示例#1
0
def build_sgan_models(args):
    long_dtype, float_dtype = get_dtypes(args)
    generator = TrajectoryGenerator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        encoder_h_dim=args.encoder_h_dim_g,
        decoder_h_dim=args.decoder_h_dim_g,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        noise_dim=args.noise_dim,
        noise_type=args.noise_type,
        noise_mix_type=args.noise_mix_type,
        pooling_type=args.pooling_type,
        pool_every_timestep=args.pool_every_timestep,
        dropout=args.dropout,
        bottleneck_dim=args.bottleneck_dim,
        neighborhood_size=args.neighborhood_size,
        grid_size=args.grid_size,
        interaction_activation=args.interaction_activation,
        batch_norm=args.batch_norm)
    generator.apply(init_weights)
    discriminator = TrajectoryDiscriminator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        h_dim=args.encoder_h_dim_d,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        dropout=args.dropout,
        batch_norm=args.batch_norm,
        d_type=args.d_type,
        interaction_activation=args.interaction_activation,
        activation=args.d_activation  # default: relu
    )

    discriminator.apply(init_weights)
    return generator, discriminator
示例#2
0
def main(args):
    print(args)

    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
    # train_path = get_dset_path(args.dataset_name, 'train')
    # val_path = get_dset_path(args.dataset_name, 'val')

    train_path= os.path.join(data_dir,args.dataset_name,'train_small') # 10 files:0-9
    val_path= os.path.join(data_dir,args.dataset_name,'val_small') # 5 files: 10-14

    long_dtype, float_dtype = get_dtypes(args)

    logger.info("Initializing train dataset")
    train_dset, train_loader = data_loader(args, train_path)
    logger.info("Initializing val dataset")
    _, val_loader = data_loader(args, val_path)

    iterations_per_epoch = len(train_dset) / args.batch_size / args.d_steps
    if args.num_epochs:
        args.num_iterations = int(iterations_per_epoch * args.num_epochs)

    logger.info(
        'There are {} iterations per epoch'.format(iterations_per_epoch)
    )

    generator = TrajectoryGenerator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        encoder_h_dim=args.encoder_h_dim_g,
        decoder_h_dim=args.decoder_h_dim_g,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        noise_dim=args.noise_dim,
        noise_type=args.noise_type,
        noise_mix_type=args.noise_mix_type,
        pooling_type=args.pooling_type,
        pool_every_timestep=args.pool_every_timestep,
        dropout=args.dropout,
        bottleneck_dim=args.bottleneck_dim,
        neighborhood_size=args.neighborhood_size,
        grid_size=args.grid_size,
        batch_norm=args.batch_norm)

    generator.apply(init_weights)
    generator.type(float_dtype).train()
    logger.info('Here is the generator:')
    logger.info(generator)

    discriminator = TrajectoryDiscriminator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        h_dim=args.encoder_h_dim_d,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        dropout=args.dropout,
        batch_norm=args.batch_norm,
        d_type=args.d_type,
        activation=args.d_activation # default: relu
    )

    discriminator.apply(init_weights)
    discriminator.type(float_dtype).train()
    logger.info('Here is the discriminator:')
    logger.info(discriminator)

    g_loss_fn = gan_g_loss
    d_loss_fn = gan_d_loss

    optimizer_g = optim.Adam(generator.parameters(), lr=args.g_learning_rate)
    optimizer_d = optim.Adam(
        discriminator.parameters(), lr=args.d_learning_rate
    )

