
                    SELECT GATEWAY_ID
                    FROM AH_GATEWAY_INSTALL
                    WHERE 1=1
                    AND HOUSE_NO = '{house_no}'
                )
                AND COLLECT_DATE >= DATE_FORMAT(DATE_ADD((SELECT START_DATE FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}'), INTERVAL -5 DAY), '%Y%m%d')
                AND COLLECT_DATE < (SELECT DATE_FORMAT(START_DATE, '%Y%m%d') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                AND COLLECT_TIME >= (SELECT DATE_FORMAT(START_DATE, '%H%i') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                AND COLLECT_TIME <= (SELECT DATE_FORMAT(END_DATE, '%H%i') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                GROUP BY
                    COLLECT_DATE) t1
        WHERE 1=1
        ORDER BY s desc
        limit 4) t2"""

    with settings.open_db_connection() as conn:
        cbl = pd.read_sql(sql, con=conn).iloc[0, 0]

    if cbl <= 500:
        reduction_energy = cbl * 0.3
    elif cbl <= 1500:
        reduction_energy = cbl * 0.15 + 75
    else:
        reduction_energy = 300

    return (cbl, reduction_energy)
示例#3
0
def make_model_status(device_id, lag=10):
    sql = f"""
SELECT
    GATEWAY_ID
    , DEVICE_ID
    , COLLECT_DATE
    , COLLECT_TIME
    , QUALITY
    , ONOFF
    , ENERGY
    , ENERGY_DIFF
    , case when APPLIANCE_STATUS is null then 0 else APPLIANCE_STATUS end APPLIANCE_STATUS
    , CREATE_DATE
FROM
    AH_USE_LOG_BYMINUTE
WHERE
    1 = 1
    AND DEVICE_ID = '{device_id}'
    AND COLLECT_DATE in (
        SELECT
            t1.COLLECT_DATE
        FROM
            (SELECT
                COLLECT_DATE
                , sum(APPLIANCE_STATUS) APPLIANCE_STATUS_SUM
            FROM 
                AH_USE_LOG_BYMINUTE
            GROUP by
                COLLECT_DATE) t1
        WHERE 1=1
        AND t1.APPLIANCE_STATUS_SUM is not null)"""

    pyperclip.copy(sql)

    with settings.open_db_connection() as conn:
        df = pd.read_sql(sql, con=conn)

        print(df.head())

        x, y = dl.split_x_y(df, x_col='ENERGY_DIFF', y_col='APPLIANCE_STATUS')

        x, y = dl.sliding_window_transform(x, y, lag=lag, step_size=30)

        model, params = dl.select_classification_model('random forest')

        gs = sk.model_selection.GridSearchCV(estimator=model,
                                             param_grid=params,
                                             cv=5,
                                             scoring='accuracy',
                                             n_jobs=-1)

        gs.fit(x, y)

        df = df.iloc[:-lag]
        df.loc[:, 'appliance_status_predicted'] = gs.predict(x)
        dump_path = f'./joblib/status/{device_id}_labeling.joblib'

        dump(gs, dump_path)  # 저장
        print(df)
        return dump_path, gs.best_score_
示例#4
0
def get_dr_info(request_dr_no):
    sql = f"""
SELECT *
FROM AH_DR_REQUEST
WHERE 1=1
AND REQUEST_DR_NO = '{request_dr_no}'"""

    with settings.open_db_connection() as conn:
        df = pd.read_sql(sql, con=conn)
    dr_type = df.iloc[0, 1]

    duration = int((df.iloc[0, 3] - df.iloc[0, 2]).seconds / 60)
    return dr_type, duration
示例#5
0
def check_weeks(gateway_id, device_id):
    sql = f"""
SELECT
    CEIL(DATEDIFF(NOW(), DATE_FORMAT(min(COLLECT_DATE), '%Y%m%d'))/7)
FROM AH_USE_LOG_BYMINUTE
WHERE 1=1
AND GATEWAY_ID='{gateway_id}'
AND DEVICE_ID ='{device_id}'
"""

    with settings.open_db_connection() as conn:
        weeks = pd.read_sql(sql, con=conn).iloc[0, 0]

    return weeks
示例#6
0
def make_model_elec(house_no):
    today = datetime.datetime.now().strftime('%Y%m%d')

