示例#1
0
    def __init__(self):

        self._abbr = "fumia_2013"
        self._name = "Fumiã et al. PLoS ONE, (2013) 8(7), e69008"
        inputs = {}
        inputs['Mutagen'] = 1.0
        inputs['GFs'] = 1.0
        inputs['Nutrients'] = 1.0
        inputs['TNFα'] = 0.0
        inputs['Hypoxia'] = 1.0

        dpath = os.path.dirname(__file__)
        fpath_network = os.path.join(dpath, 'network.sif')
        A, n2i, dg = sfa.read_sif(fpath_network, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._i2n = {idx: name for name, idx in n2i.items()}
        self._dg = dg
        self._inputs = inputs

        # The following members are not defined due to the lack of data.
        self._df_conds = None
        self._df_exp = None
        self._df_ptb = None
        self._has_link_perturb = False
        self._names_ptb = None
        self._iadj_to_idf = None
示例#2
0
文件: __init__.py 项目: urkang/sfa
    def __init__(self, abbr, dpath, fpath_network):

        self._abbr = abbr
        self._name = "Korkut and Wang et al. eLife 2015;4:e04640"

        fpath_ptb = os.path.join(dpath, "ptb.tsv")

        A, n2i, dg = sfa.read_sif(fpath_network, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._dg = dg
        self._df_conds = pd.read_table(os.path.join(dpath, "conds.tsv"),
                                       header=0,
                                       index_col=0)
        self._df_exp = pd.read_table(os.path.join(dpath, "exp.tsv"),
                                     header=0,
                                     index_col=0)

        self._inputs = {}
        self._df_ptb = pd.read_table(fpath_ptb, index_col=0)
        if any(self._df_ptb.Type == 'link'):
            self._has_link_perturb = True
        else:
            self._has_link_perturb = False

        # Remove the rows and columns of a node which is not
        # included in the given network structure.
        not_included = set(self._df_conds.columns) - set(self._n2i.keys())
        for target in not_included:
            ind_removed = self._df_conds[self.df_conds[target] != 0].index
            self._df_conds.drop(ind_removed, inplace=True)
            self._df_conds.drop([target], axis=1, inplace=True)
            self._df_exp.drop(ind_removed, inplace=True)
            self._df_ptb.drop([target], inplace=True)

            # Re-index according to the new size.
            self._df_conds.index = np.arange(1, self._df_exp.shape[0] + 1)
            self._df_exp.index = self._df_conds.index

        self._names_ptb = []
        for i, row in enumerate(self._df_conds.iterrows()):
            row = row[1]
            list_name = []  # Target names
            for target in self._df_conds.columns[row.nonzero()]:
                list_name.append(target)
            # end of for
            self._names_ptb.append(list_name)
        # end of for

        s1 = set(self._df_exp.columns)  # From experimental data
        s2 = set(n2i.keys())  # From network
        exp_only = s1 - s2
        self._df_exp.drop(exp_only, axis=1, inplace=True)

        # For mapping from the indices of adj. matrix to those of DataFrame
        # (arrange the indices of adj. matrix according to df_exp.columns)
        self._iadj_to_idf = [n2i[x] for x in self._df_exp.columns]
        self._i2n = {idx: name for name, idx in n2i.items()}
示例#3
0
    def __init__(self):

        self._abbr = "FUMIA_2013"
        self._name = ""

        dpath = os.path.dirname(__file__)
        dpath_network = os.path.join(dpath, "fumia_network.sif")

        A, n2i, dg = sfa.read_sif(dpath_network, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._dg = dg

        self.i2n = {idx: name for name, idx in self._n2i.items()}
示例#4
0
    def __init__(self):
        super().__init__()
        self._abbr = "TNC"
        self._name = "A simple three node cascade"

        # Specify the file path for network file in SIF.
        dpath = os.path.dirname(__file__)
        fpath = os.path.join(dpath, 'union.sif')
        # Use read_sif function.
        signs = {'pos_interaction':1, 'neg_interaction':-1}
        A, n2i, dg = sfa.read_sif(fpath, signs=signs, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._dg = dg
        self._i2n = {idx: name for name, idx in n2i.items()}
示例#5
0
    def __init__(self):

        self._abbr = "flobak_2015"
        self._name = "Flobak et al. PLoS Comput Biol, (2015) 11(8)"
        inputs = {}

        dpath = os.path.dirname(__file__)
        fpath_network = os.path.join(dpath, 'network.sif')
        A, n2i, dg = sfa.read_sif(fpath_network, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._i2n = {idx: name for name, idx in n2i.items()}
        self._dg = dg
        self._inputs = inputs

        # The following members are not defined due to the lack of data.
        self._df_conds = None
        self._df_exp = None
        self._df_ptb = None
        self._has_link_perturb = False
        self._names_ptb = None
        self._iadj_to_idf = None
示例#6
0
文件: __init__.py 项目: urkang/sfa
    def __init__(self):

        self._abbr = "steinway_2015"
        self._name = "Steinway et al. Npj Syst Biol Appl (2015)  1(1), 15014"
        inputs = {}
        inputs['TGFβ'] = 1.0

        dpath = os.path.dirname(__file__)
        fpath_network = os.path.join(dpath, 'network.sif')
        A, n2i, dg = sfa.read_sif(fpath_network, as_nx=True)
        self._A = A
        self._n2i = n2i
        self._i2n = {idx: name for name, idx in n2i.items()}
        self._dg = dg
        self._inputs = inputs

        # The following members are not defined due to the lack of data.
        self._df_conds = None
        self._df_exp = None
        self._df_ptb = None
        self._has_link_perturb = False
        self._names_ptb = None
        self._iadj_to_idf = None