    # Maybe restore from checkpoint
    restore_path = None
    if args.checkpoint_start_from is not None:
        restore_path = args.checkpoint_start_from
    elif args.restore_from_checkpoint == 1:
        restore_path = os.path.join(args.output_dir,
                                    '%s_with_model.pt' % args.checkpoint_name)

    if restore_path is not None and os.path.isfile(restore_path):
        logger.info('Restoring from checkpoint {}'.format(restore_path))
        checkpoint = torch.load(restore_path)
        generator.load_state_dict(checkpoint['g_state'])
        discriminator.load_state_dict(checkpoint['d_state'])
        optimizer_g.load_state_dict(checkpoint['g_optim_state'])
        optimizer_d.load_state_dict(checkpoint['d_optim_state'])
        t = checkpoint['counters']['t']
        epoch = checkpoint['counters']['epoch']
        checkpoint['restore_ts'].append(t)
    else:
        # Starting from scratch, so initialize checkpoint data structure
        t, epoch = 0, 0
        checkpoint = {
            'args': args.__dict__,
            'G_losses': defaultdict(list),
            'D_losses': defaultdict(list),
            'losses_ts': [],
            'metrics_val': defaultdict(list),
            'metrics_train': defaultdict(list),
            'sample_ts': [],
            'restore_ts': [],
            'norm_g': [],
            'norm_d': [],
            'counters': {
                't': None,
                'epoch': None,
            },
            'g_state': None,
            'g_optim_state': None,
            'd_state': None,
            'd_optim_state': None,
            'g_best_state': None,
            'd_best_state': None,
            'best_t': None,
            'g_best_nl_state': None,
            'd_best_state_nl': None,
            'best_t_nl': None,
        }
    t0 = None
    while t < args.num_iterations:
        gc.collect()
        d_steps_left = args.d_steps
        g_steps_left = args.g_steps
        epoch += 1
        logger.info('Starting epoch {}'.format(epoch))
        for batch in train_loader:
            if args.timing == 1:
                torch.cuda.synchronize()
                t1 = time.time()

            # Decide whether to use the batch for stepping on discriminator or
            # generator; an iteration consists of args.d_steps steps on the
            # discriminator followed by args.g_steps steps on the generator.
            if d_steps_left > 0:
                step_type = 'd'
                losses_d = discriminator_step(args, batch, generator,
                                              discriminator, d_loss_fn,
                                              optimizer_d)
                checkpoint['norm_d'].append(
                    get_total_norm(discriminator.parameters()))
                d_steps_left -= 1
            elif g_steps_left > 0:
                step_type = 'g'
                losses_g = generator_step(args, batch, generator,
                                          discriminator, g_loss_fn,
                                          optimizer_g)
                checkpoint['norm_g'].append(
                    get_total_norm(generator.parameters())
                )
                g_steps_left -= 1

            if args.timing == 1:
                torch.cuda.synchronize()
                t2 = time.time()
                logger.info('{} step took {}'.format(step_type, t2 - t1))

            # Skip the rest if we are not at the end of an iteration
            if d_steps_left > 0 or g_steps_left > 0:
                continue

            if args.timing == 1:
                if t0 is not None:
                    logger.info('Interation {} took {}'.format(
                        t - 1, time.time() - t0
                    ))
                t0 = time.time()

            # Maybe save loss
            if t % args.print_every == 0:
                logger.info('t = {} / {}'.format(t + 1, args.num_iterations))
                for k, v in sorted(losses_d.items()):
                    # logger.info('  [D] {}: {:.3f}'.format(k, v))
                    checkpoint['D_losses'][k].append(v)
                for k, v in sorted(losses_g.items()):
                    # logger.info('  [G] {}: {:.3f}'.format(k, v))
                    checkpoint['G_losses'][k].append(v)
                checkpoint['losses_ts'].append(t)

                ## log scalars
                for k, v in sorted(losses_d.items()):
                    writer.add_scalar("loss/{}".format(k), v, t)
                for k, v in sorted(losses_g.items()):
                    writer.add_scalar("loss/{}".format(k), v, t)

            # Maybe save a checkpoint
            if t > 0 and t % args.checkpoint_every == 0:
                checkpoint['counters']['t'] = t
                checkpoint['counters']['epoch'] = epoch
                checkpoint['sample_ts'].append(t)