    sql = f"""
SELECT *
FROM AH_USAGE_DAILY_PREDICT
WHERE 1=1
AND HOUSE_NO = {house_no}
-- AND USE_DATE >= DATE_FORMAT( DATE_ADD( STR_TO_DATE( '{today}', '%Y%m%d'),INTERVAL -28 DAY), '%Y%m%d')"""  # 최근 28주만 선택

    pyperclip.copy(sql)

    with settings.open_db_connection() as conn:
        df = pd.read_sql(sql, con=conn)

        df.loc[df.USE_ENERGY_DAILY.isnull(), 'USE_ENERGY_DAILY'] = 0

        print(df.head())

        x, y = dl.split_x_y(df,
                            x_col='USE_ENERGY_DAILY',
                            y_col='USE_ENERGY_DAILY')
        x, y = dl.sliding_window_transform(x, y, step_size=7, lag=0)

        x = x[6:-1]
        y = y[7:]

        model, param = dl.select_regression_model('linear regression')

        gs = sk.model_selection.GridSearchCV(estimator=model,
                                             param_grid=param,
                                             cv=5,
                                             n_jobs=-1)
        gs.fit(x, y)

        dump(gs, f'./joblib/usage_daily/{house_no}.joblib')

        print("complete")
        return gs.best_score_
示例#7
0
def predict_elec(house_no, date):
    sql = f"""
SELECT
    * 
FROM
    AH_USAGE_DAILY_PREDICT
WHERE 1=1
AND HOUSE_NO = '{house_no}'
AND USE_DATE >= DATE_FORMAT( DATE_ADD( STR_TO_DATE( '{date}', '%Y%m%d'),INTERVAL -7 DAY), '%Y%m%d')
AND USE_DATE < '{date}'
ORDER BY
USE_DATE"""

    with settings.open_db_connection() as conn:
        df = pd.read_sql(sql, con=conn)

    # elec = [x for x in df.use_energy_daily.values[-7:]]
    elec = [x for x in df.USE_ENERGY_DAILY.values[-7:]]

    model = load(f'./joblib/usage_daily/{house_no}.joblib')  # 여기서 오류 발생.

    y = iter_predict(x=elec, n_iter=31, model=model)
    return y
示例#8
0
def device_info(device_name=None,
                gateway_id=None,
                gateway_name=None,
                house_name=None,
                house_id=None,
                energy_info=None):
    def sql():
        device_info_sql = f"""
SELECT *
FROM
    (SELECT
        t01.DEVICE_ID
        , t01.DEVICE_NAME
        , t06.APPLIANCE_NAME
        , t01.DEVICE_TYPE
        , t01.FLAG_USE_AI
        , t02.GATEWAY_ID
        , t03.APPLIANCE_NO
        , t04.HOUSE_NO
        , t05.HOUSE_NAME
    FROM
        AH_DEVICE t01
    INNER JOIN
        AH_DEVICE_INSTALL t02
    ON t01.DEVICE_ID = t02.DEVICE_ID
    INNER JOIN
        AH_APPLIANCE_CONNECT t03
    ON t01.DEVICE_ID = t03.DEVICE_ID
    INNER JOIN
        AH_GATEWAY_INSTALL t04
    ON t03.GATEWAY_ID = t04.GATEWAY_ID
    INNER JOIN
        AH_HOUSE t05
    ON t04.HOUSE_NO = t05.HOUSE_NO
    INNER JOIN
        AH_APPLIANCE t06
    ON t03.APPLIANCE_NO = t06.APPLIANCE_NO
    WHERE 1=1
    AND t06.FLAG_DELETE = 'N'
    AND t01.FLAG_DELETE = 'N'
    AND t03.FLAG_DELETE = 'N') t
WHERE 1=1"""

        if device_name is not None:
            device_name_condition = f"\nAND DEVICE_NAME like '%{device_name}%'"
            device_info_sql += device_name_condition

        if gateway_id is not None:
            gateway_id_condition = f"\nAND GATEWAY_ID = '{gateway_id}'"
            device_info_sql += gateway_id_condition

        if gateway_name is not None:
            gateway_name_condition = f"\nAND GATEWAY_NAME = '{gateway_name}'"
            device_info_sql += gateway_name_condition

        if house_name is not None:
            house_name_condition = f"\nAND HOUSE_NAME like '%{house_name}%'"
            device_info_sql += house_name_condition

        if house_id is not None:
            house_id_condition = f""
            device_info_sql += house_id_condition

        return device_info_sql

    with settings.open_db_connection() as conn:
        df = pd.read_sql(sql(), con=conn)
    # settings.conn.close()
    return df
示例#9
0
def usage_log(device_id,
              gateway_id=None,
              start_date='20191128',
              end_date=None,
              start_time='0000',
              end_time='2359',
              dayofweek=None,
              raw_data=False,
              sql_print=False,
              power=False,
              threshold=1):
    """

