# select a volume complete sample of SDSS galaxies down to a given luminosity () Mlim = -17.0; Dmax = 70. sdata = sdata[(M_r < Mlim) & (d_A < Dmax)] M_rs = M_r[(M_r < Mlim) & (d_A < Dmax)] from random import randint import numpy as np # select a random galaxy from sdata iran = randint(0,np.size(sdata)-1) randobj = sdata[iran] # plot its image and spectrum plot_image_spec_sdss_galaxy(randobj) # print some key properties from the SDSS catalog print "SDSS objID=", randobj['objID'] print "r-band absolute magnitude, M_r=", M_rs[iran] r50s = randobj['petroR50_r'] print "light concentration in the r-band, c_r=", randobj['petroR90_r']/r50s print "fraction of light profile fit by the de Vaucouleurs (spheroidal) component in the r-band, fracdeV_r=",randobj['fracdeV_r'] sbs = randobj['modelMag_r'] - 2.5*np.log10(0.5) + 2.5*np.log10(np.pi*(r50s)**2) print "r-band surface brightness, mu_r=", sbs, " mag/arcsec^2" print "r-band axis ratio q=b/a of ellipsoidal fit to light distribution=", randobj['expAB_r'] import py_compile from setup import setup py_compile.compile(os.path.join(setup.code_home_dir(),'fetch_sdss_image.py'))
[197.505, 0, 0, 0], ], 'z_uz': [ [0, 0, 0, 0], [0.623441, -0.293199, 0.16293, -0.0134639], [-21.567, 5.93194, -1.41235, 0.0714143], [82.8481, -0.245694, 0.849976, 0], [-185.812, -7.9729, 0, 0], [168.691, 0, 0, 0], ], } c = coeff[filter_name + '_' + colour_name.replace(' - ', '')] kcor = 0.0 for x, a in enumerate(c): for y, b in enumerate(c[x]): kcor += c[x][y] * redshift**x * colour_value**y return kcor if __name__ == "__main__": import doctest doctest.testmod() import py_compile from setup import setup import os py_compile.compile(os.path.join(setup.code_home_dir(), 'calc_kcor.py'))
third row: sensitivity to extended source, airmass 1.3 fourth row: sensitivity to extended source, airmass 0.0 fifth row: assumed atmospheric extinction, airmass 1.0 """ if fname not in 'ugriz': raise ValueError("Unrecognized filter name '%s'" % fname) data_home = setup.sdss_filter_dir() if not os.path.exists(data_home): os.makedirs(data_home) archive_file = os.path.join(data_home, '%s.dat' % fname) if not os.path.exists(archive_file): raise ValueError( "Error in fetch_sdss_filter: filter file '%s' does not exist!" % archive_file) F = open(archive_file) return np.loadtxt(F, unpack=True) if __name__ == '__main__': for f in 'ugriz': fetch_sdss_filters(f) import py_compile py_compile.compile( os.path.join(setup.code_home_dir(), 'fetch_sdss_filters.py'))
sdsslist['logMsun'] = np.array(dummy) return sdsslist def alfalfa_sdss_crossmatch(aalist, sdsslist): # crossmatch them # match sdsslist to aalist imatch = np.in1d(aalist['AGCnr'],sdsslist['AGCnr']) # match aalist to sdsslist imatch2 = np.in1d(sdsslist['AGCnr'],aalist['AGCnr']) aamatch = aalist[imatch] sdssmatch = sdsslist[imatch2] # carry out some basic cuts aatf = aamatch[aamatch['Dist']>1.0] sdsstf = sdssmatch[aamatch['Dist']>1.0] aatf = aamatch[aamatch['Dist']<500.0] sdsstf = sdssmatch[aamatch['Dist']<500.0] aatf = aatf[sdsstf['zsdss']<10.] sdsstf = sdsstf[sdsstf['zsdss']<10.] aatf = aatf[sdsstf['zsdss']>0.0001] sdsstf = sdsstf[sdsstf['zsdss']>0.0001] return aatf, sdsstf if __name__ == '__main__': import py_compile py_compile.compile(os.path.join(setup.code_home_dir(),'read_data.py')) sd, md, mnpd, phot_r, mdg, mnpdg, morph = read_meert_catalog(phot_type=3)