                # Check stats on the validation set
                logger.info('Checking stats on val ...')
                metrics_val = check_accuracy(
                    args, val_loader, generator, discriminator, d_loss_fn
                )
                logger.info('Checking stats on train ...')
                metrics_train = check_accuracy(
                    args, train_loader, generator, discriminator,
                    d_loss_fn, limit=True
                )

                for k, v in sorted(metrics_val.items()):
                    # logger.info('  [val] {}: {:.3f}'.format(k, v))
                    checkpoint['metrics_val'][k].append(v)
                for k, v in sorted(metrics_train.items()):
                    # logger.info('  [train] {}: {:.3f}'.format(k, v))
                    checkpoint['metrics_train'][k].append(v)

                ## log scalars
                for k, v in sorted(metrics_val.items()):
                    writer.add_scalar("val/{}".format(k), v, t)
                for k, v in sorted(metrics_train.items()):
                    writer.add_scalar("train/{}".format(k), v, t)

                min_ade = min(checkpoint['metrics_val']['ade'])
                min_ade_nl = min(checkpoint['metrics_val']['ade_nl'])

                if metrics_val['ade'] == min_ade:
                    logger.info('New low for avg_disp_error')
                    checkpoint['best_t'] = t
                    checkpoint['g_best_state'] = generator.state_dict()
                    checkpoint['d_best_state'] = discriminator.state_dict()

                if metrics_val['ade_nl'] == min_ade_nl:
                    logger.info('New low for avg_disp_error_nl')
                    checkpoint['best_t_nl'] = t
                    checkpoint['g_best_nl_state'] = generator.state_dict()
                    checkpoint['d_best_nl_state'] = discriminator.state_dict()

                # Save another checkpoint with model weights and
                # optimizer state
                checkpoint['g_state'] = generator.state_dict()
                checkpoint['g_optim_state'] = optimizer_g.state_dict()
                checkpoint['d_state'] = discriminator.state_dict()
                checkpoint['d_optim_state'] = optimizer_d.state_dict()
                # checkpoint_path = os.path.join(
                #     args.output_dir, '{}_with_model_{:06d}.pt'.format(args.checkpoint_name,t)
                # )
                checkpoint_path = os.path.join(args.output_dir, '{}_with_mode.pt'.format(args.checkpoint_name))
                logger.info('Saving checkpoint to {}'.format(checkpoint_path))
                torch.save(checkpoint, checkpoint_path)
                logger.info('Done.')

                # Save a checkpoint with no model weights by making a shallow
                # copy of the checkpoint excluding some items

                # checkpoint_path = os.path.join(
                #     args.output_dir, '{}_no_model_{:06d}.pt' .format(args.checkpoint_name,t))

                checkpoint_path = os.path.join(args.output_dir, '{}_no_model.pt' .format(args.checkpoint_name))
                logger.info('Saving checkpoint to {}'.format(checkpoint_path))
                key_blacklist = [
                    'g_state', 'd_state', 'g_best_state', 'g_best_nl_state',
                    'g_optim_state', 'd_optim_state', 'd_best_state',
                    'd_best_nl_state'
                ]
                small_checkpoint = {}
                for k, v in checkpoint.items():
                    if k not in key_blacklist:
                        small_checkpoint[k] = v
                torch.save(small_checkpoint, checkpoint_path)
                logger.info('Done.')

            t += 1
            d_steps_left = args.d_steps
            g_steps_left = args.g_steps
            if t >= args.num_iterations:
                break
示例#3
0
文件: tlsgan.py 项目: romi514/TLSGAN
class TLSGAN(MultiHumanRL):
    def __init__(self, device, logger):
        super().__init__()
        self.name = 'SGAN'
        self.device = device
        self.policy_learning = False
        self.logger = logger