    :param device_id:
    :param gateway_id:
    :param start_date:
    :param end_date:
    :param start_time:
    :param end_time:
    :param dayofweek:
    :param raw_data:
    :param sql_print:
    :return:
    """
    def make_sql():
        sql = f"""
SELECT 
    STR_TO_DATE(CONCAT(COLLECT_DATE, COLLECT_TIME), '%Y%m%d%H%i') DATETIME
    , POWER
    , ENERGY_DIFF
    , ONOFF
    , APPLIANCE_STATUS
FROM AH_USE_LOG_BYMINUTE
WHERE 1=1
AND DEVICE_ID = '{device_id}'"""

        if power:
            sql = f"""
SELECT 
    STR_TO_DATE(CONCAT(COLLECT_DATE, COLLECT_TIME), '%Y%m%d%H%i') DATETIME
    , POWER
    , ENERGY_DIFF
    , ONOFF
    , CASE WHEN POWER >= {threshold} THEN 1 ELSE 0 END APPLIANCE_STATUS
FROM AH_USE_LOG_BYMINUTE
WHERE 1=1
AND DEVICE_ID = '{device_id}'"""

        if gateway_id is not None:
            gateway_id_condition = f"\nAND GATEWAY_ID = '{gateway_id}'"
            sql += gateway_id_condition

        start_date_condition = f"\nAND COLLECT_DATE >= '{start_date}'"
        sql += start_date_condition

        if end_date is not None:
            end_date_condition = f"\nAND COLLECT_DATE <= '{end_date}'"
            sql += end_date_condition

        start_time_condition = f"\nAND COLLECT_TIME >= '{start_time}'"
        sql += start_time_condition

        end_time_condition = f"AND COLLECT_TIME <= '{end_time}'"
        sql += end_time_condition

        if dayofweek is not None:
            dayofweek_condition = f"AND DAYOFWEEK(COLLECT_DATE) = {dayofweek}"
            sql += dayofweek_condition
        return sql

    def transform(df):
        df['APPLIANCE_STATUS_LAG'] = df.APPLIANCE_STATUS.shift(1).fillna(0)
        df['APPLIANCE_STATUS_LAG'] = [int(x) for x in df.APPLIANCE_STATUS_LAG]
        df['APPLIANCE_STATUS'] = df.APPLIANCE_STATUS.fillna(0)
        df['APPLIANCE_STATUS'] = [int(x) for x in df.APPLIANCE_STATUS]

        df_change = df.loc[df.APPLIANCE_STATUS != df.APPLIANCE_STATUS_LAG, :]
        df_change = df_change.reset_index()
        df_change['DATETIME_LAG'] = df_change.DATETIME.shift(1).fillna(0)
        df_change['duration'] = df_change.DATETIME - df_change.DATETIME.shift(
            1)

        print(df_change)
        df_change['duration'] = [
            x.days * 1440 + x.seconds / 60 for x in df_change.duration
            if x != 'NaT'
        ]

        history = df_change.loc[:, [
            'DATETIME_LAG', 'DATETIME', 'duration', 'APPLIANCE_STATUS_LAG'
        ]]

        history.columns = ['START', 'END', 'DURATION', 'STATUS']
        history = history.loc[history.STATUS == 1, :].reset_index(drop=True)
        return history

    if sql_print:
        print(make_sql())

    if raw_data:
        with settings.open_db_connection() as conn:
            result = pd.read_sql(make_sql(), con=conn, index_col='DATETIME')

    else:
        with settings.open_db_connection() as conn:
            df = pd.read_sql(make_sql(), con=conn, index_col='DATETIME')
        result = transform(df)