    def set_generator_parameters(self, config):
        self.obs_len = config.getint('frozen', 'obs_len')
        self.pred_len = config.getint('frozen', 'pred_len')
        self.mlp_dim = config.getint('frozen', 'mlp_dim')
        self.num_layers = config.getint('frozen', 'num_layers')
        self.pooling_type = config.get('frozen', 'pooling_type')
        self.pool_every_timestep = config.getboolean('frozen',
                                                     'pool_every_timestep')
        self.dropout = config.getfloat('frozen', 'dropout')
        self.bottleneck_dim = config.getint('frozen', 'bottleneck_dim')
        self.neighborhood_size = config.getfloat('frozen', 'neighborhood_size')
        self.grid_size = config.getint('frozen', 'grid_size')
        self.batch_norm = config.getboolean('frozen', 'batch_norm')
        self.multiagent_training = config.getboolean('frozen',
                                                     'multiagent_training')

    def configure(self, config):
        self.set_common_parameters(config)

        self.set_generator_parameters(config)

        checkpoint = torch.load(config.get('frozen', 'model_file'),
                                map_location='cpu')

        self.with_pretrained = config.getboolean('frozen', 'with_pretrained')
        self.frozen_training = config.getboolean('frozen', 'frozen_training')
        self.policy_learning = config.getboolean('frozen', 'policy_learning')

        self.generator = TrajectoryGenerator(
            obs_len=self.obs_len,
            pred_len=self.pred_len,
            embedding_dim=checkpoint['hyperparams']['embedding_dim'],
            encoder_h_dim=checkpoint['hyperparams']['encoder_h_dim_g'],
            decoder_h_dim=checkpoint['hyperparams']['decoder_h_dim_g'],
            mlp_dim=self.mlp_dim,
            num_layers=self.num_layers,
            noise_dim=(0, ),
            noise_type='gaussian',
            noise_mix_type='ped',
            pooling_type=self.pooling_type,
            pool_every_timestep=self.pool_every_timestep,
            dropout=self.dropout,
            bottleneck_dim=self.bottleneck_dim,
            neighborhood_size=self.neighborhood_size,
            grid_size=self.grid_size,
            batch_norm=self.batch_norm)

        if self.with_pretrained:
            self.generator.load_state_dict(checkpoint['g_best_state'])
        else:
            self.generator.apply(init_weights)

        self.model = ValueNetwork(self.generator, self.obs_len, self.device,
                                  self.policy_learning).to(self.device)

        for p in self.model.parameters():
            p.requires_grad = True
        for p in self.model.generator.parameters():
            p.requires_grad = not self.frozen_training

        self.logger.info('Policy: {} '.format(self.name))

    def predict(self, states):
        """
        A base class for all methods that takes pairwise joint state as input to value network.
        The input to the value network is always of shape (batch_size, # humans, rotated joint state length)

        states is a list of joint states

        """
        if self.phase is None or self.device is None:
            raise AttributeError('Phase, device attributes have to be set!')
        if self.phase == 'train' and self.epsilon is None:
            raise AttributeError(
                'Epsilon attribute has to be set in training phase')

        if self.reach_destination(states[-1]):
            return ActionXY(
                0, 0) if self.kinematics == 'holonomic' else ActionRot(0, 0)
        if self.action_space is None:
            self.build_action_space(states[-1].self_state.v_pref)

        if self.policy_learning:

            trajs, rel_trajs, self_info = stateToTrajTensors([states])
            next_position = self.model(
                (trajs, rel_trajs, self_info)).data.squeeze(0)
            action = ActionXY(next_position[0], next_position[1])
            return action

        else:
            occupancy_maps = None
            probability = np.random.random()
            if self.phase == 'train' and probability < self.epsilon:
                max_action = self.action_space[np.random.choice(
                    len(self.action_space))]
            else:
                self.action_values = list()
                max_value = float('-inf')
                max_action = None
                for action in self.action_space:
                    next_self_state = self.propagate(
                        states[-1].self_state, action
                    )  # 'px', 'py', 'vx', 'vy', 'radius', 'gx', 'gy', 'v_pref', 'theta'
                    if self.query_env:
                        next_human_states, reward, done, info = self.env.onestep_lookahead(
                            action)
                    else:
                        next_human_states = [
                            self.propagate(
                                human_state,
                                ActionXY(human_state.vx, human_state.vy))
                            for human_state in states.human_states
                        ]  # 'px1', 'py1', 'vx1', 'vy1', 'radius1'
                        reward = self.compute_reward(next_self_state,
                                                     next_human_states)

                    # VALUE UPDATE
                    trajs, rel_trajs, self_info = stateToTrajTensors([
                        states +
                        [JointState(next_self_state, next_human_states)]
                    ])
                    next_state_value = self.model(
                        (trajs, rel_trajs, self_info)).data.item()
                    value = reward + pow(
                        self.gamma, self.time_step *
                        states[-1].self_state.v_pref) * next_state_value
                    self.action_values.append(value)
                    if value > max_value:
                        max_value = value
                        max_action = action
                if max_action is None:
                    raise ValueError('Value network is not well trained. ')

        if self.phase == 'train':
            self.last_state = states

        return max_action
def main(args):
    if args.mode == 'training':
        args.checkpoint_every = 100
        args.teacher_name = "default"
        args.restore_from_checkpoint = 0
        #args.l2_loss_weight = 0.0
        args.rollout_steps = 1
        args.rollout_rate = 1
        args.rollout_method = 'sgd'
        #print("HHHH"+str(args.l2_loss_weight))

    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_num
    train_path = get_dset_path(args.dataset_name, 'train')
    val_path = get_dset_path(args.dataset_name, 'val')

    long_dtype, float_dtype = get_dtypes(args)

    logger.info("Initializing train dataset")
    train_dset, train_loader = data_loader(args, train_path)
    logger.info("Initializing val dataset")
    _, val_loader = data_loader(args, val_path)

    iterations_per_epoch = len(train_dset) / args.batch_size / args.d_steps
    if args.num_epochs:
        args.num_iterations = int(iterations_per_epoch * args.num_epochs)

    logger.info(
        'There are {} iterations per epoch'.format(iterations_per_epoch))

    global TrajectoryGenerator, TrajectoryDiscriminator
    if args.GAN_type == 'rnn':
        print("Default Social GAN")
        from sgan.models import TrajectoryGenerator, TrajectoryDiscriminator
    elif args.GAN_type == 'simple_rnn':
        print("Default Social GAN")
        from sgan.rnn_models import TrajectoryGenerator, TrajectoryDiscriminator
    else:
        print("Feedforward GAN")
        if (args.Encoder_type == 'MLP' and args.Decoder_type == 'MLP'):
            from sgan.cgs_integrated_model.cgs_ffd_models_E_MLP_D_MLP import TrajectoryGenerator, TrajectoryDiscriminator
        if (args.Encoder_type == 'MLP' and args.Decoder_type == 'LSTM'):
            from sgan.cgs_integrated_model.cgs_ffd_models_E_MLP_D_LSTM import TrajectoryGenerator, TrajectoryDiscriminator
        if (args.Encoder_type == 'LSTM' and args.Decoder_type == 'MLP'):
            from sgan.cgs_integrated_model.cgs_ffd_models_E_LSTM_D_MLP import TrajectoryGenerator, TrajectoryDiscriminator
        if (args.Encoder_type == 'LSTM' and args.Decoder_type == 'LSTM'):
            from sgan.cgs_integrated_model.cgs_ffd_models_E_LSTM_D_LSTM import TrajectoryGenerator, TrajectoryDiscriminator

    #image_dir = 'images/' + 'curve_5_traj_l2_0.5'
    #image_dir = 'images/5trajectory/' + 'havingplots'+ '2-layers-EN-' + args.Encoder_type +  '-DE-20-layers-' + args.Decoder_type + '-L2_' + str(args.l2_loss_weight)

    image_dir = 'images/' + str(args.dataset_name) + \
                '_EN_' + args.Encoder_type + '(' + str(*[args.mlp_encoder_layers if args.Encoder_type == 'MLP' else 1]) + ')' + \
                '_DE_' + args.Decoder_type + '(' + str(*[args.mlp_decoder_layers if args.Decoder_type == 'MLP' else 1]) + ')' + \
                '_DIS_' + args.GAN_type.upper() + '(' + str(args.mlp_discriminator_layers) + ')' + \
                '_L2_Weight' + '(' + str(args.l2_loss_weight) + ')'