    # result.to_clipboard()
    # settings.conn.close()
    return result
示例#10
0
def dr_recommendation():
    try:
        house_no = request.json['house_no']
        request_dr_no = request.json['request_dr_no']

        sql = f"""
                SELECT sum(s)/4
                from (	SELECT *
                		FROM (	SELECT 
                					sum(ENERGY_DIFF) s
                				FROM AH_USE_LOG_BYMINUTE
                				WHERE 1=1
                				AND GATEWAY_ID = (
                					SELECT GATEWAY_ID
                					FROM AH_GATEWAY_INSTALL
                					WHERE 1=1
                					AND HOUSE_NO = '{house_no}'
                				)
                				AND COLLECT_DATE >= DATE_FORMAT(DATE_ADD((SELECT START_DATE FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}'), INTERVAL -5 DAY), '%Y%m%d')
                				AND COLLECT_DATE < (SELECT DATE_FORMAT(START_DATE, '%Y%m%d') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                				AND COLLECT_TIME >= (SELECT DATE_FORMAT(START_DATE, '%H%i') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                				AND COLLECT_TIME <= (SELECT DATE_FORMAT(END_DATE, '%H%i') FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}')
                				GROUP BY
                					COLLECT_DATE) t1
                		WHERE 1=1
                		ORDER BY s desc
                		limit 4) t2d
                """

        with settings.open_db_connection() as conn:
            cbl = pd.read_sql(sql, con=conn).iloc[0, 0]

        if cbl <= 500:
            reduction_energy = cbl * 0.3
        elif cbl <= 1500:
            reduction_energy = cbl * 0.15 + 75
        else:
            reduction_energy = 300