    print("Image Dir: ", image_dir)
    if not os.path.exists(image_dir):
        os.makedirs(image_dir)

    generator = TrajectoryGenerator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        encoder_h_dim=args.encoder_h_dim_g,
        decoder_h_dim=args.decoder_h_dim_g,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        noise_dim=args.noise_dim,
        noise_type=args.noise_type,
        noise_mix_type=args.noise_mix_type,
        pooling_type=args.pooling_type,
        pool_every_timestep=args.pool_every_timestep,
        dropout=args.dropout,
        bottleneck_dim=args.bottleneck_dim,
        neighborhood_size=args.neighborhood_size,
        grid_size=args.grid_size,
        batch_norm=args.batch_norm,
        num_mlp_decoder_layers=args.mlp_decoder_layers,
        num_mlp_encoder_layers=args.mlp_encoder_layers)

    generator.apply(init_weights)
    generator.type(float_dtype).train()
    logger.info('Here is the generator:')
    logger.info(generator)

    discriminator = TrajectoryDiscriminator(
        obs_len=args.obs_len,
        pred_len=args.pred_len,
        embedding_dim=args.embedding_dim,
        h_dim=args.encoder_h_dim_d,
        mlp_dim=args.mlp_dim,
        num_layers=args.num_layers,
        dropout=args.dropout,
        batch_norm=args.batch_norm,
        d_type=args.d_type,
        mlp_discriminator_layers=args.mlp_discriminator_layers,
        num_mlp_encoder_layers=args.mlp_encoder_layers)

    discriminator.apply(init_weights)
    discriminator.type(float_dtype).train()
    logger.info('Here is the discriminator:')
    logger.info(discriminator)

    # build teacher
    print("[!] teacher_name: ", args.teacher_name)

    if args.teacher_name == 'default':
        teacher = None
    elif args.teacher_name == 'gpurollout':
        from teacher_gpu_rollout_torch import TeacherGPURollout
        teacher = TeacherGPURollout(args)
        teacher.set_env(discriminator, generator)
        print("GPU Rollout Teacher")
    else:
        raise NotImplementedError

    g_loss_fn = gan_g_loss
    d_loss_fn = gan_d_loss

    optimizer_g = optim.Adam(generator.parameters(), lr=args.g_learning_rate)
    optimizer_d = optim.Adam(discriminator.parameters(),
                             lr=args.d_learning_rate)

    # # Create D optimizer.
    # self.d_optim = tf.train.AdamOptimizer(self.disc_LR*config.D_LR, beta1=config.beta1)
    # # Compute the gradients for a list of variables.
    # self.grads_d_and_vars = self.d_optim.compute_gradients(self.d_loss, var_list=self.d_vars)
    # self.grad_default_real = self.d_optim.compute_gradients(self.d_loss_real, var_list=inputs)
    # # Ask the optimizer to apply the capped gradients.
    # self.update_d = self.d_optim.apply_gradients(self.grads_d_and_vars)
    # ## Get Saliency Map - Teacher
    # self.saliency_map = tf.gradients(self.d_loss, self.inputs)[0]

    # ###### G Optimizer ######
    # # Create G optimizer.
    # self.g_optim = tf.train.AdamOptimizer(config.learning_rate*config.G_LR, beta1=config.beta1)

    # # Compute the gradients for a list of variables.
    # ## With respect to Generator Weights - AutoLoss
    # self.grad_default = self.g_optim.compute_gradients(self.g_loss, var_list=[self.G, self.g_vars])
    # ## With Respect to Images given to D - Teacher
    # # self.grad_default = g_optim.compute_gradients(self.g_loss, var_list=)
    # if config.teacher_name == 'default':
    # self.optimal_grad = self.grad_default[0][0]
    # self.optimal_batch = self.G - self.optimal_grad
    # else:
    # self.optimal_grad, self.optimal_batch = self.teacher.build_teacher(self.G, self.D_, self.grad_default[0][0], self.inputs)

    # # Ask the optimizer to apply the manipulated gradients.
    # grads_collected = tf.gradients(self.G, self.g_vars, self.optimal_grad)
    # grads_and_vars_collected = list(zip(grads_collected, self.g_vars))

    # self.g_teach = self.g_optim.apply_gradients(grads_and_vars_collected)

    # Maybe restore from checkpoint
    restore_path = None
    if args.checkpoint_start_from is not None:
        restore_path = args.checkpoint_start_from
    elif args.restore_from_checkpoint == 1:
        restore_path = os.path.join(args.output_dir,
                                    '%s_with_model.pt' % args.checkpoint_name)

    if restore_path is not None and os.path.isfile(restore_path):
        logger.info('Restoring from checkpoint {}'.format(restore_path))
        checkpoint = torch.load(restore_path)
        generator.load_state_dict(checkpoint['g_state'])
        discriminator.load_state_dict(checkpoint['d_state'])
        optimizer_g.load_state_dict(checkpoint['g_optim_state'])
        optimizer_d.load_state_dict(checkpoint['d_optim_state'])
        t = checkpoint['counters']['t']
        epoch = checkpoint['counters']['epoch']
        checkpoint['restore_ts'].append(t)
    else:
        # Starting from scratch, so initialize checkpoint data structure
        t, epoch = 0, 0
        checkpoint = {
            'args': args.__dict__,
            'G_losses': defaultdict(list),
            'D_losses': defaultdict(list),
            'losses_ts': [],
            'metrics_val': defaultdict(list),
            'metrics_train': defaultdict(list),
            'sample_ts': [],
            'restore_ts': [],
            'norm_g': [],
            'norm_d': [],
            'counters': {
                't': None,
                'epoch': None,
            },
            'g_state': None,
            'g_optim_state': None,
            'd_state': None,
            'd_optim_state': None,
            'g_best_state': None,
            'd_best_state': None,
            'best_t': None,
            'g_best_nl_state': None,
            'd_best_state_nl': None,
            'best_t_nl': None,
        }
    t0 = None
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.75, 0.75])

    while t < args.num_iterations:
        gc.collect()
        d_steps_left = args.d_steps
        g_steps_left = args.g_steps
        epoch += 1
        logger.info('Starting epoch {}'.format(epoch))
        for batch in train_loader:

            if args.timing == 1:
                torch.cuda.synchronize()
                t1 = time.time()

            # Decide whether to use the batch for stepping on discriminator or
            # generator; an iteration consists of args.d_steps steps on the
            # discriminator followed by args.g_steps steps on the generator.
            if d_steps_left > 0:

                if args.mode != 'testing':
                    step_type = 'd'
                    losses_d = discriminator_step(args, batch, generator,
                                                  discriminator, d_loss_fn,
                                                  optimizer_d, teacher,
                                                  args.mode)
                    checkpoint['norm_d'].append(
                        get_total_norm(discriminator.parameters()))

                d_steps_left -= 1

            elif g_steps_left > 0:

                if args.mode != 'testing':
                    step_type = 'g'
                    losses_g = generator_step(args, batch, generator,
                                              discriminator, g_loss_fn,
                                              optimizer_g, args.mode)
                    checkpoint['norm_g'].append(
                        get_total_norm(generator.parameters()))

                g_steps_left -= 1

            if args.timing == 1:
                torch.cuda.synchronize()
                t2 = time.time()
                logger.info('{} step took {}'.format(step_type, t2 - t1))

            # Skip the rest if we are not at the end of an iteration
            if d_steps_left > 0 or g_steps_left > 0:
                continue

            if args.timing == 1:
                if t0 is not None:
                    logger.info('Interation {} took {}'.format(
                        t - 1,
                        time.time() - t0))
                t0 = time.time()