        sql = f"""
    SELECT
    	DEVICE_ID
    	, DEVICE_NAME
    	, FREQUENCY
    	, WAIT_ENERGY_AVG
    	, USE_ENERGY_AVG
        , FLAG_USE_AI
    	, STATUS
    	, ONOFF
    	, ENERGY
    	, USE_ENERGY_AVG * (SELECT TIMESTAMPDIFF(MINUTE, START_DATE, END_DATE) FROM AH_DR_REQUEST WHERE REQUEST_DR_NO = '{request_dr_no}') as ENERGY_SUM_USE
        , WAIT_ENERGY_AVG * (SELECT TIMESTAMPDIFF(MINUTE, START_DATE, END_DATE) FROM AH_DR_REQUEST WHERE REQUEST_DR_NO = '{request_dr_no}') as ENERGY_SUM_WAIT
    FROM
    (SELECT
    	FR.DEVICE_ID
    	, T.DEVICE_NAME
    	, FR.FREQUENCY
    	, (case when HT.WAIT_ENERGY_AVG is null then 0 else HT.WAIT_ENERGY_AVG end) WAIT_ENERGY_AVG
    	, (case when HT.USE_ENERGY_AVG is null then 0 else HT.USE_ENERGY_AVG end) USE_ENERGY_AVG
    	, T.STATUS
    	, T.ONOFF
    	, case 
    	when (case when T.STATUS = 1 then HT.USE_ENERGY_AVG else HT.WAIT_ENERGY_AVG end) is null then 0
    	else (case when T.STATUS = 1 then HT.USE_ENERGY_AVG else HT.WAIT_ENERGY_AVG end) end as ENERGY
        , case when FLAG_USE_AI = 'Y' then 1 else 0 end FLAG_USE_AI
    FROM (
    	SELECT 
    		DEVICE_ID
    		, sum(APPLIANCE_STATUS)
    		, case when sum(APPLIANCE_STATUS) is null then 0 else sum(APPLIANCE_STATUS) end FREQUENCY
    	FROM
    		(SELECT 
    			COLLECT_DATE
    			, DEVICE_ID
    			, max(APPLIANCE_STATUS) APPLIANCE_STATUS
    		FROM AH_USE_LOG_BYMINUTE
    		WHERE 1=1
    		AND GATEWAY_ID = (
    			SELECT GATEWAY_ID
    			FROM AH_GATEWAY_INSTALL
    			WHERE 1=1
    			AND HOUSE_NO = '{house_no}'
    		)
    		AND DAYOFWEEK(COLLECT_DATE) = (SELECT DAYOFWEEK(DATE_FORMAT(START_DATE, '%Y%m%d')) FROM AH_DR_REQUEST WHERE REQUEST_DR_NO = '{request_dr_no}')
    		AND COLLECT_TIME >= (SELECT DATE_FORMAT(START_DATE, '%H%i') FROM AH_DR_REQUEST WHERE REQUEST_DR_NO = '{request_dr_no}')
    		AND COLLECT_TIME <= (SELECT DATE_FORMAT(END_DATE, '%H%i') FROM AH_DR_REQUEST WHERE REQUEST_DR_NO = '{request_dr_no}')
    		GROUP BY
    			COLLECT_DATE
    			, DEVICE_ID) t
    		GROUP BY
    			DEVICE_ID
    		) FR
    	INNER JOIN 
    		(SELECT
    			DEVICE_ID
    			, sum(WAIT_ENERGY)/sum(WAIT_TIME) WAIT_ENERGY_AVG
    			, sum(USE_ENERGY)/sum(USE_TIME) USE_ENERGY_AVG
    		FROM AH_DEVICE_ENERGY_HISTORY
    		WHERE 1=1
    		AND GATEWAY_ID = (
    			SELECT GATEWAY_ID
    			FROM AH_GATEWAY_INSTALL
    			WHERE 1=1
    			AND HOUSE_NO = '{house_no}')
    		GROUP BY
    			DEVICE_ID) HT
    	ON FR.DEVICE_ID = HT.DEVICE_ID
    	INNER JOIN 
    		(SELECT 
    			gateway_id
    			, device_id
    			, device_name
    		    , sum(onoff) onoff_sum
    		    , count(onoff) onoff_count
    		    , avg(POWER) power_avg
    		    , case when sum(onoff) > 2.5 then 1 else 0 end onoff
    			, case when avg(POWER) > 0.5 then 1 else 0 end status -- 조정필요
    		FROM aihems_service_db.AH_LOG_SOCKET
    		WHERE 1=1
    		AND GATEWAY_ID = (SELECT GATEWAY_ID FROM aihems_api_db.AH_GATEWAY_INSTALL WHERE 1=1 AND HOUSE_NO = '{house_no}')
    		AND COLLECT_DATE = (SELECT DATE_FORMAT(NOW(), '%Y%m%d') FROM DUAL)
    		-- DATE_FORMAT(DATE_ADD((SELECT START_DATE FROM AH_DR_REQUEST WHERE 1=1 AND REQUEST_DR_NO = '{request_dr_no}'), INTERVAL -5 DAY), '%Y%m%d')
    		AND COLLECT_TIME >= DATE_FORMAT(DATE_ADD(DATE_ADD(NOW(), INTERVAL 9 HOUR), INTERVAL -5 MINUTE), '%H%i')
    		GROUP BY
    			gateway_id
    			, device_id
    			, device_name) T on (FR.DEVICE_ID = T.DEVICE_ID)
        INNER JOIN
    		(SELECT
    			DEVICE_ID
    			, FLAG_USE_AI
    		FROM AH_DEVICE) QQ ON FR.DEVICE_ID = QQ.DEVICE_ID
    	) FF
    WHERE 1=1 
    AND FLAG_USE_AI != 0
    ORDER BY
        FLAG_USE_AI asc
    	, STATUS desc
    	, ONOFF desc
    	, FREQUENCY desc
    	, ENERGY asc
                """

        with settings.open_db_connection() as conn:
            status = pd.read_sql(sql, con=conn)

        status['ENERGY_SUM'] = [
            max([x[1][0], x[1][1]]) for x in
            status.loc[:, ['ENERGY_SUM_WAIT', 'ENERGY_SUM_USE']].iterrows()
        ]
        status['ENERGY_CUMSUM'] = status.ENERGY_SUM.cumsum()
        status['USE_MAX'] = cbl - reduction_energy
        status['PERMISSION'] = [
            x < cbl - reduction_energy for x in status.ENERGY_CUMSUM
        ]

        subset = status.loc[:, ['DEVICE_ID', 'ENERGY_SUM', 'PERMISSION']]
        subset.ENERGY_SUM = [str(x) for x in subset.ENERGY_SUM]

        dr_success = subset.iloc[0, 2]

        if dr_success:
            recommendation = subset.to_dict('index')
            dr_success = True

        else:
            recommendation = 0
            dr_success = False

        print(subset)

        return jsonify({
            'flag_success': True,
            'dr_success': dr_success,
            'cbl': str(cbl),
            'reduction_energy': str(reduction_energy),
            'recommendation': recommendation
        })

    except Exception as e:
        return jsonify({'flag_success': False, 'error': str(e)})