            # Maybe save loss
            if t % args.print_every == 0 and args.mode != 'testing':
                logger.info('t = {} / {}'.format(t + 1, args.num_iterations))
                for k, v in sorted(losses_d.items()):
                    logger.info('  [D] {}: {:.3f}'.format(k, v))
                    checkpoint['D_losses'][k].append(v)
                for k, v in sorted(losses_g.items()):
                    logger.info('  [G] {}: {:.3f}'.format(k, v))
                    checkpoint['G_losses'][k].append(v)
                checkpoint['losses_ts'].append(t)

                # # Check stats on the validation set
                # logger.info('Checking stats on val ...')
                # metrics_val = check_accuracy(
                #     args, val_loader, generator, discriminator, d_loss_fn
                # )
                # logger.info('Checking stats on train ...')
                # metrics_train = check_accuracy(
                #     args, train_loader, generator, discriminator,
                #     d_loss_fn, limit=True
                # )

                # for k, v in sorted(metrics_val.items()):
                #     logger.info('  [val] {}: {:.3f}'.format(k, v))
                #     checkpoint['metrics_val'][k].append(v)
                # for k, v in sorted(metrics_train.items()):
                #     logger.info('  [train] {}: {:.3f}'.format(k, v))
                #     checkpoint['metrics_train'][k].append(v)

                # min_ade = min(checkpoint['metrics_val']['ade'])
                # min_ade_nl = min(checkpoint['metrics_val']['ade_nl'])

                # if metrics_val['ade'] == min_ade:
                #     logger.info('New low for avg_disp_error')
                #     checkpoint['best_t'] = t
                #     checkpoint['g_best_state'] = generator.state_dict()
                #     checkpoint['d_best_state'] = discriminator.state_dict()

                # if metrics_val['ade_nl'] == min_ade_nl:
                #     logger.info('New low for avg_disp_error_nl')
                #     checkpoint['best_t_nl'] = t
                #     checkpoint['g_best_nl_state'] = generator.state_dict()
                #     checkpoint['d_best_nl_state'] = discriminator.state_dict()

            if t % 50 == 0:
                # save = False
                # if t == 160:
                # save = True
                # print(t)
                plot_trajectory(fig,
                                ax,
                                args,
                                val_loader,
                                generator,
                                teacher,
                                args.mode,
                                t,
                                save=True,
                                image_dir=image_dir)

            # Maybe save a checkpoint
            if t > 0 and t % args.checkpoint_every == 0:
                print("Iteration: ", t)
                checkpoint['counters']['t'] = t
                checkpoint['counters']['epoch'] = epoch
                checkpoint['sample_ts'].append(t)

                # Save another checkpoint with model weights and
                # optimizer state
                checkpoint['g_state'] = generator.state_dict()
                checkpoint['g_optim_state'] = optimizer_g.state_dict()
                checkpoint['d_state'] = discriminator.state_dict()
                checkpoint['d_optim_state'] = optimizer_d.state_dict()
                checkpoint_path = os.path.join(
                    args.output_dir, '%s_with_model.pt' % args.checkpoint_name)
                logger.info('Saving checkpoint to {}'.format(checkpoint_path))
                torch.save(checkpoint, checkpoint_path)
                logger.info('Done.')

                # Save a checkpoint with no model weights by making a shallow
                # copy of the checkpoint excluding some items
                checkpoint_path = os.path.join(
                    args.output_dir, '%s_no_model.pt' % args.checkpoint_name)
                logger.info('Saving checkpoint to {}'.format(checkpoint_path))
                key_blacklist = [
                    'g_state', 'd_state', 'g_best_state', 'g_best_nl_state',
                    'g_optim_state', 'd_optim_state', 'd_best_state',
                    'd_best_nl_state'
                ]
                small_checkpoint = {}
                for k, v in checkpoint.items():
                    if k not in key_blacklist:
                        small_checkpoint[k] = v
                torch.save(small_checkpoint, checkpoint_path)
                logger.info('Done.')

            t += 1
            d_steps_left = args.d_steps
            g_steps_left = args.g_steps
            if t >= args.num_iterations:
                break